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Abstract

We study the localization of energy in a non-linear coupled system, exhibiting so-called breather
modes, using quantized Hamilton dynamics (QHD). Already at the lowest order, which is only twice
more complex than classical mechanics, this simple semi-classical method incorporates quantum
mechanical effects. The transition between the localized and delocalized regimes is instantaneous
in classical mechanics, while it is gradual due to tunneling in both quantum mechanics and QHD.
In contrast to classical mechanics, which predicts an abrupt appearance of breathers, quantum
mechanics and QHD show alternation of localized and delocalized behavior in the transient region.
QHD includes zero-point energy that is reflected in a shifted energy asymptote for the localized
states, providing another improvement on the classical perspective. By detailed analysis of the
distribution and transfer of energy within classical, QHD and quantum dynamics, we conclude
that QHD is an efficient approach that accounts for moderate quantum effects and can be used to

identify quantum breathers in large non-linear systems.
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I. INTRODUCTION

A chain of coupled non-linear sites often exhibits spontaneous localization of energy [1, 2.
This phenomenon is known as discrete breathers, in this paper referred to as breathers. The
localization occurs due to loss of resonance between the sites. As a result, the sites stop ex-
changing energy. Proven mathematically [2, 3] this phenomenon can be found in a number of
physical systems [4, 5]. Existence of quantum breathers have been shown by quantization of
classical solutions in both integrable [2] and non-integrable systems [6]. Quantum breathers
are essentially tunneling modes. In classical mechanics, the energy is localized. In quan-
tum mechanics, the energy tunnels very slowly between lattice sites. Quantum breathers
have been observed experimentally [5] in interacting Josephson junctions [7], Bose-Einstein
condensates [8], crystals [9], quantum dots [10], molecules [11] and biological polymers [12].
Systems containing breathers are mostly non-integrable, and before the era of powerful com-
puters, they were not accessible for theoretical analysis. These systems cannot be treated
with standard linear methods and require a special theory that accounts for non-linear ef-

fects.

The growth of nanoscale science and technology emphasizes the importance of quantum
effects and requires development of efficient approaches for modeling quantum dynamics. A
fully quantum study of discrete breathers in a multi-dimensional system is extremely de-
manding computationally. Breathers are investigated classically with suitably parameterized
models [13, 14], or quantum mechanically using systems of drastically reduced dimension-
ality [15-18]. The first approach neglects quantum effects. The alternative scheme often
employs truncated basis sets [19-21]. Quantized Hamilton dynamics (QHD) [22-27], quantal
cumulant dynamics [28], correlated electron-ion dynamics [29], semiquantal theory [30] and
related approaches offer a compromise, allowing one to include moderate quantum effects.
Additional quantum information can be obtained at a cost that is only twice the expense of
the classical mechanical calculation [25]. One can even use a user-friendly QHD package for

Mathematica [31] to experiment with simple systems.

Recent applications of QHD to various quantum systems [24, 25, 32| showed that it is
well suited to account for such quantum effects as zero-point energy, dephasing, interference,
quantum correlations and tunneling. The study of the Henon-Heiles problem [32] indicated

that QHD can be applied successfully to multi-dimensional non-linear systems. In this work,



we extend the previous studies and apply QHD to a system, in which the non-linearity is
more challenging and plays a critical role.

The system of two coupled pendula illustrates the breathers phenomenon, Fig. 1. If
the initial amplitude of the first pendulum is small and the second pendulum starts at
rest, the energy flows freely between the two pendula. As the initial amplitude of the first
pendulum increases, the non-linearity begins to dominate over the coupling, and an off-
resonance condition develops. The energy does not transfer to the second oscillator and
remains within the first oscillator for a very long time. This simple example explains the
origin of classical discrete breathers. A formal introduction to discrete breathers in a two-
site model for both classical and quantum mechanics can be found in the review [5]. This

reference also discusses breathers arising in an infinite lattice.

FIG. 1. Two pendula connected by a spring show signatures of breathers.

