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We consider the diffusion of Brownian particles in 1D periodic potentials as a test bench for the
recently proposed Stochastic Path Integral Hyperdynamics (PIHD) scheme [L.Y. Chen and L.J.M.
Horing, J. Chem. Phys. 126, 224103 (2007)]. First, we consider the case where PIHD is used
to enhance the transition rate of activated rare events. To this end, we study the diffusion of a
single Brownian particle moving in a spatially periodic potential in the high-friction limit at low
temperature. We demonstrate that the boost factor as compared to straight molecular dynamics
(MD) has nontrivial behavior as a function of the bias force. Instead of growing monotonically with
the bias, the boost attains an optimal maximum value due to increased error in the finite path
sampling induced by the bias. We also observe that the PIHD method can be sensitive to the choice
of numerical integration algorithm. As the second case, we consider parallel resampling of multiple
bias force values in the case of a Brownian particle in a periodic potential subject to an external ac
driving force. We confirm that there is no stochastic resonance in this system. However, while the
PIHD method allows one to obtain data for multiple values of the ac bias, the boost w.r.t. to MD
remains modest due to the simplicity of the equation of motion in this case.

PACS numbers: 05.10.Gg, 05.40.Jc, 87.15.Vv

I. INTRODUCTION

The study of particles performing Brownian motion
in a periodic potential constitutes a hallmark example of
stochastic particle dynamics with important applications
in various branches of science and technology. Perhaps
the most common application of periodic Brownian mo-
tion is the diffusive dynamics of atoms and molecules on
crystal surfaces [1]. Surface diffusion is among the most
important mechanisms that controls processes such as
island nucleation and subsequent surface growth. It has
been shown that by controlling the mobility of particles
on the surface by external means, such as an ac or dc elec-
tric field, allows morphological control over the growing
surfaces [1]. It is thus of great interest to model periodic
Brownian motion with static and time-dependent exter-
nal fields.

To this end, there have been several studies reporting
the diffusion of a single Brownian particle in a periodic
potential with external ac bias applied [2–5]. Most of the
studies reporting the behavior of Brownian particles dis-
cuss the influence of an oscillating bias on transport coef-
ficients. The central issue here is existence of a stochastic
resonance (SR), which can greatly enhance the diffusion
coefficient D in 2D [3]. However, it has been shown in
the case of 1D periodic potentials that although the local
jump rate of particles can be enhanced, there is no true
SR in the hydrodynamic limit [2, 5].

An interesting limit of the periodic Brownian motion
is where the energy barrier V0 is much larger than the
thermal energy, i.e. βV0 ≫ 1 [1], where β = 1/kBT
and kB is the Boltzmann constant and T the absolute
temperature. Since Brownian motion is activated by

thermal fluctuations, the diffusion rate is proportional
to exp(−βV0) which becomes very small at low tempera-
tures. To overcome this rare event problem in Molecular
Dynamics (MD) simulations, Voter [6] has proposed the
so-called Hyperdynamics (HD) scheme, which involves
accelerating the dynamics by adding proper bias poten-
tial, which effectively lowers the barrier height. The
dynamics is then corrected based on the approximate
Transition State Theory (TST). There exist various ap-
proaches to the choice of the bias potential, and some
examples can be found in Refs. [7–10].

However, recently a new scheme has been proposed
that is based on the mapping of the stochastic Langevin
equation to a path integral form [11]. Unlike the standard
HD scheme, this so-called Stochastic Path Integral Hy-
perdynamics (PIHD) method allows an exact correction
of the dynamics by resampling the simulated paths. In
other words, this method is not restricted to the TST ap-
proximation. Further, it is not restricted to static energy
barriers; both entropic barriers and even time-dependent
bias can be employed. This allows an efficient way to
overcome the large barrier problem, as demonstrated in
Ref. [11]. However, so far no systematic study of the
efficiency of the PIHD method has been conducted. In
this work, we perform numerical studies of monomer dif-
fusion in a one-dimensional (1D) periodic potential in the
low-temperature and high-friction regime, where the an-
alytical solution of the barrier crossing rate is known. We
study the computational efficiency of the PIHD method
with two different types of bias potential, revealing non-
monotonic behavior of the boost factor. We also develop
a simple mathematical model that explains the observed
behavior. Furthermore, the PIHD method is not limited
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to the case of high barriers. Since in principle any ex-
ternal bias force can be used, it should be possible to
obtain results for many different bias values from run-
ning LD simulations with a single value of the bias force,
or even without such a force if need be. To demonstrate
this parallel resampling, we employ the PIHD method
to study the diffusion of a single Brownian particle in a
1D periodic potential with ac forcing and, show how the
PIHD method can be employed to obtain the transport
coefficients for a range of different external forcing terms
from a single simulation run. However, in this case the
boost obtained remains modest due to the simplicity of
the equations of motion to be integrated.

