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The properties of solitary and shock structures associated with nonlinear ion modes in a dense
plasma with strongly coupled non-degenerate ions and degenerate electron fluids are presented. For
this purpose, we have used the viscoelastic fluid model for the ions, inertialess electron momentum
equation with weakly- and ultra-relativistic pressure laws for degenerate electron fluids, and Pois-
son’s equation to derive the Burgers and K-dV equations. Possible stationary solutions of the latter
are the shock and solitary structures, respectively. It is found that the speed, amplitude, and width
of the shock and solitary waves critically depend on the strong coupling between ions and electron
degeneracy effects. The relevance of our investigation to the role of localized excitations in dense
astrophysical objects is briefly discussed.
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I. INTRODUCTION

In the past, a number of authors has been concerned
with the study of matter under extreme conditions [1–6],
which occur in compact astrophysical objects and plane-
tary systems. Examples of the latter are white and brown
dwarf stars [7–9], as well as massive Jupiter [10] (serv-
ing as the benchmark for giant planets), and super-Earth
terrestrial planets around other stars [11]. White dwarf
stars have low luminosity and high surface emissivity,
with masses typically less than 1M⊙ and radii typically
less than 10−2R⊙. The average bulk densities of white
dwarf stars are typically ∼ 1030 cm−3. Astrophysical
aspects of high density have been recently discussed by
Fortov [12].

In high density plasmas (the particle number den-
sity of the order mentioned above), electron fluids are
degenerate, and non-degenerate ions are strongly cou-
pled since the ion Coulomb coupling parameter Γi =
Zie

2/aikBTi is larger than unity. Here, Zi is the ion
charge state, e the magnitude of the electron charge,
ai = (3/4πni)

1/3 the inter-ion spacing, ni the ion
number density, kB the Boltzmann constant, and Ti

the ion temperature. Since electrons at high densities
are degenerate, one must use the Fermi-Dirac statis-
tics to deduce the electron pressure. In his classical
papers, Chandrasekhar [1, 3] presented a general ex-
pression for the relativistic electron degeneracy pressure
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Pe = (πmec
5/3h̄3)

[

α(2α2 − 3)(α2 + 1)1/2 + 3 sinh−1 α
]

,
where me is the electron rest mass, c the speed of light
in vacuum, h̄ the Planck constant divided by 2π, and
α = pe/mec, with pe = (3h̄2ne/8π)

1/3 being the mo-
mentum of an electron on the Fermi surface. One can
obtain explicitly expressions for Pe in the weakly and
ultra-relativistic limits, which are characterized by α ≪ 1
and α ≫ 1, respectively. We have

Pe = Knγ
e , (1)

where

γ =
5

3
; K =

3

5

(π

3

)
1

3 πh̄2

me
≃

3

5
Lch̄c (2)

for the weakly-relativistic degenerate electron fluids
(where Lc = πh̄/mec = 1.2× 10−10 cm), and

γ =
4

3
; K =

3

4

(

π2

9

)
1

3

h̄c ≃
3

4
h̄c (3)

for the ultra-relativistic degenerate electron fluids. Here
ne is the electron number density.
Recently, several authors [13–22] have used the pres-

sure laws (1) and (2) to investigate the linear and
nonlinear properties of electrostatic and electromagnetic
waves, by using the non-relativistic quantum hydrody-
namic (QHD) [13] and quantum-magnetohydrodynamic
(Q-MHD) [15] models and by assuming either immobile
ions or non-degenerate uncorrelated mobile ions. It turns
out that the presence of the latter and degenerate ultra-
relativistic electrons with the pressure law (3) admits
one-dimensional localized ion modes (IMs) supported by
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linear and nonlinear ion inertial forces and the pressure
of degenerate electron fluids in a dense quantum plasma
that is unmagnetized. Furthermore, modified Volkov so-
lutions of the Dirac equation for electrostatic and elec-
tromagnetic waves in relativistic quantum plasmas have
been discussed by Mendonça and Serbeto [23].
In the present paper, we study the properties of weakly

