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Abstract 

We study the dynamic response of a one-dimensional chain of ellipsoidal particles excited by a 

single compressive impulse. We detail the Hertzian contact theory describing the interaction 

between two ellipsoidal particles under compression, and use it to model the dynamic response 

of the system. We observe the formation of highly nonlinear solitary wave in the chain, and we 

also study their propagation properties. We measure experimentally the traveling pulse amplitude 

(force), the solitary wave speed and the solitary wave width. We compare these results with 

theoretical predictions in the long wavelength approximation, and with numerical results 

obtained with a discrete particle model and with finite element simulations. We also study the 

propagation of highly nonlinear solitary waves in the chain with particles arranged in different 

configurations to show the effects of the particle’s geometry on the wave propagation 

characteristics and dissipation. We find very good agreement between experiment, theory and 

simulations for all the ranges of impact velocity and particles' arrangement investigated. 

 



 2

I. Introduction  

One-dimensional chains consisting of spherical particles have been extensively studied in the 

literature and are known to present highly nonlinear dynamic properties [1-19]. When the chains 

are uncompressed, they support the formation and propagation of compact solitary waves that 

have been predicted theoretically [1], observed numerically [1,6] and experimentally [4,5]. These 

systems derive their unique characteristics from a double nonlinearity in the particles interaction: 

a power-law type contact potential in compression and a zero tensile strength. One of the 

fundamental characteristics of such systems is their high degree of tunability in terms of control 

over the traveling pulses width, speed and the number of separated pulses that can be generated 

in the chain [2,3,9,13-16]. The tunability of these systems is evident when the addition of static 

precompression on the chain of particles enables the system to change from the highly nonlinear, 

to the weakly nonlinear, to the linear wave dynamics regime [2,3,5,13]. Changing the type and 

duration of the initial excitation applied to the system, it is possible to generate single or train of 

pulses with respective amplitudes [2,14]. Changing the particle diameters, the particle material 

properties and/or their periodicity, it is also possible to change the solitary waves' amplitude and 

traveling speed [9,13,15,16]. This ability to control the wave properties in such chains has been 

proposed for a variety of practical engineering applications, for example it could be employed 

for shock absorbing materials [7,12,19,21], vibration damping [20], sound scramblers [9,10] and 

sound focusing [22].   

In this paper we explore the effects of the particle geometry and orientation on the formation and 

propagation of highly nonlinear solitary wave. The role of particle geometry on the dynamic 

response of granular materials was studied earlier using elliptical disks of hysteretic photoelastic 

polymers [23]. Here, we experimentally test chains composed of linear elastic, uniform bodies of 
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revolutions (ellipsoids)and compare the results with theoretical predictions based on the long 

wavelength approximation for highly nonlinear wave propagation. We employ two different 

numerical approaches to model the response of the chain, the first method is one-dimensional 

discrete particles' dynamics (DP) and the second method is a fully three-dimensional finite 

element (FE) model. The numerical results show good agreement with each other, with the 

theoretical predictions and experimental observations. 

The paper is organized as follows: In Section II we describe the experimental set up, in Section 

III we briefly present the Herztian contact interaction law for ellipsoidal particles. Section IV 

presents the long wavelength theory for highly nonlinear wave propagation adapted to a uniform 

chain of ellipsoidal particles. Section V and VI describe the DP and FE numerical models. In 

Section VII we present a detail discussion and comparison of the results obtained. We end the 

paper with conclusions and considerations on their future applicability.  

 

II. Experimental Set-up  

We assembled chains of 20 and 50 stainless steel (type 316) ellipsoidal particles (Fig. 1(a,b), 

supplied by Kramer Industries) stacked along their minor axis direction in a vertical aluminum 

guide (Fig. 1(c)). Each particle had a mass m=0.925±0.001 g; the minor axis was D=4.72±0.01 

mm long and the major axis was L=10.16±0.01 mm long. The modulus of elasticity (E) was 

equal to 193 GPa and the Poisson’s ratio (ν) was equal to 0.3 [24]. Two of the ellipsoidal 

particles in the chain were instrumented as sensors, and placed in the chain at selected locations. 