II. PATH INTEGRAL HYPERDYNAMICS

Brownian motion of a single particle can be represented
by the Langevin equation

mr̈(t) +mγṙ(t)− F = ξ(t), (1)

where r(t) denotes the position of the particle of mass
m at time t, moving under the influence of external
force F . The random force ξ(t) satisfies 〈ξ(t)〉 = 0 and
〈ξi(t)ξj(t′)〉 = 2kBTmγδi,jδ(t− t′), where γ denotes the
friction coefficient, kB is the Boltzmann constant and T
is the absolute temperature. The probability density of
finding the particle at rf at t given the initial position r0
at t0 is

P (r0, t0|rf , t) = C

∫

[Dr] exp{−βI[r(t)]}, (2)

where C is a normalization constant, [Dr] represents the
path integral over all possible trajectories r(t), and the
effective action is given by

I[r(t)] =
1

4mγ

∫ t

t0

dt′[mr̈(t′) +mγṙ(t′)− F ]2. (3)

In a system with an energy barrier much larger than
the thermal energy kBT , the probability of the particle
crossing the barrier is very small. To make such transi-
tion events more frequent, a bias force Fb(r, t) is added to
the external force F . In this boosted system, the particle
obeys the Langevin equation

mr̈(t) +mγṙ(t)− F = ξ(t) + Fb(r, t). (4)

Obviously, this leads to dynamics and transition proba-
bilities that are different from those given by Eqs. (1)
and (2). However, as demonstrated in Refs. [11–13], it is
possible to exactly recover the original probability den-
sity of Eq. (2) from the biased dynamics by writing

P (r0, t0|rf , t) = C

∫

[Dr] exp(−βIb[r(t)]) exp(−βIξ[r(t)]),

(5)

where the effective action can now be written in two
parts: the action in the boosted system (Ib) and the
correction

Iξ(t) =
1

4mγ

∫ t

t0

dt′Fb(r(t
′), t′)[Fb(r(t

′), t′)+ 2ξ(t′)]. (6)

In the end-point (Ito) discretization scheme this integral
reduces to the discrete sum

Iξ(t) =
1

4mγ

∑

i

Fb(r, ti) [Fb(r, ti) + 2ξ(ti)]∆t. (7)

To recover true dynamics in the absence of Fb(r, t),
one has to estimate the PIHD statistical weight factor
exp(−βIξ) and simply use it to re-weight every sampled
trajectory. Here, the trajectories are sampled over all
dynamical paths r(t) starting from a pre-transition state
A (xA < xc) at time t0 to state B located at xB > xc

at time t, where xc represents a certain transition state.
The transition probability p(t) from state A to state B
is given by the relation

p(t) =

∫

xf≥xc

drf

∫

x0≤xc

dr0P (r0)P (r0, t0|rf , t). (8)

Here, the integrals are calculated over all accessible post-
transition and all pre-transition states given by the initial
quasi-equilibrium distribution P (r0) of the particle in the
unbiased system.