nonlinear IMs in a dense quantum plasma composed
of degenerate electron fluids and strongly coupled non-
degenerate ion-fluids. To describe the dynamics of the
IMs, we use the ion continuity and visco-elastic ion mo-
mentum equation (similar to those in Refs. [24–26]), as
well as inertialess electron momentum equation with the
pressure laws (2) and (3) and Poisson’s equation. Strong
ion coupling effects enter in the generalized ion momen-
tum equation through the viscoelastic relaxation time for
the decay of ion correlations and the bulk ion viscosity.
By using the standard reductive perturbation technique
[27, 28], we derive the Burgers and Kortweg-de Vries (K-
dV) equations from the governing nonlinear equations
for IMs. Stationary solutions of the Burgers and K-dV
equations in the form of shock and solitary waves are
presented. The effects of ion correlations and electron
degeneracy on the speed, width and amplitude of both
shocks and solitary waves are examined.

II. MODEL NONLINEAR EQUATIONS

We consider one-dimensional nonlinear propagation of
electrostatic IMs associated with inertialess degenerate
electron fluids and strongly coupled non-degenerate iner-
tial ions in an unmagnetized dense plasma. The dynam-
ics of nonlinear IMs in our plasma is governed by the
momentum equation for inertialess degenerate electron
fluids, given by,

0 = ene
∂φ

∂x
−

∂Pe

∂x
, (4)

and the generalized viscoelastic ion hydrodynamic equa-
tions (similar to those in Refs. [24–26]) composed of the
ion continuity and ion momentum equations

∂ni

∂t
+

∂

∂x
(niui) = 0, (5)

Dτ

[

miniDtui + Zieni
∂φ

∂x
+ kBTef

∂ni

∂x

]

= ηl
∂2ui

∂x2
.(6)

The equations are closed by Poisson’s equation

∂2φ

∂x2
= 4πe (ne − Zini) , (7)

where φ is the electrostatic potential, ui the component
of the ion fluid velocity along the x-axis in a Cartesian co-
ordinate system, t and x are time and space variables, re-
spectively, mi the ion mass, and Tef = (µiTi+T⋆) the ef-
fective ion-temperature. The latter consists of two parts:
one (T⋆) arising from the electrostatic interaction among

strongly correlated positive ions, and the other (µiTi)
arising from the ion-thermal pressure. We have denoted
Dτ = 1+τm (∂/∂t+ ui∂/∂x), Dt = ∂/∂t+ui∂/∂x, τm is
the viscoelastic ion relaxation time, µi the ion compress-
ibility, and ηl represents the longitudinal ion viscosity
coefficient. There are various approaches for calculating
the ion transport coefficients, similar to those for one-
component strongly coupled plasmas [25, 26, 29, 30]. The
parameter T⋆ (which arises from the electrostatic interac-
tions among strongly correlated positive ions), viscoelas-
tic ion relaxation time τm, and the ion compressibility
µi, for our purposes, are [25, 26, 30]

T⋆ =
Nnn

3

Z2
i e

2

aikB
(1 + κ) e−κ, (8)

τm =
ηl

ni0kBTi

[

1− µi +
4

15
u(Γ)

]−1

, (9)

µi =
1

kBTi

∂Pi

∂ni
= 1 +

1

3
u(Γ) +

Γi

9

∂u(Γ)