Quantum breathers show similar signatures [33, 34]. If the Hamiltonian is symmetric
with respect to the site indexes, then a stationary energy distribution is also symmetric.
A quantum equivalent of a classical discrete breather is a tunneling mode. As i — 0, the
tunneling time between the sites approaches co. At low energies, an initial wave-function
delocalizes over the sites. However, as the energy increases, the initial wave-function localizes
on sites and can transfer onto the other sites only by tunneling [35]. These localized states
are quantum mechanical counterparts of classical breathers. Both classical and quantum
breathers draw substantial interest [5, 36].

Our study focuses on the lowest order QHD approach due to its remarkable simplicity.
Many other methods have been developed for studying quantum effects in large non-linear
systems, and calculating semiclassical correlation functions and spectra. A representative,

but by no means complete list includes Heller’s frozen Gaussians [37], the Herman-Kluk prop-
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agator [38, 39] and its higher order extensions [39, 40], coupled coherent states [41], matching-
pursuit /split-operator Fourier transform [42, 43] and coherent-state path-integral [44]. These
approaches are based on averaging over multiple trajectories or finding roots for a boundary
value problem. They can be more accurate than low order QHDs, however, they are more

computationally demanding as well.

The current work combines research on quantum discrete breathers and semi-classical
dynamics. Previous studies of quantum and classical discrete breathers in integrable and
non-integrable quartic dimers [2, 5, 6, 35| have established the basis for understanding of the
breather phenomena. Development and studies of semi-classical methods, and in particular
QHD [25] and its application to modeling of tunneling in mildly non-linear multi-dimensional
systems [32], have revealed the benefits and limitations of the semi-classical methodology.
This paper shows that a low order QHD can successfully account for the quantum effects
seen with discrete breathers. The ability to model such quantum effects using a very simple
and computationally efficient semi-classical technique presents a significant step towards

narrowing the gap between complex, realistic systems and models of quantum breathers.

The paper is constructed in the following way. We introduce the investigated system, its
Hamiltonian and the initial conditions. The implementation of QHD and quantum dynamics
are described after that. The results section contains two parts. The first part focuses
on the advantages of QHD over classical dynamics. In particular, system’s dynamics and
time-averaged energies are analyzed. The second part of the results section compares the
classical and QHD results to quantum mechanical calculations in the same potential. The

paper concludes with a discussion and summary of the key results.

II. METHODS

In this section, we define the system, its Hamiltonian and the initial conditions for the
classical dynamics and QHD. We also detail the numerical techniques used to propagate the

classical and QHD trajectories, and to solve the quantum mechanical problem.
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A. Classical Hamiltonian and initial conditions

We focus on a simple system that exhibits signatures of breathers seen in realistic systems.
At the same time, this system can be treated not only with classical mechanics and QHD, but
also with quantum mechanics. The model is composed of two linearly coupled anharmonic

oscillators. Fig. 1 depicts its qualitative representation. The system Hamiltonian is

_pitp
2

H +en(@ 4 @) + calqt + @) + ceqrgo. (1)

Here, ¢, = 1/2 defines the harmonic potential, while the constants ¢, and c. quantify
the anharmonicity and the linear coupling strength, respectively. In the discussion below,
all terms containing only the index for the first or the second site are used to define the
corresponding site energy. The energy stored in the coupling part of the Hamiltonian is

given by the last term containing coordinates of both sites.

Breathers can be identified by interruption of energy flow between the two oscillators,
resulting in a long-lasting localization of energy with one of them. Such energy localization is
the main signature of breathers. Here, it is analyzed by considering dynamics of the energy
transfer. The initial energy on the first oscillator is controlled by displacing the coordinate
¢1- The second oscillator is at rest, and accordingly, the rest of the variables: ¢o, p; and p

are 0 at t = 0. All parameters are given in atomic units, m = 1 and h = 1.

The anharmonicity and coupling parameters are ¢, = 0.005 and c¢. = 0.1; they control
the transient region (TR). We define TR as the region of energy that separates the regions
dominated by local and normal modes. If the initial energy on the displaced site is lower than
the energy of the transition region, then the energy fully transfers to the other site; if the
initial energy is higher than the energy of the transition region, then it completely localizes
on the initial site in classical mechanics and can only tunnel to the other site in quantum
mechanics. Quantum mechanics allows TR to contain both normal and local modes [35]; in
contrast, in classical mechanics, TR corresponds to a single value of energy referred to as
the separatrix. We choose the parameters ¢, and c. such that TR appears on the scale of

the few quanta.