III. DIFFUSION IN PERIODIC POTENTIAL

The fundamental quantity associated with Brownian
dynamics is the single-particle (tracer) diffusion coeffi-
cient [1], which in 1D can be defined through the mean
square displacement (MSD) of the tracer particle as

D = lim
t→∞

1

2t
〈[r(t) − r(0)]2〉. (9)

When studying particle diffusion the mean square dis-
placement at zero bias (true dynamics) can be obtained
by running PIHD with a bias force, calculating Iξ(t)
along every sampled trajectory and re-weighting as

〈

[r(t)− r(0)]2MD

〉

=
〈

[r(t) − r(0)]2PIHD e−βIξ
〉

, (10)

where the subscripts MD and PIHD correspond to the
quantities with zero bias (true dynamics) and finite bias,
respectively.
When considering diffusion in an external, periodic po-

tential the definition (9) of the diffusion coefficient is con-
venient in the regime of intermediate to low friction γ,
where the particle often makes continuous jumps across
multiple saddle points. In this case, it is in principle pos-
sible, but not practical, to define all the post-transition
states and transition probabilities. Instead, the PIHD
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method can be easily applied in this regime by using
Eq. (10) for the MSD. On the other hand, in the low
temperature and high friction regime, virtually all jumps
are to the nearest neighbor minima, which naturally de-
fine the post-transition state B. In this limit, it is ad-
vantageous to define the diffusion coefficient as (see, e.g.,
Ref. [1]):

D =
1

2
Γλ2, (11)

where Γ is the overall jump rate, and λ is the corre-
sponding jump length. The theoretical rate in the inter-
mediate to high friction regime is given by the Kramers
rate [14, 15]

Γ =
ω0

π

[

(

γ2

4ω2
0

+ 1

)

1

2

− γ

2ω0

]

e−βV0, (12)

where the frequency ω0 = 2π
√

V0/2λ2m. With PIHD,
the jump rate can be numerically evaluated by re-
weighting the barrier crossing probability as

p(t) =
1

N

∑

ξ

c(ξ)e−βIξ(t), (13)

whereN is the number of trajectories and c(ξ) = 1 for t >
tcross for crossing trajectories with crossing time tcross,
and zero otherwise. The rate constant is then obtained
as Γ = dp(t)/dt in the linear region of p(t).

IV. MODELS AND RESULTS

A. Brownian Particle in Periodic Potential at Low

Temperatures

Although the application of PIHD to speeding up bar-
rier crossing has been demonstrated in Refs. [11, 12],
to date there are no systematic studies of the quanti-
tative efficiency of the method as compared to straight
Langevin dynamics. The most natural way to use PIHD
is to speed up the activation of rare events by applying
a bias force. To this end, in this section we consider
the canonical case of activated diffusion of a Brownian
monomer in a periodic potential in the limit of high fric-
tion and low temperature [1]. The equation of motion for
the system is given by

mẍ(t) +mγẋ(t)− F (x) = ξ(t) + Fb(x), (14)

Here F (x) is the force due to spatially periodic poten-
tial V (x) = −(V0/2)[1 − cos(2πx/λ)] and Fb(x) is the
bias force. We set scales for length as λ, energy as
kBT and mass as m. The time scale is then defined
as t0 = λ

√

(m/kBT ) and all other relevant quantities
are expressed as dimensionless. The numerical values
of the parameters we have used are λ = 1, V0 = 1,
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FIG. 1: (Color online) The unbiased periodic potential V (x)
(solid black line) and the boosted potentials for the constant
bias force (solid blue line, solid gray in grayscale) and the sinu-
soidal bias force (dashed red line, dashed gray in grayscale)
for several values of fb and Vb. For the constant bias, the
critical tilt for which the barrier height is reduced to zero, is
fcr = π.