∂Γi
, (10)

where Nnn is determined by the ion structure, and cor-
responds to the number of nearest neighbors (viz. in
crystalline state Nnn = 8 for bcc lattice, Nnn = 12 for
fcc lattice, etc.), κ = ai/λD, and λD is the Thomas-Fermi
screening length, u(Γi) is a measure of the excess internal
energy of the system, and is calculated for weakly cou-

pled plasmas (Γi < 1) as [26] u(Γi) ≃ −(
√
3/2)Γ

3/2
i . To

express u(Γi) in terms of Γi for a range of 1 < Γi < 100,
Slattery et al. [29] have analytically derived a relation

u(Γi) ≃ −0.89ΓI + 0.95Γ
1/4
i + 0.19Γ

−1/4
i − 0.81, (11)

where a small correction term due to finite number of par-
ticles has been neglected. The dependence of the other
transport coefficient ηl on Γi is somewhat more complex,
and cannot be expressed in such a closed analytical form.
However, tabulated/graphical results of their functional
behavior derived from molecular dynamic simulations,
and a variety of statistical schemes are available in the
literature [25].
It is obvious that (5)-(7) are coupled with the electron

number density ne, which can be deduced from (1) and
(4) as

ne = ne0

[

1 +
(γ − 1)eφ

γKnγ−1
e0

]
1

γ−1

≃ ne0

[

1 +
C1

1!
eφ−

C2

2!
(eφ)2 +

C3

3!
(eφ)3 + ··

]

, (12)

where ne0 = Zini0, and

C1 =
1

γKnγ−1
e0

,

C2 =
γ − 2

γ2K2n
2(γ−1)
e0

,

C3 =
(γ − 2)(2γ − 3)

γ3K3n
3(γ−1)
e0

.
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Hence, ne for the weakly and ultra-relativistic electron
fluids can be obtained by substituting (2) and (3) into
(12).

III. IM SHOCK

To derive a dynamical equation for the shock waves
from Eqs. (5)−(7) and (12), we use the reductive per-
turbation technique [27], and the stretched coordinates
[28]

ξ = ǫ(x− Vpt),
τ = ǫ2t,

}

(13)

where ǫ is a smallness parameter measuring the weakness
of the dispersion, and Vp is the phase speed of the electro-
static IMs. We can expand the perturbed quantities ni,
ui, and φ about their equilibrium values in power series
of ǫ as

ni = ni0 + ǫn
(1)
i + ǫ2n

(2)
i + · · ·,

ui = ǫu
(1)
i + ǫ2u

(2)
i + · · ·,

φ = ǫφ(1) + ǫ2φ(2) + · · ·.











(14)

We now use (12)−(14) into (5)−(7), and develop equa-
tions in various powers of ǫ. To the lowest order in ǫ,
i.e. taking the coefficients of ǫ2 from both sides of (5)
and (6), and the coefficients of ǫ from both sides of (7)
and (12), one obtains the first order continuity equation,
momentum equation, and Poisson’s equation which, in
turn, give

u
(1)
i =

ZieVpφ
(1)

miV 2
p − kBTef

, (15)

n
(1)
i =

Zieni0φ
(1)

miV 2
p − kBTef

, (16)

Vp = Ch̄

√

1 + βT , (17)

where βT = kBTef/ZiγKnγ−1
e0 , and Ch̄ =

(ZiγKnγ−1
e0 /mi)

1/2 is the speed of the IMs in our
dense plasma. We note that βT = a2ekBTef/ZiLch̄c
and βT = aeKBTef/Zih̄c for the weakly- and ultra-
relativistic degenerate electron fluids, respectively.
Equation (17) represents the linear dispersion relation
for the IMs in which the restoring force comes from
the pressure of degenerate electrons and the ion mass
provides the inertia. It is obvious from (17) that the
phase speed (Vp) is increased by Tef (i.e. by the effective
ion-temperature). It is also clear that for βT ≪ 1
(which is valid for both the weakly and ultra-relativistic
limits), we have Vp ∼ Ch̄, which along with γ, K, βh

are provided in Table I. The expression for Ch, given
in Table I, dictates that unlike the usual ion-acoustic
speed in the usual non-degenerate electron-ion plasma,
Ch (or Vp for βT ≪ 1) is independent of the electron-
temperature, but it depends on the unperturbed electron

number density, and it is directly proportional to n
1/3
e0 ,

i.e. inversely proportional to inter-electron distance
(ae = (3/4πne0)