B. Quantized Hamilton dynamics

Starting with the Heisenberg formulation of quantum mechanics, QHD obtains semi-
classical approximations by truncating the hierarchy of Heisenberg equations of motion for
quantum observables. At the 2nd order of approximation for the momentum and position
observables [25], QHD incorporates evolution of (P?), (E2t2E) and (Q?) in addition to the
classical-like (P) and (@) variables. Classical Mapping Quantized Hamilton Dynamics (CM-
QHD) is an alternative representation of the 2nd order QHD [25]. In CM-QHD, conservation
of the Heisenberg uncertainty relationship is used to reduce the QHD for the second order
(P?), (90 and (Q?) variables to the Newtonian dynamics of the particle width s and
its conjugate momentum p,. Such mapping further reduces the computational cost of QHD.
The CM-QHD Hamiltonian corresponding to the original Hamiltonian of our system, eq.1,

is
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Here, ¢ and p are the classical-like position and momentum variables, and s and p, are the
quantum-mechanical width and its conjugate momentum. Just as in the classical mechanical
Hamiltonian, eq.1, all terms containing only the index for the first or the second site define
the QHD energy of the corresponding site, while the term containing both indices give the
energy stored in the coupling. The initial conditions of the additional variables are set to

s; = 1 and pg; = 0, for ¢ = 1,2, corresponding to the ground state of the harmonic oscillator.

The evolution of the QHD variables is obtained using classical Hamilton equation of
motions for the above Hamiltonian, eq. 2. This system of non-linear coupled differential
equations is not integrable and requires a numerical approach. Our C++ code uses the
eighth order adaptive step-size Runge-Kutta library from Numerical Recipes 3. section
17.2.4 [45]. For the given parameters of the Hamiltonian and the step of 0.1 time units,
the integration performs well for ¢ < 2000 time units. This is sufficient for our purpose.
The integration tends to break down at long times, especially in the transient region. This

limitation brings noise to some of the plots.



C. Quantum mechanics

QHD generates dynamics that can be viewed as a classical trajectory with an addition
of a quantum correction. We would like to compare the QHD calculation of energy local-
ization to a quantum equivalent. Similarly to classical dynamics, QHD equations of motion
produce a trajectory in the (p,q,ps, s) space. Averaging the energy of each oscillator over
the trajectory gives a quasi-stationary energy distribution. Its quantum equivalent is the
energy distribution within a stationary state. Presenting these stationary states in a basis
that is a direct product of the basis sets for each oscillator allows us to characterize the
desired energy localization.

Eq. 3 is a quantum mechanical equivalent of the classical and QHD Hamiltonians, eqs. 1

and 2, respectively,
H:ChHh—l—CaHa—l—Cch (3)
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The basis states | N7 Na) are direct products of the eigenstates of the one-dimensional number
operators for each oscillator.

The eigenvalue problem for the above Hamiltonian is solved using a C++ code with the
linear algebra operations implemented in the GMM++ library. The eigenstates considered
below are limited to quantum numbers 25 or less. The basis set involving 35 states for each

oscillator was sufficient to obtain converged results.

III. RESULTS

The semi-classical QHD method fits between classical and quantum formalisms. The
computational expense of the second order QHD used here is very similar to that of classical
mechanics. Our goal is to compare the QHD results with the classical and quantum data,
and to establish whether this very simple semiclassical theory can capture qualitatively and
perhaps quantitatively the quantum signatures of breathers. The next subsection shows

how QHD is an improvement on classical dynamics. We study in detail the evolution of
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the coordinate and average energy of each oscillator. The second subsection compares the

average energy distributions in QHD and quantum mechanics.