The instrumented particles were custom fabricated in our laboratory by introducing a 

piezoelectric (lead zirconate titanate) sheet (3 mm side plate with thickness 0.5 mm) with custom 

micro-miniature wiring (supplied by Piezo Systems Inc.) between two portions of an ellipsoidal 
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particle (Fig. 1(d)). The particles were cut along their major diameter direction and carved to 

accommodate wires. The final assembly of the sensor particles was achieved following a 

procedure similar to the one described in [15,16] for spherical particles. All the sensors were pre-

calibrated to obtain the relation between voltage output from the oscilloscope and the 

corresponding force on the particle assuming conservation of linear momentum. Experimental 

data from the sensors were collected using a Tektronix oscilloscope (TDS 2014). To excite the 

traveling waves in the system, the chain was subsequently impacted with strikers of different 

masses (0.45 g, 0.98 g, and 3.79 g).The striker's impact velocity was varied by releasing the 

striker from different heights, ranging from 7 mm to 48.6 mm. We recorded force-time signals 

detected by sensors placed at particle number 7 and 12 from the top of the chain to study the 

properties of the propagating waves. We calculated their average wave speed (Vs) as 

sV d TOF= , where d is the distance between the centers of sensor particles, and TOF is the time 

of flight, which is the time taken by the wave peak (maximum force) to travel between the two 

instrumented particles. The average maximum force (Fm,e) of the propagating pulses was 

determined by taking the average of the force amplitudes detected at sensor particles (i.e. particle 

number 7 and 12). 

 

III. Contact Interaction Between Ellipsoidal Particles 

The interaction between two ellipsoidal particles under an applied compressive load is 

characterized by an elliptical contact area which is different from the circular contact area 

observed in the interaction between two spherical particles. A general contact law accounting for 

the elliptical contact area based on Hertz assumptions was presented in [25] and is briefly 

summarized here. We consider two ellipsoidal particles initially in contact with each other at 

point O as shown in Fig. 1(b). In this model, the contact properties are taken to satisfy all the 
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Hertzian contact theory’s assumptions: (i) The contact surfaces are non-conforming, continuous 

and frictionless; (ii) The strains are small and the material response is purely elastic; (iii) The 

contact area is very small compare to the size of the particles so that each particle can be 

considered as an elastic half-space. We call ' "
1 1,R R  the principal radii of curvatures of the surface 

of particle 1 at point O, where '
1R  is the maximum value and "

1R  is the minimum value of the 

radius of curvature of all cross-sections of the particle 1’s surface at point O. Similarly, we 

denote ' "
2 2,R R  the principal radii of curvature of the surface of particle 2 at point O. The angle of 

orientation between the axes of principal directions of each surface is α. When two particles are 

pressed against each other by a compressive force F, both the particles locally deform at point O 

and the contact zone increases. During the compression, the distant points in two particles move 

towards the point O and parallelly to z axis by displacements δ1, δ2 for particle 1 and 2, 

respectively. Let 1 2δ δ δ= + denote the total displacement of distant points of two particles under 

compression. The relation between the force F and the displacement δ is given by [25] 

*
3/ 2 3/ 2

3/ 2
2

4 ,
3

e
e

R E
F k

F
δ δ= =  (1) 

where the equivalent radius eR is defined as 

( )1/ 2' " .eR R R=  (2) 

R’, R” are the principal relative radii of curvature and are determined from the principal radii of 

curvature of two ellipsoidal particles’ surfaces at the point O by  

( ) ( ) ( ) ( )
' "1 1,R R

A B B A A B B A
= =

+ − − + + −
, (3) 

where 
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 (4) 

The contact modulus *E is given by 

2 2
1 2

*
1 2

1 11
E E E

ν ν− −= + , (5) 

where 1 1 2 2, , ,E Eν ν  are the elastic moduli and Poisson ratios of the materials for particle 1 and 2, 

respectively (E1=E2 and v1=v2 in the particular setup studied in this paper). The correction factor 

2F depends on the eccentricity of the elliptical contact area e by the following relation 

( ) ( ) ( ) ( ) ( ) ( )
1/3

2
2 2

2 4 /F K e a b E e K e K e E e
eπ π

−
⎧ ⎫⎡ ⎤ ⎡ ⎤= − −⎨ ⎬⎣ ⎦⎣ ⎦⎩ ⎭

, (6) 

where K(e), E(e) are the complete elliptic integral of the first and second kind. The eccentricity 

of the elliptical contact area is given by ( )
1/ 221 /e b a⎡ ⎤= −⎣ ⎦ , where b and a are the semi-minor 

and semi-major axes of the ellipse respectively and the ratio b/a can be approximately 

determined by ( ) 2 / 3' "/ /b a R R
−

≈ . 