1/3). It is also directly proportional to√
Zi, and inversely proportional to

√
mi. To the next

TABLE I: The expressions for K, Ch = Vp(Tef = 0), and

corresponding Φ
(1)
m (Tef = 0) for the weakly-relativistic (γ =

5/3) and ultra-relativistic (γ = 4/3) limits:

γ K βT Ch̄ Φ
(1)
m (Tef = 0)

5
3

5
3
Lch̄c

a2

eTef

ZiLch̄c

(

ZiLch̄c

a2
emi

) 1

2 3miU0C
nr
h̄

4Zie

4
3

3
4
h̄c

aeTef

Zih̄c

(

Zih̄c

aemi

) 1

2
6miU0C

ur
h̄

7Zie

higher order in ǫ, i.e. taking the coefficients of ǫ3 from
both sides of (5) and (6), and the coefficients of ǫ2 from
both sides of (7) and (12), one obtains another set of

coupled equations for n
(2)
i , u

(2)
i , and φ(2), which along

with the first set of coupled linear equations for n
(1)
i ,

u
(1)
i , and φ(1), reduce to a nonlinear dynamical equation

∂φ(1)

∂τ
+Aφ(1) ∂φ

(1)

∂ξ
= C

∂2φ(1)

∂ξ2
, (18)

where the nonlinear coefficient A and the dissipation co-
efficient C are, respectively,

A =
Zie

2miCh̄

√
1 + βT

[1 + γ + (γ − 2)βT ] , (19)

C =
ηl

2ni0mi
. (20)

Equation (18) is the well-known Burgers equation de-
scribing the nonlinear propagation of the IMs in our
dense plasma. It is obvious from (18) and (20) that the
dissipative term, i.e. the right-hand side of (18) is due to
the strong correlation among positive ions.
We now look for a stationary shock wave solution of

(18), by introducing ζ = ξ−U0τ
′ and τ ′ = τ , where U0 is

the shock speed (in the reference frame). This leads us to
write (18), under the steady state condition (∂/∂τ ′ = 0),
as

−U0
∂φ(1)

∂ζ
+Aφ(1) ∂φ

(1)

∂ζ
= C

∂2φ(1)

∂ζ2
. (21)

It can be easily shown [31] that (21) describes the IM
shock whose speed U0 is related to the extreme values
φ(1)(−∞) and φ(1)(∞) by φ(1)(∞)−φ(1)(−∞) = 2U0/A.
Thus, under the condition that φ(1) is bounded at ζ =
±∞, the IM shock solution of (21) is [31]

φ(1) =
Φm

2
[1− tanh(ζ/∆)], (22)



4

where Φm and ∆ are the height and width of the IM
shock, respectively. We have

Φm =
2U0

A
, (23)

∆ =
2C

U0
. (24)

The IM shock arises due to the balance between non-
linearities associated with the generation of harmonics
on account of IM couplings and strong correlations be-
tween the positive ions in our dense plasma. It is seen
from (19), (20), and (23) that the IM shock height is
independent of the longitudinal viscosity coefficient (ηl),
but the shock thickness is directly proportional to the
longitudinal viscosity coefficient ηl, (i.e. the IM shock
thickness increases with the increase of the longitudinal
ion viscosity coefficient), and is inversely proportional to
the ion mass density (ρi0 = ni0mi) and to U0. It is also
seen from (19) and (22) that for γ < 2 [which is satis-
fied for both the weakly-relativistic (γ = 5/3) and ultra-
relativistic (γ = 4/3) limits], the nonlinear coefficient A
decreases, i.e. the IM shock height increases (non-linearly
and slowly) with the increase of Tef . On the other hand,

for βT ≪ 1, the expression for the shock height [φ
(1)
m ] for

non-relativistic (γ = 5/3) and ultra-relativistic (γ = 4/3)
limits are provided in Table I.
Table I shows that for βT ≪ 1, the IM shock height is

i) directly proportional to U0 and
√
mi, but inversely

proportional to
√
Zi in both the weakly- and ultra-

relativistic limits; ii) directly proportional to n
1/3
e0 in

the weakly-relativistic limit, but to n
1/6
e0 in the ultra-

relativistic limit.