A. QHD advantages over classical dynamics

The dynamics of the non-linear system described by the Hamiltonian of eq. 1 depend
on the relative magnitudes of the anharmonic and coupling terms. These magnitudes can
be controlled either by the values of the constants ¢, and c., or by the initial conditions,
and in particular, by the displacement of the coordinate of the first oscillator ¢;. When
either the non-linearity or the coupling significantly dominates, QHD, quantum and classical
dynamics all behave in a similar way. If the non-linearity is much smaller than the coupling,
the dynamics is well described by normal modes (defined bellow). In the opposite case,
the dynamics become localized on one or the other oscillator. Fig. 2 demonstrates this
behavior. The figure shows QHD of position coordinates for the two oscillators: ¢; (red)
and g2 (green). Aside from a zero-point energy correction, the classical plots would look
exactly the same [1-3]. The two plots in Fig. 2 differ in the initial amount of energy on
site 1. For the bottom plot, ¢y = 0.1. Throughout the dynamics, the amplitude of the
oscillations on site 1 periodically approaches 0, while at the same time, the amplitude on
site 2 approaches the initial displacement of the first oscillator. Periodically, the energy of
site 1 fully transfers to site 2 and back. There is no localization, and both position variables
oscillate with the same amplitude. This is an example of an approximately linear behavior

that can be described with normal modes.
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FIG. 2. (Color) Classical-mapping QHD trajectories of the position coordinates of the two oscil-
lators ¢1(t) (red) and ¢2(t) (green) for different initial conditions. (top) ¢1(0) = 7.0 and (bottom)
¢1(0) = 0.1. In all cases, g2(0) = 0. The top and bottom panels show the localized and delocalized

regimes.

In order to proceed with the subsequent discussion, a workable definition of the local and
normal mode dynamical regimes is needed. One can consider two limits. The first is the
linear limit (¢, < ¢.), where the dynamics can be described using normal modes, the sites
are invariant under permutation, and there is a rapid, full transfer of energy between the
sites. In the opposite, non-linear limit (¢, < ¢,), the anharmonicity is strong, the sites are
essentially decoupled and not invariant under permutation, and slow energy transfer occurs
through tunneling. The two limits are separated by the transient region that exhibits both
types of behavior. The system is considered to be in the normal mode region if the energy
averaged over a sufficiently long time converges to the same value for all sites. If the energy
converges to a much higher value on one site than on the other site, then the system is
regarded to be in the local mode region. If dynamics switches from one behavior to the
other, e.g. local dynamics is followed by rapid energy transfer, which in turn is followed
by another period of local dynamics, then the system is in the transient region. In present,
the classification is based on the ¢ = 2000 simulation time, due to numerical limitations.

This time-scale is much larger than the energy transfer time in the linear limit. In classical



mechanics, the time-scale of energy transfer in close proximity of separatrixi approaches
infinity, but this effect is dominated by abundance of a chaotic behavior. The effectiveness
of the above definition is illustrated below by comparison of QHD to classical and quantum
dynamics.

By changing the initial energy on site 1, we can control whether the non-linearity dom-
inates the coupling. The higher order terms in eq. 1 grow faster than the harmonic terms.
Therefore, at higher displacements, the non-linear terms contribute more to the energy than
the harmonic terms or the linear coupling, and the system becomes dominantly anharmonic.

The top panel of Fig. 2 is an example of breather modes. The initial displacement on
site 1 is high ¢; = 7.0, and the non-linear effects dominate the linear coupling, eq. 1. The
energy of site 1 does not fully transfer to site 2. The amplitude of the position on site 1
periodically decreases, but always remains high. This is an example of a spatially localized
motion that is periodic in time. Quantum mechanically, the energy can tunnel between the
two modes. However, the quantum tunneling time is very long, and quantum effects are

insignificant on the time-scale of the simulation.
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FIG. 3. (Color) Same as Fig. 2 but for different initial conditions for the ¢; variable. (top)
¢1(0) = 5.5 and (bottom) ¢;(0) = 4.893. These plots show signatures of both local and normal
modes within a single QHD trajectory. The trajectory in the top panel starts in a local mode
and then switches to a normal mode. The trajectory in the bottom panel does the opposite. In

contrast, a classical trajectory would be in either the local or the normal mode regime at all times.
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Both classical and quantum dynamics transition from normal to local modes as the energy
increases. In classical dynamics, the transition is sharp and corresponds to a separatrix in
the phase space. If the energy is above the separatrix, the energy does not flow from one site
to the other. In quantum dynamics, there is a transient region containing alternating local
and normal modes [35]. Because QHD accounts for quantum effects, it exhibits signatures
of both quantum and classical dynamics. One may expect that QHD will differ most from

classical dynamics in the transient region.