It is important to note that the contact law for circular contact area between two spherical 

particles, 2/3δckF =  with the contact stiffness *

21

21

3
4 E

RR
RR

kc +
=  [25], is just a special case of 

the elliptical contact law (Eq. (1)). Indeed if we take the limits of 1
"
1

'
1 RRR ==  and 

2
"
2

'
2 RRR ==  the ellipsoidal particles become spherical, the ratio b/a becomes 1 which implies 

that the contact area now is a circle, and the stiffness ek  in Eq. (1) can be shown to degenerate to 
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ck  in circular contact law. Interestingly, the stiffness ek  in the elliptical contact law is a function 

of the orientation angle α between the two ellipsoidal particles (see Eq. (4)), differently from the 

contact law between two spherical particles.  

In our experimental setup, two adjacent ellipsoidal particles are assumed to be in point contact at 

O as shown Fig. 1(b), and the orientation angle α between the particles is considered 

approximately 00. All the ellipsoidal particles in the chain are uniform, therefore, the principal 

radii of curvature for the surfaces of all the particles have the same values at O and they can be 

calculated based on the geometry of the particles as ( ) ( )2' '
1 2 / 2 / 2R R L D= = = 10.93 mm and 

" "
1 2 2R R D= = = 2.36 mm. 

 

IV. Solitary Wave Propagation in a Chain of Ellipsoidal Particles 

The dynamic response of a “weakly” compressed chain of uniform spherical particles has been 

captured by a highly nonlinear wave equation, which was derived by Nesterenko employing a 

long wavelength approximation [1,2]. The solution of this equation showed the existence of 

compact solitary pulses propagating through the chain with a constant spatial width (~5 times the 

particle diameter D). The solitary wave speed Vs in the chain of spherical particles shows a 

nonlinear dependence on the normalized force omr FFf = , where Fm is the maximum dynamic 

contact force in the chain and Fo is the initial compressive force applied to the chain, which is 

very small with respect to Fm as [13] 

1/ 22 /3
1/ 6 5/3 2 /3

0 2/3

4 1 3 5
5 1 2 2

c
s r r

r

kV D F f f
m f

⎡ ⎤= + −⎢ ⎥− ⎣ ⎦
. (7) 

Chains of “weakly” compressed ellipsoidal particles are expected to support an analogous 

dynamic behavior, since the contact interaction laws for ellipsoidal and spherical particles are 
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similar, differing only in the expression of the elastic coefficient ke. The analytical formulations 

describing wave propagation in a chain of uniform ellipsoidal particles can therefore be obtained 

following Nesterenko’s approach [2]. Accordingly, the nonlinear relation between solitary wave 

speed Vs and normalized force fr in a chain of ellipsoidal particles is 

1/22/3
1/6 5/3 2/3

0 2/3

4 1 3 5
5 1 2 2

e
s r r

r

kV D F f f
m f

⎡ ⎤= + −⎢ ⎥− ⎣ ⎦
 . (8) 

Here D is the particle size in the direction of the chain (for example, the major or minor axis). 

 

V. Discrete Particle Simulations 

We performed discrete particle (DP) simulations to validate the analytical model and for 

comparison with the experimental results. Following previous investigations [9,13,15,16], we 

modeled a chain composed of N uniform ellipsoidal particles as a one-dimensional system, 

where the ellipsoidal particles are treated as point masses connected by nonlinear springs 

according to the elliptical contact law in Eq. (1). The equation of motion of i-th particle is given 

by 

ui =
ke( ) i−1,i

mi

ui−1 −ui
⎡⎣ ⎤⎦+

3/2
−

ke( ) i ,i+1

mi

ui+1 −ui
⎡⎣ ⎤⎦+

3/2
+ g .  (9) 

where ui is the displacement of the i-th particle (i∈[1,…, N]), (ke)i,j denotes the contact stiffness 

between i-th particle and j-th particle, mi is the mass of i-th particle, g is gravitational 

acceleration, and [x]+ denotes the positive part of x. The particle i=0 represents the striker, and 

the particle i=N+1 represents the wall (this particle is fixed and its radii of principal curvatures at 

the point of contact with N-th ellipsoidal particle are infinite). Our discrete particle simulations 

include the effect of gravitational force to incorporate the vertical arrangement of the experiment 
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setup. For the sake of simplicity, we have neglected the effect of dissipation in the short chain of 

ellipsoidal particles that we studied experimentally, as described in Section II. The numerical 

solutions of Eq. (9) were found by using the fourth order Runge-Kutta method. 