IV. SOLITARY IMS

To derive a dynamical equation for the solitary IMs
from Eqs. (5)-(7) and (12), we again use the reductive
perturbation technique [27], with another set of stretched
coordinates

ξ = ǫ1/2(x − Vpt),

τ = ǫ3/2t.

}

(25)

We now use (12),(14), and (25) in (5)−(7), and develop
equations in various powers of ǫ. To the lowest order in
ǫ, i.e. taking the coefficients of ǫ3/2 from both sides of (5)
and (6), and the coefficients of ǫ from both sides of (7)
and (12), we obtain the first order continuity equation,
momentum equation, and Poisson’s equation which, in
turn, give a set of equations that are completely identical
to the set of equations given by (17).
To the next higher order in ǫ, i.e. taking the coeffi-

cients of ǫ5/2 from both sides of (5) and (6), and the co-
efficients of ǫ2 from both sides of (7) and (12), we obtain

another set of coupled equations for n
(2)
i , u

(2)
i , and φ(2),

which, along with (17), reduce to a nonlinear dynamical
equation

∂φ(1)

∂τ
+Aφ(1) ∂φ

(1)

∂ξ
+B

∂3φ(1)

∂ξ3
= 0, (26)

where the nonlinear coefficient A is given by (19), and
the dispersion coefficient B is

B =
C3
h̄(1 + βT )

3

2

2ω2
pi

=

(

Zi

mi

)
1

2 γ
3

2K
3

2n
1

2
(3γ−1)

e0

8πe2
. (27)

Equation (26) is the well-known K-dV equation describ-
ing the nonlinear propagation of IMs in our dense plasma
system.
The stationary solitary IM solution of the K-dV equa-

tion (26) is obtained by transforming the independent
variables to ζ = ξ − U0τ

′ and τ ′ = τ , where U0 is the
speed of the solitary IM, and imposing the appropri-
ate boundary conditions, viz. φ(1) → 0, dφ(1)/dζ → 0,
d2φ(1)/dζ2 → 0 at ζ → ±∞. Accordingly, the stationary
solitary IM solution of the K-dV equation (26) is

φ(1) = φmsech2(ζ/δ), (28)

where φm and δ are the amplitude and the width of the
solitary IM, respectively. We have

φm =
3U0

A
, (29)

δ =

√

4B

U0
. (30)

It is obvious from (23) and (29) that Φm = 2U0/A for
the IM shock and φm = 3U0/A for the solitary IM, i.e.
φm/Φm = 3/2. This means that the solitary IM am-
plitude differs by an amount of 3/2 from the IM shock
height, and that the variation of the solitary IM ampli-
tude with Zi, mi, ne0, and Tef is exactly the same as
that of the IM shock height.
It is easy to show from (2), (3), (27), and (30) that

δnr =

[

ZiL
3
c h̄

3c3

miU2
0π

2e4
(1 + βT )

3

]

1

4

(31)

for the weakly-relativistic limit (γ = 5/3), and

δur =

[

Zia
3
eh̄

3c3

miU2
0π

2e4
(1 + βT )

3

]

1

4

(32)

for the ultra-relativistic limit (γ = 4/3).
Equations (31) and (32) reveal that the width (δ) of the

solitary IMs increases with the effective ion-temperature
Tef . Furthermore, we see from (31) and (32) that for
βT ≪ 11, i) the width (δ) is directly proportional to

Z
1/4
i , but inversely proportional to m

1/4
i and

√
U0, and

ii) it is independent of the plasma number density in the
weakly-relativistic limit, but is inversely proportional to

n
3/4
e0 in the ultra-relativistic limit.
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V. DISCUSSION AND CONCLUSION