The QHD approach , even at its lowest order, offers a significant qualitative improvement
over classical dynamics. The transition from the normal to the local mode regime is gradual
in QHD. Similarly to quantum mechanics, which contains alternating local and normal
mode eigenstates, QHD trajectories jump between normal and local regimes in the transient
region. This behavior is illustrated in Fig. 3 and 4. In the top panel of Fig. 3, the energy
starts in a local mode (¢ < 350), and then goes into a normal mode (¢ > 350). The bottom
panel shows the opposite scenario: the system starts in a normal mode (¢ < 300) and goes
into a local mode (¢ > 300). Such switching between the normal and local regimes is not
possible within a single classical trajectory. In classical mechanics, the magnitude of the

initial energy uniquely defines the dynamic regime.

On the short time-scale, quantum wave-packets exhibit classical-like behavior. This fact is
reflected in QHD. QHD trajectories with ¢;(0) < 5.2 start in the normal mode regime, while
trajectories with ¢;(0) > 5.2 are initially in the local regime. The classical separatrix for
the same Hamiltonian, eq.1, corresponds to ¢; ~ 5.2. Quantum behavior becomes apparent
at longer times. Running QHD trajectories for ¢ > 500 is sufficient to see quantum effects,

Fig. 3.
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FIG. 4. (Color) Same as Fig. 2 but for different initial conditions. (top) ¢1(0) = 5.504 and (bottom)
¢1(0) = 5.476. In both plots, the trajectory starts in a local mode, transitions into a normal mode,
and then comes back into a local mode. In the top panel, the energy returns to the same oscillator

it started with. In the bottom panel, the energy transfers from the first oscillator onto the second

one.

Longer time QHD allows us to observe a more complex behavior. In Fig. 4, the sys-
tem goes from the local to the normal mode regime and back to the local regime. Even
more interestingly, the energy can start localized on one oscillator and transfer to the lo-
cal mode on the other oscillator, see the bottom panel. This process is akin to quantum
mechanical tunneling. Within QHD, tunneling occurs by a classical-like dynamics in the
width variable [25]. In the current simulation, the transfer of energy between the two local
modes proceeds by a temporary energy flow into and out of the width coordinates. At times
400 < t < 1000 in the top panel of Fig. 4 and 700 < t < 1300 in the bottom panel, significant
amounts of energy are stored in the width variables. In the first case, the energy comes back
from the width variables to ¢;, while in the second case it transfers to g;. The study of
the influence of classical chaos on quantum-mechanical tunneling is relevant in the present
case [6]. Applying this connection between quantum and classical mechanics to QHD can
be used to rationalize how QHD handles tunneling.

Further analysis of the energy localization and flow can be achieved by considering time-

averaged properties. In particular, it is important to systematically investigate the transfer
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of energy as a function of the initial amount of energy on site 1. Fig. 5 shows the rela-
tionship between the average energies of the first and second sites, (Hi(q;)) and (Hs(q2)),
plotted along the x- and y-axes, respectively. Each point corresponds to a different initial
displacement of the position of oscillator 1. Starting from 0, the initial displacement was
incremented by 0.001. Both QHD and classical dynamics were run for 2000 time units, and
the energy contained in each mode was averaged over these trajectories. The energy terms
(H3(g2)) vs. (Hy(q1)) shown in Fig. 5 exclude the linear coupling, eq. 1. The energy stored in
the coupling is much smaller than the energy of the sites. First, we will discuss the familiar

result of classical dynamics. Then, we will consider the differences offered by QHD.

12 .

QHD .
classical
10 }

FIG. 5. (Color) Distribution of energy between the two oscillators depending on the initial amount
of energy in the first oscillator. Each point shows time-averaged energy of the first and second os-
cillator, (H1) and (Hs), respectively. The total energy is distributed equally between the oscillators

at low energies and localized within the first oscillator at high energies.

The modulation of the normal mode dynamics seen in QHD compared to the classical
dynamics arises due to the fact that the classical-like position variables are coupled to the
width variables in the second order QHD. The QHD extension of the classical phase space
introduces additional frequencies to the dynamics.

The classical data shown by the green symbols in Fig. 5 increase linearly up to the sepa-

ratrix point around (8,8), then jump discontinuously to (10,6) and asymptotically approach
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the x-axis. Before the separatrix, the system is in the normal modes regime. The energy
is equally distributed between two sites, even though initially, there was energy only on
one of the sites. While the non-linearity always grows faster than the coupling, below the
separatrix, the interplay between the non-linearity and coupling does not affect the amount
of energy transfered. The energy is distributed evenly.