 

VI. Finite Element Simulations 

We modeled a chain of 20 uniform ellipsoidal particles, a striker and a rigid plate (the end wall) 

using a finite element (FE) model generated in Abaqus/CAE. The ellipsoidal particles were 

modeled as solid (continuum) three-dimensional elements with major and minor axis 

corresponding to the particles utilized in the experiments. We meshed the volume with 

tetrahedral elements of second order, using modified 10-node tetrahedral (C3D10M). To get a 

better representation of the contact interaction, a denser mesh was used in the vicinity of the 

contact point, as shown in Fig. 2(a). The material parameters of the ellipsoidal particles such as 

density, Young's modulus, Poisson's ratio of ellipsoidal particles in FE simulation were the same 

as in the experimental setup. The end wall was modeled as a flat rigid body composed of R3D3 

type of elements. The contact interactions between two bodies were defined using the surface-to-

surface interaction (Explicit) in Abaqus, where one of the surfaces is selected as master and the 

other as slave. The constraints applied on the contacts were of small-sliding kinematic with no 

friction in the tangential direction and contact pressure-over closure in the normal direction. 

These properties ensured that the two contacting bodies would not penetrate or overlap with each 

other. More about the Abaqus element and contact details can be found in [26].  

To validate the FE model, we computed the static contact interaction between two particles and 

compared the force-displacement relationship with theoretical results based on Hertzian elliptical 

contact law (Eq. 1). We perform benchmark tests of the contact force (F) - displacement (δ) 

relation for three different cases: (i) two ellipsoidal particles contacting at the tip of their minor 
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axis with the angle of orientation between them is zero (similar to our experimental setup), (ii) 

two ellipsoidal particles contacting at the tip of their major axis, and (iii) two equivalent 

spherical particles, i.e. two spheres having the same mass as the ellipsoidal particles, in contact 

with each other (Fig. 2a). In these simulations the lower particle was held firm by applying fixed 

boundary conditions and the upper particle was given a displacement boundary condition. The 

displacement applied to the upper particle was small enough (less than 1% of characteristic 

dimension in each case, for example the ellipsoidal particle’s minor axis in the first case) to 

ensure the validity of the small displacements assumption in Hertz theory. In the range of forces 

considered in the experiments described in this paper, the contact force-displacement relations 

obtained from FE simulations are in good agreement with the theoretical predictions using the 

Hertzian elliptical contact law (see Fig. 2(b)). 

 

VII. Results and Discussion 

We compared force-time responses measured by the instrumented particles in experiments with 

the corresponding forces obtained from the discrete particle and finite element simulations in 

Fig. 3(a). Experiments were performed for a chain of 20 ellipsoidal particles arranged along their 

minor axis. Figure 3(a) presents results obtained when the spherical striker excited the 

propagation of single pulses with an impact velocity of 0.626 m/s. It is evident that the system 

supports the formation and propagation of highly nonlinear solitary waves. The width of the 

solitary wave was measured to be approximately 5.5 particle minor diameters (D). The 

experimental results are in very good agreement with both the discrete particle and finite element 

simulation, with the exception for the presence of dissipation in experiments. The solitary wave 

speed was calculated to be 524 m/s from discrete particle simulation, 529 m/s from FE 

simulation and 490 m/s from experimental data. The small difference between experimental and 
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numerical values is probably due to the effect of dissipation, also evident in the amplitude decay 

noticeable in experiments (compare the pulse amplitude of particle 12 in Fig. 3(a)). The results 

obtained with the one-dimensional discrete particles model and the three-dimensional FE model 

are in excellent agreement with each other (see Fig. 3(a)), confirming the validity of the point 

mass approximation to study one-dimensional ellipsoidal particle dynamics. 