γ = 20, T = 0.05 and m = 1. In this range, the dif-
fusion coefficient is to very good approximation given
by Eqs. (11–12). We use two independent numerical
integration algorithms to solve the equation of motion:
the Brünger–Brooks–Karplus (BBK) algorithm [16] with
time step ∆t = 0.01 and the Ermak algorithm [17, 18]
with time step ∆t = 0.005 and, thereafter Eqs. (7)
and (13) to recover the unbiased jump rates. The Er-
mak algorithm has been used previously with PIHD in
Ref. [12] to study polymer escape with intermediate fric-
tion coefficient γ = 0.7 with good accuracy. In our case of
high friction (γ = 20), however, the algorithm introduced
a systematic error of about 15 %, which could be reduced
by decreasing the time step to ∆t = 0.0005. The error is
caused by the extreme sensitivity of the functional inte-
gral (7) to the numerical value of the random force ξi(t).
Within the approximation of the Ermak algorithm, the
random force is pre-integrated with respect to time to
give the random displacement and random velocity, and
at high friction this approximation requires an extremely
small time-step in the evaluation of the functional inte-
gral. In the BBK algorithm, however, the fluctuations
are written down explicitly as a random force and the
problem does not occur. Consequently, in this section we
present the results obtained using the BBK algorithm as
the numerical integrator, for which the same time step
can be used for both MD and PIHD simulations.

We have simulated the monomer with regular MD, i.e.,
without bias potential, and with PIHD using two differ-
ent choices of bias force: the (piecewise) constant bias
force Fb(x) = fb (constant) for x < λ/2 and 0 for x ≥
λ/2 and, the (spatially) sinusoidal bias force Fb(x) =
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FIG. 2: (Color online) (a) The crossing probability p(t) vs.
time t of a Brownian monomer in a sinusoidal potential well
with V0/T = 20. The regular MD simulations yield only
four crossings out of 109 runs, while the PIHD simulations
give several orders of magnitude more. (b) The jump rate Γ
for bias force values fb = 0 (MD), 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5.
The error bars indicate the standard error of the mean value.
The dashed horizontal line indicates the theoretical value at
the low temperature and high friction limit, Γ ≈ 3.0919·10−10 ,
as calculated from Eq. (12) for one reaction pathway (the
barrier to the right).

−πVb

λ sin(2πx/λ), for −λ/2 ≤ x ≤ λ/2, and 0 other-
wise. Examples of the boosted potentials V (x)+Vbias(x)
are shown in Fig. 1. For each value of fb (Vb) we per-
formed simulations consisting of 109 independent trajec-
tories. The initial position of the particle is sampled from
the Boltzmann distribution corresponding to the unbi-
ased external potential and, after the initial equilibration,
the bias potential is switched on at time t = 0. Each tra-
jectory is then simulated until the maximum simulation
time tmax = 15 is reached or once a successful crossing
of the barrier at x = λ occurs, at which time the value
of the functional Iξ(t) is recorded. The contribution of
any one crossing trajectory to the sum (13) is therefore
exp[−βIξ(tcross)].

The results of the simulations with the constant bias
force are shown in Fig. 2. Panel (a) shows the cross-
ing probability versus time, from which the jump rate Γ
is obtained as the average slope of the linear region of
the curve. The p(t) curves have two important features.
First, the number of crossings increases steeply as the
bias force is increased, resulting in a smoother curve. At
the chosen temperature, the number of successful cross-
ings with unbiased MD is in fact so low that determining
the crossing rate at reasonable accuracy is not possible.
In contrast, the PIHD simulations allow one to determine
the rate with good accuracy. The second important fea-
ture is that the large-bias curves start to bend down after
a certain time and exhibit very large jumps in p(t). This
behavior is the result of estimating the exponential av-
erage in Eq. (13) with a finite sample size. The finite
exponential average gives large weight to the tail of the
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FIG. 3: (Color online) The crossing probability (panel a) and
jump rate (panel b) for the sinusoidal bias force for various
magnitudes of Vb = 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2. Conventions
are the same as in Fig. 2.

TABLE I: Values of the jump rate Γ for different magnitudes
fb of the constant bias force and different amplitudes Vb of
the sinusoidal bias force. The theoretical value of the jump
rate is Γ ≈ 3.0919 · 10−10.

fb Γ(10−10 t−1
0 ) Vb Γ(10−10 t−1

0 )

0.0 3.77± 1.53 0.0 3.77 ± 1.53

0.5 3.11± 0.26 0.2 2.58 ± 0.26

1.0 3.06± 0.09 0.4 3.08 ± 0.07

1.5 3.08± 0.05 0.6 3.09 ± 0.05

2.0 3.10± 0.10 0.8 3.06 ± 0.02

2.5 2.92± 0.06 1.0 3.04 ± 0.02

3.0 2.87± 0.04 1.2 3.01 ± 0.01

3.5 2.81± 0.04

distribution of the action functional Iξ(tcross), resulting
in the occasional sudden jumps in p(t) and a systematic

error between the rare jumps. The error becomes larger
with time because the distribution shifts towards higher
values of Iξ(tcross), making the finding of a linear slope
practically impossible with very high bias forces.