In this paper, we have investigated the nonlinear prop-
agation of electrostatic IMs in a dense plasma composed
of inertialess degenerate electron fluids and strongly cou-
pled non-degenerate strongly ion-fluids. By using the
appropriate electron density response and the general-
ized hydrodynamic equations for ions [25, 26], together
with Poisson’s equation, we have derived the governing
equations for nonlinear IMs. When the longitudinal ion
viscosity, resulting from strong ion correlations, prevails
over the dispersion arising from the charge separation,
one finds that the dynamics of nonlinear IMs is gov-
erned by the Burgers equation. On the other hand, when
the charge separation effects overwhelms the strong ion-
coupling effects, the nonlinear IM dynamics is governed
by the K-dV equation. Here the electron degeneracy
plays a crucial role. Our main results are summarized
as follows:

1. The phase speed of the nonlinear IMs, Vp (which
is, in fact, the critical phase speed for which the
solitary or shock IMs are formed) increases due to
the effect of the effective ion-temperature Tef .

2. Unlike the usual nonlinear ion-acoustic waves in
a non-degenerate electron-ion plasma, Ch (which
is, in fact, the phase speed for βT ≪ 1, i.e.
Ch̄ = Vp(Tef = 0)) is independent of the electron-
temperature, but it depends on the electron num-

ber density, and is directly proportional to n
1/3
e0 , i.e.

inversely proportional to the inter-electron distance
(ae). However, like the usual nonlinear ion-acoustic
waves in a non-degenerate electron-ion plasma, it is
also directly proportional to

√
Zi and inversely pro-

portional to
√
mi.

3. The IM shock, which is due to the balance between
nonlinearities and dissipation, exists with a posi-
tive potential only. The strong correlation among
positive ions is the source of dissipation, and is re-
sponsible for the formation of the IM shock.

4. The IM shock height is independent of the longi-
tudinal viscosity coefficient (ηl), but the IM shock
thickness is directly proportional to the longitudi-
nal viscosity coefficient ηl, and is inversely propor-
tional to the ion mass density (ρi0 = ni0mi).

5. The IM shock height is directly proportional to√
mi, but inversely proportional to

√
Zi in both the

weakly- and ultra-relativistic limits. However, it is

directly proportional to n
1/3
e0 (i.e inversely propor-

tional to inter-electron distance ae) in the weakly-

relativistic limit, but to n
1/6
e0 (i.e inversely propor-

tional to the inter-electron distance
√
ae) in the

ultra-relativistic limit.

6. The solitary IM, which is due to the balance be-
tween nonlinearities and dispersion, exists with a

positive potential only. The solitary IM amplitude
differs by an amount of 3/2 from the IM shock
height, and that the variation of the solitary IM
amplitude with Zi, mi, ne0, and Tef is exactly the
same as that of the IM shock height.

7. The width (δ) of the solitary IM increases with the
increase of Tef . On the other hand, for βT ≪ 1,

the width (δ) is directly proportional to Z
1/4
i , but

inversely proportional to m
1/4
i in both the weakly

and ultra-relativistic limits. However, it is indepen-
dent of the plasma number density in the weakly-
relativistic limit, but is inversely proportional to

n
3/4
e0 in the ultra-relativistic limit.

It is important to add here that we have followed Chan-
drasekhar [1, 2]) by assuming that the white dwarf core
is pure He. However, recently Koester [32] assumes that
the core may be pure carbon or pure oxygen. The im-
portant point to note here is that whatever the ‘chemical’
composition of the core (pure He, pure C, or pure O), for
a given mass, the total number of nucleons (protons plus
neutrons) would be the same, and since the number of
electrons per nucleon would also be the same, namely
1/2 (He: 4 nucleons, 2 electrons; C: 12 nucleons, 6 elec-
trons; O: 16 nucleons, 8 electrons), we would end up with
the same value of n0 = ne0 = Zini0 for all compositions.
This means that our nonlinear theory for localized IMs is
also valid for the recent assumption of Koester [32]. Our
results have shown how the presence of the ions of heav-
ier elements C or O (instead of He) can modify the basic
features [viz. the speed, height, and thickness, which are
expressed as function of mi by (23), (24), (29), and (30)]
of the IM shock and solitary waves that are formed in our
dense plasma with degenerate inertialess electron fluids
and strongly coupled non-degenerate inertial ion fluids.
It is also important to note here that when the disper-