We studied the dependence of the solitary wave speed (Vs) on the dynamic force amplitude (Fm,e) 

in Fig. 3(b). To compare the experimental results with the theoretical force (Fm)-velocity (Vs) 

relation obtained from Eq. (8) we calculated numerically the coefficient β  as in [9]. The 

coefficient β  is defined as a ratio of the maximum dynamic force on the particle contacts Fd,n to 

the maximum average of the dynamic forces acting on the two contacts of the given particle Fm,n 

as nmnd FF ,,=β . It should be noted that, both Fd,n and Fm,n are obtained in discrete particle 

simulations. The maximum contact force Fm between particles, used in the analytical formulation 

(Eq. (8)), can be expressed as [9]: 

, 0m m eF F Fβ= + , (10) 

where Fm,e is the experimentally measured force in the instrumented particles and F0 is the initial 

precompression (caused by gravitational loading in our experimental set up) which is selected as 

a constant value equal to the gravitational compressive force at the midpoint between the two 

sensors in the chain. We find a very good agreement between the theoretical predictions, 

experiments and the numerical models (Fig. 3(b)), showing that chains of ellipsoidal particles 

support robust formation of highly nonlinear solitary waves. This is the first experimental 

demonstration of highly nonlinear solitary wave propagation in an array of irregular, ellipsoidal 

particles. It is interesting to note that, despite the inherent non-uniformity of the particles’ 

dimensions, stable solitary waves form and propagate through the chain. 



 12

Similar to the response of a chain of spherical particles, the behavior of solitary waves in a chain 

of ellipsoidal particles can be tuned by varying the radius and/or the elastic modulus of the 

particles, the initial precompression applied to the system and the amplitude of the dynamic 

loading [13]. In addition, a chain of ellipsoidal particles, similarly to elliptical disks [23], can be 

tuned by varying geometric parameters (e.g. the particles relative angular orientation or their 

stacking directions, such that their major or minor axes are oriented along the direction of wave 

propagation). We show tunability of the system by analyzing the solitary waves’ response with 

the particles relative orientation using the theoretical and the numerical approaches (Fig. 3(b)). In 

particular, we study the wave propagation properties when the ellipsoidal particles are aligned 

along their major axis. For this system's geometry we calculate the stiffness constant ke in Eq. (1) 

using Eqs. (2-6). The theoretical value of the stiffness constant ke for the particles stacked along 

their minor axis direction is 7.48x109 N/m3/2, and for particles stacked along their major axis 

direction is 3.31x109 N/m3/2. It should be noticed that varying the particle's alignment also varies 

the particle’s size parameter D in Eq. (8), which changes from minor diameter to major diameter. 

We compared the response of the chains of ellipsoidal particles oriented along the particles' 

major and minor axis to the response of a chain of equivalent spherical particles. Equivalent 

spherical particle are defined as particles having the same mass of the ellipsoidal particle and the 

radius 
3/1

4
3

⎟
⎠
⎞

⎜
⎝
⎛= mr

π
. The relationship between solitary wave velocity (Vs) and dynamic loading 

(Fm) for a chain of spherical particles can be obtained theoretically using Eq. (7) [13]. We 

compared results from the discrete particle model, finite element analysis and theory for two 

chains of ellipsoidal particles with different arrangements (chain with all the ellipsoidal particles 

arranged in minor and major axis direction, respectively) and for the chain of spherical particles, 

and we find excellent agreement. From Fig. 3(b) it is evident that, when the particles in the 
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system are oriented along their minor axis along the chain, the velocity of the solitary wave is 

slower than the velocity of solitary wave in a chain of equivalent spherical particles excited with 

the same dynamic loading (this is due to the fact that in this case the ellipse minor axis is smaller 

than the diameter of equivalent sphere). Following similar geometric considerations, when the 

particles in the system are oriented along their major axis, the velocity of the solitary wave is 

faster than the velocity of solitary wave in a chain of equivalent spherical particles excited with 

the same dynamic loading. 

We studied the effects of dissipation testing a longer chain composed of 50 elliptical particles, 

excited by a steel striker (ms = 0.45 g) with different impact velocities (0.37 m/s, 0.49 m/s and 

0.66 m/s). We inserted 4 sensors in particle number 8, 16, 28 and 41 from the top, and monitored 

the amplitude decay and the variation of the pulse shape as the wave propagated through the 

system (Fig. 4). We compared the results with a modified discrete particle model that includes 

linear damping term following the model described in [27] as 

ui =
ke( )i−1,i

mi

ui−1 − ui
⎡⎣ ⎤⎦+

3/2
−

ke( )i ,i+1

mi

ui+1 − ui
⎡⎣ ⎤⎦+

3/2
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+γs ui−1 − ui

⎡⎣ ⎤⎦+
− ui+1 − ui
⎡⎣ ⎤⎦+

+ g . (11) 

where γ is the relaxation (dissipation) coefficient, s is the sign of ui−1 − ui
⎡⎣ ⎤⎦+

− ui+1 − ui
⎡⎣ ⎤⎦+( ) .  