In Fig. 2(b) the computed crossing rates are shown for
different values of fb. The value of Γ is determined by
taking the average of dp(t)/dt within the linear region
of the p(t) curve, which is divided into n intervals of
length ∆t, each interval giving an independent value of
the derivative. The standard error of Γ is calculated as
s/
√
n− 1, where s is the standard deviation of dp(t)/dt

within the region. The numerical values of Γ obtained
with various bias forces are listed in Table I.
The corresponding results for the sinusoidal bias force

are shown in Fig. 3. With the sinusoidal bias force, we
also performed 109 independent simulation runs, using
the bias amplitude Vb as the control parameter. Other
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FIG. 4: (Color online) The PIHD boost factor B as a function

of equivalent constant bias force fequiv

b for both the constant
bias force (circles) and the sinusoidal force (squares). For

the constant bias force, fequiv

b = fb, while for the sinusoidal

force, fequiv

b = π
√

2
Vb. The solid black curve indicates the

theoretical gain in number of crossings given by Eq. (15), with
the black markers being the corresponding values from PIHD
simulations. The red (gray) markers with error bars are the
boost factors measured from simulations on the basis of Eqs.
(16–18). The blue (gray) markers without error bars show
the corresponding boost factors calculated with the random
deposition model from the measured distributions of Iξ(tcross).

parameters were the same as in the previous case of con-
stant bias force. The results are shown in Fig. 3. Quali-
tatively, the results are similar to the constant bias force
case, although both the systematic and statistical errors
are smaller. Numerical results are shown in Table I.

The PIHD Boost Factor

An important property of any hyperdynamics method
is the boost factor B that describes the computational
speed-up due to the accelerated dynamics [6]. The sim-
plest approach to estimating B is to consider the gain in
the number of crossing paths given by the PIHD method,
g = N cross

PIHD/N
cross
MD . This would give the boost factor

that is exponentially dependent on the decrease in bar-
rier height. For the constant bias force, the gain is:

g =
√

1− z2 exp{βV0[1−
√

1− z2 − z arcsin z + zπ/2]},
(15)

where z = λfb/πV0. This is shown in Fig. 4 as the solid
black curve, along with the corresponding numerical data
from simulations. However, this simple approach will
give a huge over-estimate of B because of the exponential
average in Eq. (13). The distribution of the exponential
weight factors for the crossing paths P [exp(−βIξ(tcross)]
has a long tail, implying that the number of paths that
give a significant contribution to the sum (13) consti-

tute only a small fraction of the total number of crossing
paths. As a result, the actual boost factor is in reality
much lower than the gain in number of crossings, espe-
cially for large bias forces.
To quantify the computational speed-up given by

PIHD, we define B as the ratio of computational time
of conventional MD simulations over the computational
time of PIHD simulations required to give the same ac-
curacy of the crossing rate. With conventional MD, the
variance of the mean is inversely proportional to the num-
ber of crossings, implying that B = σ2

MD/σ
2
PIHD. How-

ever, because of the increasing systematic error with high
bias, it is more appropriate to use the mean squared error
(MSE) instead of the variance. The MSE for the estima-
tor of the mean rate Γ is the sum of the variance and
the square of systematic error Y (in statistics, the lat-
ter is often called estimator bias, but to avoid confusion
with the hyperdynamics bias, we use the term systematic
error):

MSE(Γ̂) = σ2
Γ(Γ̂) + Y (Γ̂,Γ)2. (16)

We then define the boost factor as

B = MSEMD/MSEPIHD. (17)