Above the separatrix, the energy suddenly localizes. After the point (8,8) the data jumps
to (10,6). Now the non-linear effects dominate over the coupling and drive the system off
resonance. The energy deposited into one site does not transfer to the other site completely.
Part of the energy still transfers, but as initial energy increases and the dynamics become
more anharmonic, the amount of the transfered energy decreases.

The QHD data, red symbols in Fig. 5, show the same general trends as the classical
results. However, there are a number of important qualitative and quantitative differences.
Just as in classical mechanics, the QHD energy is delocalized between the sites at low energy.
After the transient region, the energy localizes. Towards higher energies, the energy localizes
even further. At the same time, QHD shows quantum effects, in particular, zero-point energy
and tunneling. Zero-point energy shifts the QHD data to higher energies. The (H;(q;)) and
(Hy(q2)) values start above zero, and the asymptotic QHD curve is above the classical curve.
Even more importantly for quantum breathers, the transition from the delocalized to the
localized regime is much less abrupt in QHD than in classical mechanics. This provides a
clear signature of quantum mechanical tunneling.

The transient region of QHD is extended in energy. For some initial conditions within
the transient region, the QHD energy is shared between the sites, while for other initial
conditions it is localized. This alternation of the delocalized and localized behavior cor-
responds directly to the alternation of the localized and delocalized quantum mechanical
wave-functions presented in the next section. Both tunneling and zero-point energy are re-
sponsible for extending the maximum of the transient region from (8,8) in classical mechanics
to (11,11) in QHD.

Fig. 6 and 7 illustrate the classical and QHD dependence of the time-average energies
on the initial displacement of ¢;. In addition to the time-averaged energies stored in each
mode (H;) and (H,), the time-averaged interaction energy (Hjs) and the total energy H
of the system are shown as well. These plots are similar to Fig. 5. The energies on the

y-axis depend on the initial energy deposited on site 1. Since all coordinates besides ¢; and

14



the QHD widths s; = s; = 1.0 are 0, ¢; controls the initial energy on site 1. Compared
to classical dynamics, QHD shifts the energy by zero-point contribution and extends the
transient region due to tunneling. Fig. 6 and 7 indicate that the coupling energy is very
small and that the total energy is conserved.

40 . . . . . .
35
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25
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15
10

Energy

FIG. 6. (Color) Total energy H, energies of the first and second oscillators, (H;) and (Hs), and
interaction energy, (His2), as functions of the initial displacement of the first oscillator, ¢;. At

t = 0, the second oscillator is at rest, go = 0. The results are obtained using classical mechanics.
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FIG. 7. (Color) Same as Fig. 6, but for QHD.
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B. Comparison of QHD to quantum mechanics

The quantum equivalent of classical breathers are tunneling states. High energy exci-
tations present in the tunneling states are localized on individual sites. In contrast, at
low energies, excitations are delocalized between the sites. The excess energy present in a
quantum breather state can tunnel from one site to the other. Classical dynamics cannot
describe tunneling or zero point energy, while QHD can. This section compares the classical
and QHD results to quantum mechanics. The focus is on energy distribution. First, we
discuss how to visualize the quantum breather eigenstates. Then, we show how the quan-
tum breather states correspond to the classical breathers, and compare classical and QHD

breathers to the quantum results.

A quantum mechanical equivalent of Fig. 5, which presents the distribution of the time-
averaged energy between the sites, is a figure showing the distribution of energy between the
sites within stationary states. These data are presented as contour plots, with the x-axis
corresponding to the energy on site 1, and the y-axis to the energy on site 2. Fig. 8 illustrates
how to read the contour plots. The quantum mechanical calculations are performed in the
basis that is a direct product of harmonic oscillator states | Ny, Ny). The quantum numbers
N; and N, are plotted along the z- and y-axes, respectively. A (NV;, N;) point on the plane
describes the contribution of the | N;, N;) basis state to the eigenstate of the full Hamiltonian,

eq. 3.