sion (dissipation) effect is much more pronounced than
the dissipation (dispersion) effect, and the dissipation
(dispersion) effect is neglected, strongly coupled degen-
erate dense plasmas support solitary (shock) waves. To
neglect the effect of the IM dispersion in comparison with
that of the dissipation or vice-versa, one has to choose a
suitable scaling (stretching of co-ordinates) that we used
in our investigation of the IM shock and solitary waves.
However, if it would be possible to keep both effects,
i.e. possible to derive the K-dV-Burgers equation [31] by
choosing appropriate stretched co-ordinates (which have
not been found so far), one would have oscillatory IM
shock in which the first few oscillations at the wavefront
will be close to IM solitons [31].
The K-dV-Burgers equation has been derived by a

number of authors, e. g. Shukla and Mamun [33], Pakzad
and Javidan [34], etc., by using the stretched coordinates,
defined by (25), along with an additional stretching of the
viscosity coefficient, ηl = ǫ1/2η0, in order to study the
dust-acoustic [35] solitary and shock waves in a strongly
coupled dusty plasma. However, the use of this addi-
tional stretching, ηl = ǫ1/2η0, is not correct in general,
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at least from the mathematical points of view, since this
additional stretching (ηl = ǫ1/2η0) leads to the dissipa-
tion coefficient to contain the expansion parameter ǫ. So,
to avoid this additional stretching (ηl = ǫ1/2η0), in our
present work, we used the stretched co-ordinates other
than that used by Shukla and Mamun [33] or Pakzad and
Javidan [34]. The Burgers equation has also been derived
by a number of authors, e. g. Shukla [36], Rahman et

al. [37], etc. by using the same additional stretching in
order to study the dust-ion-acoustic [38] shock waves in
a dusty plasma.
On the other hand, Pakzad [39] has derived the K-dV

equation by using the stretched coordinates defined by
(25), and the modified K-dV equation by using another
set of stretched coordinates (viz. ξ = ǫ(x−Vpt), τ = ǫ3t),
and has studied the ion-acoustic solitons [40] in a plasma
containing warm ions (which are weakly-relativistic and
weakly coupled) and electrons (which follow the Cairns
distribution [40]), and positrons (which follow the Boltz-
mann distribution). It is, therefore, obvious that the
plasma models (viz. dusty plasma [33–38] and nonther-
mal plasma [39, 40] models) as well as the scale and
time lengths of the waves considered in all of these ear-
lier investigations [33–40] are not valid for any degen-
erate plasma system, and are completely different from
what we have considered in our present work (concerning
waves in strongly coupled degenerate (quantum) plasma
systems or compact objects like white dwarfs [1, 2]). We
refer to the seminal works of Rao et al. [35], Shukla and
Silin [38], and Cairns et al. [40] for the details of the dust-
acoustic waves, dust-ion-acoustic waves, and nonthermal

plasmas, respectively, which make clear how our present
work (from view of its model, results, and possible appli-
cations) is completely different from the works of Pakzad
and Javidan [34], Rahman et al. [37], and Pakzad [39],
respectively.

To conclude, the results of the present investigation
should be useful in understanding the salient features of
localized IM excitation in dense (degenerate) plasmas,
such as those in white dwarf stars. Specifically, from the
phase speed of nonlinear IM structures, one may infer the
composition and structural properties of massive stars in
which the plasma particles are densely packed.

It may be noted here that the effects of nonplanar ge-
ometry and external magnetic field on the IM shock and
solitary structures and their multidimensional instability
are also problems of great importance, but beyond the
scope of our present work.
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