While the choice of MSE as a measure of B is certainly
not unique, it has the benefit of being a well-established
measure of accuracy of estimators and it captures the
typical behavior of biased PIHD simulations: for low to
moderate bias, the MSE (and consequently, the boost) is
mostly determined by the variance σ2, but for large bias,
the systematic error becomes increasingly important. We
define the systematic error as

Y (Γ̂,Γ) = max[0,Γ− Γ̂− σΓ(Γ̂)], (18)

where Γ is the theoretical value given by Eq. (12) and Γ̂

and σΓ(Γ̂) refer to the values given by the PIHD simula-

tions. The upper limit Γ̂ + σΓ(Γ̂) is used instead of the

mean value Γ̂ to avoid double-counting of the statistical
error.
The measured boost factor B for various levels of

bias for both the constant and sinusoidal bias poten-
tials is shown in Fig. 4. To compare the constant and
sinusoidal bias potentials, the amplitude Vb of the sinu-
soidal force is expressed in terms of an equivalent con-
stant bias force f equiv

b by scaling the amplitude with
the spatial rms-average of the sinusoidal bias force,
√

1
λ

∫ λ/2

−λ/2[Fb(x)]2dx = π√
2
. In addition, the boost fac-

tor for the constant bias force given by Eqs. (16–18) is
further divided by 2, because the linear biasing only al-
lows the calculation of the rate Γ over one of the barriers.
As opposed to the number of crossing trajectories, which
monotonously increases with f equiv

b , the boost factor has
a maximum of B ≈ 500 near fb ≈ 1.5 for the constant
bias force, and B ≈ 4000 near Vb ≈ 0.8.
Quantitatively the decrease in efficiency can be under-

stood by considering a simple model for the accumulation
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of p(t) as a function of time t in the linear region of the
curve. In calculating the rate Γ, the horizontal axis is
divided into n bins of length ∆t. In the linear region of
length τ , the probability that the crossing occurs at a
time belonging to the ith bin is equal for all bins: pi =
1/n = ∆t/τ . The probability that any given bin holds m
crossing events is therefore binomially distributed, with
pi being the acceptance probability and the number of
crossings, Ncross, being the number of trials. The prob-
lem is analogous to the problem of surface growth by ran-
dom deposition, with the corresponding quantities being
the mean jump rate Γ , 〈h〉 (average surface height), the
standard deviation of mean jump rate σΓ , w (surface

width), Ncross , t (time), and n = τ/∆t corresponds to
the number of lattice sites. For MD, the height of each
increment is given by one over the number of trajectories
h = 1/Ntraj. The results for Γ and σΓ follow from the well
known results of the random deposition model (see, e.g.,
Ref. [19]) by direct substitution: Γ = (1/τ)(Ncross/Ntraj)

and σΓ = (Γ/
√
Ncross)

√

1− 1/n ≈ Γ/
√
Ncross for suf-

ficiently large n. For PIHD, on the other hand, the
height of the individual increment is not constant, but
its distribution can be computed from the distribution
of Iξ(tcross). The probability density P(H) of having a
total increment of H in any one bin i is

P(H) =

Ncross
∑

m=1

(

Ncross

m

)

pmi (1−pi)
Ncross−mP

(

m
∑

l=1

hl = H

)

.

(19)
The distribution of hl is approximately log-normal. Since
we are not aware of any analytical form for the distribu-
tion of the sum of log-normal random variables, the last
term in Eq. (19) has been computed numerically. The
boost factors according to the random deposition model
are shown with the blue markers in Fig. 4. The agree-
ment with the direct measurements from simulations is
very good, which indicates that the observed decrease
in the boost factor with strong bias is caused by the
long-tailed distribution of the weight factors in Eq. (13).
This long tail gives large weight for a small minority of
trajectories, effectively reducing the number of crossing
paths that contribute to the PIHD average. In addition,
the systematic error at large bias decreases the boost,
because as the bias increases, sufficient sampling of the
tail of the distribution P(H) would require an increasing
number of simulated trajectories.