The eigenstate shown in Fig. 8 is a tunneling state. Its density is located predominantly
near the axes. Points localized near the z-axis corresponds to eigenstates, in which the exci-
tation is primarily on site 1. Similarly, points near the y-axis describe excitations localized
on site 2. The tunneling state shown in Fig. 8 carries no density on the diagonal, indicating
that harmonic oscillator levels that share energy between the sites do not contribute to this

eigenstate.

16



! T
2 j
CcX —
change N
. Lo ——
of basis —» o Te——
ccx2+cax4—>

FIG. 8. (Color) Rationalization of the contour plot showing a breather state. This localized
eigenstate of the full two-dimensional Hamiltonian, eq. 3, is formed from the eigenstates of the
one-dimensional quartic Hamiltonians for each oscillator. The one-dimensional eigenstates mix,
because the full Hamiltonian contains linear coupling. In turn, each eigenstate of the quartic
Hamiltonian is expanded in the corresponding harmonic basis. The axes represent the quantum
numbers of the harmonic basis. The figure shows that a tunneling (localized) state has density
near the axes. The blue and yellows colors depict negative and positive parts of the wave-function.

Delocalized states, shown in Fig. 9 below, have density on the increasing diagonal.

The density of the state shown in Fig. 8 extends along the N; and N, axes. This is
because this eigenstate of the full Hamiltonian, eq. 3, involves a superposition of several
harmonic states. At low energies, the quartic term is small, and eigenstates correspond
closely to harmonic states. The linear coupling between the two oscillators creates states
that are delocalized along the decreasing diagonal of the contour plot. The progression of
states shown in Fig. 9 illustrates how states extended across the plane become localized near

the axes.
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FIG. 9. (Color) Eigenstates of the Hamiltonian, eq. 1, at low and high energies. Fig. 8 explains

the notation. Going from (a)-(h), one observes a transition from delocalized to localized states. As

the quantum numbers increase, the energy tends to localize within one or the other oscillator.

Fig. 9 is a quantum mechanical counterpart of Fig. 5, obtained from classical mechanics
and QHD. Both figures characterize the energy distribution between the two sites. In the
quantum case, the system is discrete. The eight eigenstates of increasing energy shown
in Fig. 9 illustrate how passing through the transient region influences the distribution
of energy between the two oscillators in quantum mechanics. The first eigenstate is an
example of a delocalized state. The energy is distributed evenly between the oscillators, and
the contribution of the N; = Ny harmonic basis states near the diagonal is large. The last
plot is an example of a localized (tunneling) state. Just as in Fig. 8, it is located close to

the axes and notably extended along the axes.

Consider the quantum behavior near the separatrix and compare it to classical mechanics
and QHD, Fig. 5. In the classical case, the energy is shared between the sites until the
separatrix point is reached at approximately 8 energy units in each site, with the total
energy of about 16. Above the separatrix point, classical mechanics predicts sharp energy
localization. The classical curve in Fig. 5 jumps abruptly from point (8,8) to point (10,6),

with the same total energy. The quantum state corresponding to the classical separatrix is
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shown in Fig. 9e. In contrast to the classical behavior, the quantum state at this energy is
already notably localized. Even the state at a much lower energy of about 12, Fig. 9d, shows
localization. In general, the transition from the delocalized to the localized regime is much
smoother in quantum than classical mechanics. QHD reflects this behavior. At the classical
separatrix point (8,8) in Fig. 5, QHD shows a spread of points with various degrees of
localization. Some delocalization is seen with QHD at lower energies as well. The transition
from the delocalized to the localised behavior is much smoother in QHD than in classical

mechanics. The qualitative change in the QHD behavior from the predominantly delocalized

to the predominantly localized states is observed near the (11,11) point, corresponding to

the quantum mechanical Fig. 9g, which shows a well-localized tunneling state.

16
\/8

16 24 16 24 16 24 8 16 24 16 24
<H1>

FIG. 10. (Color) Same as Fig. 9, but for the energy of the transient region. One observes alternation

between breather and delocalized states. A similar behavior is seen with QHD, Fig. 5 and 7.