Results show that a chain of 50 particles presents significant dissipation. The linear damping 

model captures well the wave amplitude decay and the changes of wave shape in the whole range 

of impact velocities studied (Fig. 4). The relaxation coefficient γ in each experiment was 

determined by minimizing the root mean square (RMS) difference between the experimental 

force amplitude Fm,e at each sensor location and the corresponding numerical one. The optimal 

value of relaxation coefficient γ was found to vary from -15.55 to -3.18 in the range of impact 

velocities tested in experiments. 
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The system described in this paper can be used to create two- and three-dimensional crystal 

structures of ellipsoidal particles in cubic packing arrangement. These high dimensional media 

provide the directional dependence for stress wave propagation. The difference in stress wave 

propagation speeds in selected directions can be controlled by choosing appropriate values of 

major and minor axis of ellipsoidal particles in the structures. 

 

VIII. Conclusions 

The impulse propagation in a one-dimensional chain of uniform ellipsoidal particles was studied 

using theoretical analysis, experiments and two separate numerical approaches (one-dimensional 

discrete particle model and finite element analysis).We reviewed the fundamental principles of 

the contact interaction between two ellipsoidal particles, and utilized the contact law to study 

analytically the dynamics of a chain of ellipsoidal particles. We observed the formation and 

propagation of highly nonlinear solitary waves finding good agreement between experiments, 

theory and the numerical analyses. We show the effects of particle orientation on the pulse 

propagation velocity in the chains, and we study the effects of dissipation in a longer chain of 

particles. These observations demonstrate that the particles' geometry and relative orientation 

offer additional mechanisms to tune the stress propagation in granular chains, of interest for the 

design of new materials capable of tailoring stress propagation and for the development of 

tunable acoustic devices.  
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Figure Captions 

 

Figure 1. (Color online) (a) Digital image showing the ellipsoidal particles used in experiments. 

(b) Schematic diagram showing the front and side view for the contact between two ellipsoidal 

particles and the dimensions and the radii of the maximum and minimum principal of curvatures 

at the contact points between ellipsoidal particles. (c) Schematic diagram for assembly of a 20 

particles chain of vertically stacked stainless steel ellipsoidal particles. Piezoelectric sensors were 

embedded in particles 7, 12. (d) Schematic diagram representing the assembly of the 

piezogauges embedded inside selected ellipsoidal particles. 

 

Figure 2. (Color online) (a) Finite element mesh of: (i) two adjacent ellipsoidal particles 

arranged in the minor axis direction; (ii) two adjacent ellipsoidal particles arranged in the major 

axis direction; (iii) two adjacent equivalent spherical particles. (b) Comparison of the contact 

force-displacement relations between two ellipsoidal particles arranged in minor (curve group 

(i)) and major (curve group(ii)) axis direction, and also between two equivalent spherical 

particles (curve group(iii)) obtained from both finite element simulations (dotted (blue) curves) 

and Hertzian elliptical contact law (solid (black) curves).  

 

Figure 3. (Color online) (a) Comparison of experiments and numerical results on the formation 

and propagation of a solitary wave in a chain of 20 stainless steel ellipsoidal particles excited by 

impacting a stainless steel spherical striker of mass m=0.925 g with an initial velocity of 0.626 

m/s. Curve group1 shows the results for particle 7 in the chain from the top, and similarly, curve 

group2 shows the results for particle 12 from top. Experimental results are shown by solid 

(green) curves. (b) Dependence of the wave speed on the maximum contact dynamic force in the 
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chains of ellipsoidal particles arranged in both minor (curve group (i)) and major (curve group 

(ii)) axis directions and in the chain of equivalent spherical particles (curve group (iii)) under 

gravitational loading. Experimental data for chain of ellipsoidal particles arranged in minor axis 

direction are shown by solid (green) diamonds in curve group (iii). The solid (black) curves 

represent the theoretical predictions. In both panels the dashed (red) curves represent the discrete 

particle results, the dotted (blue) curves represents the finite element results. 

 

Figure 4. (Color online) Experimental results obtained in a chain composed of 50 particles, 

excited by a striker with an impact velocity v =0.37 m/s. The (green) solid curves represent 

force-time signals obtained from instrumented particles positioned in location 8, 16, 28 and 41. 

The (red) dashed curves represent numerical results obtained from a modified discrete particle 

model (DPM) with linear damping. γ is the relaxation coefficient and has a value of -11.67. 
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Figure 2 
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