Finally, we note that the maximum boost factor for
the sinusoidal bias force is almost ten times larger than
the corresponding maximum for the constant bias force.
A factor of 2 is explained by the asymmetry of the con-
stant bias force, which effectively eliminates all transi-
tions across the barrier on the left-hand side. In addition,
the required constant bias force amplitude to completely
remove the barrier on the right is fcrit = π ≈ 3.14, which
is much larger than the corresponding equivalent force
for the sinusoidal bias: f equiv

crit = π√
2
≈ 2.22. For high

constant bias forces, a large portion of the bias force is

effectively wasted in merely shifting the locations of the
minimum and maximum. This is easily seen by looking
at the curves in Fig. 1. The sinusoidal bias force, on the
other hand, targets the locations of steepest ascent of the
potential V (x), giving a significant improvement in the
overall boost. This result suggests that an efficient choice
of the bias potential is the one that uniformly lowers the
activation barrier and preserves the symmetry of the sys-
tem. By carefully choosing the bias potential, the boost
factor of the PIHD method can be significantly improved.

B. Brownian Particle in Periodic Potential with

Time-Varying Bias

In this Section, we employ PIHD for parallel resam-
pling of a Brownian particle in a one-dimensional spa-
tially periodic potential with an external, time-dependent
ac driving force [2–5]. For such a system, the equation of
motion is given by

mẍ(t) +mγẋ(t)− F (x) = ξ(t) +A sin(2πνt), (20)

where the second term on the right hand side indicates an
ac driving force with amplitude A and frequency ν. The
diffusion of a Brownian particle can be studied with re-
spect to various values of these two parameters. Here,
we have used the PIHD method to numerically solve
Eq. (20) with A = 0. The diffusion coefficients for dif-
ferent values of A and ν can be obtained by choosing
Fb(A, ν) = A sin(2πνt) and then estimating the func-
tional Iξ(t, Fb) and the reweighting factor exp(−βIξ) for
every bias force.
The parameters we have used in the present work are

V0 = 2, T = 1, γ = 2, λ = 1 andm = 1. Here we also em-
ployed both the BBK and Ermak integration algorithms.
We found that the required time step for the BBK al-
gorithm is the same for both PIHD and unbiased MD,
while the Ermak algorithm required a shorter time step
(∆t = 0.0005) for high bias forces (large values of A).
At high bias forces the approximation of the Ermak al-
gorithm becomes insufficient due to the time-dependence
of the bias force in the product Fb(x, t)ξ(t) of Eq. (7).
With the BBK algorithm this problem does not occur.
An interesting issue in Brownian motion under time-

periodic forcing concerns the existence of stochastic res-
onance, which leads to a significant enhancement of the
relevant transition rates [5]. In the case of a double-well
potential, SR is expected to occur in the vicinity of the
matching condition νr = Γ/2, where Γ is the (thermal)
escape rate [5]. Similarly, in the case of an extended pe-
riodic potential there’s enhancement of local jumps over
the barrier V0 [2]. However, it has been shown in Refs.
[2, 3, 5] that this enhancement exactly cancels out in the
hydrodynamic limit for a 1D periodic potential such as
used in the present study. One can estimate the reso-
nance frequency νr as [5]

νr =
πV0

2γ
e−V0 (21)
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FIG. 5: (Color online) Diffusion coefficients D for the ac-
driven Brownian particle in a periodic potential as a function
of the driving frequency ν for various values of the amplitude
A. The reference value of the diffusion coefficientD0 (horizon-
tal dashed line) is taken as the value at zero amplitude A = 0.
The numerical value of D0 is 0.1570 ± 0.0002. The vertical
dashed line indicates the position of the resonance frequency
νr (see text for details). The inset shows a magnification of
higher accuracy data for A = 1.5 in the neighborhood of νr.

TABLE II: Values of the diffusion coefficient D from PIHD
and direct solution of Eq. (20) with ν = 0.2.