In addition to describing a gradual transition from the delocalized to the localized regime,
QHD reproduces another quantum effect: occurrence of both local and normal modes in the
transient region. Fig. 10 shows a quantum calculation for this phenomenon. Plot (a) has the
same energy as the first local mode recognized by QHD at ¢;(0) = 4.9 on Fig. 7. There are
a number of local and normal modes in the transient region. Plots (b) and (c) are just two
examples. Plot (d) is the last appearance of normal mode recognized by QHD, it appears
at ¢1(0) = 5.8. In contrast to plot (a), plot (e) shows that after the transient region, we
have a dominant localization. In classical mechanics, the alternation between the local and
normal modes does not exist, Fig. 5 and 6. Below the separatrix point, classical dynamics is
delocalized, while above it classical mechanics predicts breathers. In contrast, QHD shows
both types of behavior in the transient region. This is evident in the scatter of the data in
Fig. 5 and the additional transition to and from the localized regime around ¢;(0) = 5 in

Fig. 7. We expect that higher order QHD [32] are able to model this phenomenon at a more
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quantitative level.

IV. CONCLUDING REMARKS

This paper shows that QHD offers advantages over conventional classical and quantum
mechanics for the description of quantum breathers in large systems. With an extremely
low increase in the computational cost, QHD adds quantum effects to a classical trajectory.
In particular, at the second order, which is only twice the cost of classical mechanics, QHD
preserves zero-point energy and includes tunneling. Zero-point energy is reflected in the
shift of the asymptote for the breather state energy, relative to the classical asymptote.
Tunneling results in a gradual transition from the delocalized to the localized regime. The
transition is abrupt in classical mechanics, while it is smooth in both quantum mechanics
and QHD. Further, the second order QHD qualitatively reproduces the alternation of the
localized and delocalized behavior predicted by quantum mechanics in the transient region.

The current work used the second order QHD in the classical mapping formulation [25].
Each classical degree of freedom is “dressed” with a width variable, making this approach
similar, but not fully identical, to the “thawed” Gaussian technique [46]. Classical mapping
is particularly important for simulation of large systems. It allows one to use standard
classical-mechanical tools in order to analyze the QHD dynamics, for instance, in the cases
of numerical instabilities. The second order QHD formulated using an effective classical po-
tential, eq. 2, can be implemented within standard classical molecular dynamics codes. At
the same time, the version of the second order QHD that can be mapped onto an effective
classical Hamiltonian is a very low order approximation to quantum dynamics. It decom-
poses cross-terms between different degrees of freedom to the first classical-mechanical order
and therefore excludes quantum-mechanical correlations between different modes. Higher
order QHD offer more quantum information and a better description of tunneling. In ap-
plication to breathers, higher order QHD should improve the description of the transient
region, making it smoother and creating a better picture of alternating normal and local
modes.

Both classical dynamics and QHD are non-linear approaches in a finite dimensional phase
space. This is in contrast to quantum mechanics, which is a linear theory in an infinite dimen-

sional Hilbert space. Numerical integration of the coupled non-linear differential equations
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of classical mechanics and QHD becomes difficult in the transient region. One can notice
noisy behavior of the results in this region in Fig. 6 and 7. Increasing the numerical accu-
racy of the classical and QHD calculations in the transient region would improve the quality
of the results. The improvement can be achieved by using higher precision floating point
operations or a higher order numerical integration technique.

Application of QHD to real systems may require the use of other potentials. For instance,
the Morse potential may be needed in order to represent molecular vibrations. A generic
potential can be expanded in a Taylor series, reducing the problem to a harmonic potential
with higher order corrections [32]. Alternatively, one can develop QHD approximations using
the raising and lowering operators for the Morse potential [24], or represent an arbitrary
potential by combining more convenient potentials [47].

In order to bridge the gap between theory and experiment, one needs to consider the
contribution of discrete breathers to the dynamics in thermal equilibrium [33, 48, 49]. For
instance, QHD can be used to include moderate quantum effects in the relaxation and
energy exchange during charge trapping of DNA [50] and in the pump-probe spectroscopic
observation of discrete breathers [49]. QHD descriptions of thermal equilibrium and system-
bath interactions have been considered in Refs. [51] and [30, 52|, respectively. Thermal
averaging can help to smooth out chaotic behavior in the transient region. The ability to
reproduce the quantum effects seen with discrete breathers using an efficient semi-classical
technique presents a significant step towards reducing the gap between simple models of

quantum breathers and large, complex systems exhibiting the breather phenomenon.
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