A D D

(from Eq. (20)) (PIHD)

0.1 0.1569 ± 0.0001 0.1570 ± 0.0002

0.5 0.1630 ± 0.0002 0.1631 ± 0.0003

1.0 0.1827 ± 0.0004 0.1825 ± 0.0012

1.5 0.2139 ± 0.0005 0.2162 ± 0.0035

The calculation results in νr = 0.213. Our data for the
diffusion coefficients as extracted from the MSD with A =
0 using Eq. (10) are shown in Fig. 5. The data have been
obtained for a range of values of A (A = 0.1, 0.5, 1.0, 1.5)
and the frequency ν, and averaged over 106 trajectories.
We find that for the currently used amplitude values
A ≤ 1.5 and frequencies up to ν = 30.0, the diffusion
coefficients are monotonically decreasing functions of ν,
and there’s no stochastic resonance in this system.

The PIHD boost factor

For the parallel resampling the boost factor B can be
defined similarly to the barrier crossing problem: B is the
ratio of computational time of MD simulations over the
computational time of PIHD simulations required to give
the same accuracy of the diffusion coefficient D. Here,
the difference is that the bias force is not used to accel-

erate the dynamics, but instead to obtain the diffusion
coefficient for multiple values of A and ν while solving
the equations of motion just once. Therefore the optimal
gain is dependent on the time that is spent on numerically
solving the equations motion as compared to computing
the correction factor exp(−βIξ). Clearly, the simple case
of a single particle in an external potential gives an esti-
mate on the minimum boost that can be attained with
parallel resampling: with a complex many-particle sys-
tem the time spent on solving the equations of motion
can become very large as compared to calculating the
correction factor, and therefore the boost factor can be
much higher.
In the present setting of a single particle, a parallel

resampling of 100 combinations of A and ν was able to
achieve a modest boost factor of B ≈ 2 − 3, taking into
account the increased noise due to the exponential aver-
age (for direct comparison with MD, see Table II). The
effect of the noise increases rapidly after A = 1.5, which
indicates that the parallel resampling of a single particle
under ac bias is limited to relatively small bias forces, i.e.,
low amplitudes A. On the other hand, because increasing
the frequency ν of the ac bias force does not lead to an
increase in the action functional Iξ(t), there are no lim-
its on the extrapolation of ν other than those set by the
simulation time and the time step of the underlying MD
simulation. In addition, for a system with more degrees
of freedom, we expect the boost factor to be much higher
due to the increased computational cost of the equations
of motion. We also note that at lower temperatures it
would be possible to use a static bias potential to boost
the number of jumps (cf. previous section) in combina-
tion with parallel resampling for maximal computational
boost.

V. SUMMARY AND CONCLUSIONS

In this work, we have employed the recently proposed
PIHD scheme to study the diffusive motion of Brownian
particles in periodic potentials in 1D. In the first case,
we have considered the diffusion of a monomer in the
low-temperature and high-friction regime, where we have
used the PIHD method to boost the number of jumps
across the external potential barrier. We have measured
the boost factor (increase in computational efficiency) to
reach an optimum of approximately 4000 with the present
set of parameters. In addition, we observe a decrease in
the boost factor as the bias force is increased beyond the
optimal value. This decrease is caused by the exponen-
tial averaging of the path sampling and is explained by a
simple mathematical model. Intuitively, we can conclude
that if the bias force significantly changes the original
system, the boost is reduced by the inefficient sampling
of the transition paths. For instance, in our benchmark
case, the boost starts to decrease as the activation bar-
rier disappears or, when the symmetry of the system is
significantly altered.
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In the second case, we have demonstrated that the
PIHD method can be used to extrapolate results to mul-

tiple values of the bias force from a single simulation
run. Here, we have used the PIHD method to extrap-
olate the diffusion coefficient of a monomer moving in
a periodic potential under an ac force for multiple val-
ues of the ac amplitude and frequency. Our results are
in agreement with previous studies and show that there
is no stochastic resonance in this system. In this case,
the PIHD boost remains modest due to the simplicity of
the equation of motion. Finally, we note that the PIHD
method is not limited to simple single-particle systems
considered in this work. The method can be used even
with entropic activation barriers (cf. Ref. [11]) and, as
shown in Ref. [12], it can be easily generalized for sys-
tems with internal degrees of freedom, such as polymer

chains.
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