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A spatially randomized fractal interpolation algorithm to construct three dimensional synthetic
turbulence from original coarse field is reported. As same as in one dimension case by Ding et al.
(Phys. Rev. E 82, 036311, 2010), during the fractal interpolation, positions mapping between large
and small scale cubes are chosen randomly and the stretching factors are drawn from log-Poisson
random multiplicative process. A linear combination function defined as the base part in fractal
interpolation and a theoretical energy spectrum model for fully developed turbulence are introduced
into the procedure. Statistical analysis shows that the synthetic field displays some properties very
close to the direct numeric simulated field, such as probability distributions of velocity, velocity
gradient and velocity increment, the anomalous scaling behavior of the longitude velocity structure
functions, which follows SL94 model precisely. And after a short time direct numeric simulation with
the synthetic field as initial data, the typical local dynamical structures described by the teardrop shape
of Q-R plane for empirical turbulence can be reproduced.

PACS numbers: 47.27.E-, 02.50.Ey, 47.53.+n

I. INTRODUCTION

Generating synthetic turbulence through a method as
simple as possible has received considerable attention in
recent years. There have been important progresses in
applying this kind of turbulent fields in numerical sim-
ulations and understanding experimental data [1]. Es-
pecially, since abundant empirical observations having
been made about the fractality [2–4] in hydrodynamic
turbulence, several methods to construct synthetic fields
using fractal functions have been proposed [1, 5–8] with
different degrees of success in reproducing various char-
acteristics of turbulence.
A remarkable addition to these efforts is the work of

Scotti and Meneveau [9, 10]. They introduced a frac-
tal interpolation (FI) algorithm [11] based on an iterated
function system (IFS), which is motivated to evaluate the
so-called subgrid scale effects which are crucial to derive
a self-consistent large eddy simulation (LES) model of
turbulence. Later by introducing two different stretch-
ing factors based on the former work, Basu et al. [12]
obtained anomalous scaling exponents for velocity struc-
ture functions. Most of these work have a key concept,
namely self-similarity, which is one of the common sta-
tistical properties of various natural phenomena encom-
passing a wide range of scales in space or time.
We also notice that Scotti and Meneveau [13, 14] devel-

oped a minimal multiscale Lagrangian map approach to
synthesize non-Gaussian turbulent vector fields as initial
conditions for numerical simulations. Recently, Chevil-
lard et al. [15, 16] designed a Recent Fluid Deforma-
tion (RFD) closure for the vorticity field based on the
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mechanics of the Euler equation at short time, which
allows an incompressible velocity field to be built that
shares many properties with empirical turbulence. Their
works also offered good examples for comparing the lo-
cal structure between synthetic and real turbulence fields
(in this paper, the term ”real” mainly refers to those
data obtained by experiments or direct numeric simula-
tion (DNS)). Moreover, the team of Vassilicos [17, 18]
reported some significant experimental investigations on
wind tunnel turbulence with high Reynolds number gen-
erated by fractal grids. Their works produced new classes
of turbulence, which have some unusual properties and
may directly serve as new flow concepts for new indus-
trial flow solutions. All of these works indicated that
constructing turbulence field is an important issue.

In an earlier paper[19], we found that in real turbu-
lent fields the positions of similar fluctuations at differ-
ent scales are almost randomly distributed. Therefore, to
improve the traditional FI, we proposed a spatially ran-
domized fractal interpolation (SRFI) and demonstrated
that the resulting synthetic fields are much closer to real
turbulence in one-dimensional (1D) case by introducing
the log-Poisson random multiplicative process (RMP).
Besides, we applied a so-called energy spectrum modifi-
cation (ESM) on the synthetic fields to construct those
fields which do not obey absolute scaling laws but exhibit
the extended scaling similarity (ESS) [20].

Here, we extend the 1D SRFI into a three-dimensional
(3D) version by defining a special linear combination
function as the base part used in fractal interpolation.
At the same time a theoretical energy spectrum model
[21] for fully developed turbulence is chosen to imple-
ment ESM. Through statistical analysis, it’s demon-
strated that some statistical properties such as velocity,
velocity gradient and velocity increment probability dis-
tributions, flatness and scaling behavior of the longitude
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velocity structure functions are close to those of DNS
fields. In addition, we discuss the deviation of local struc-
tures between the synthetic and DNS fields and make a
short time DNS using our synthetic field as initial data,
which reproduces the typical local dynamical structures
described by Q-R plane for fully developed turbulence.

II. FRACTAL INTERPOLATION AND

SPATIALLY RANDOM SIMILARITY

The fractal interpolation technique is an iterative affine
mapping procedure to construct a synthetic deterministic
small-scale field given a few large-scale anchor points [9–
12, 19]. A typical 1D FI scheme can be constructed as
follows. Let Y = {(xi, ui)}

n
i=0, n > 2, x0 6= xn, be a

set of points in R
2, and denote ∆xi = xi+1 − xi,∆ui =

ui+1−ui. With the proper set of data Y and the vertical
stretching vector d = (d1, . . . , dn)

T , one can associate the
hyperbolic IFS: {R2;W1, . . . ,Wn}, where each Wi is an
affine transformation R

2 → R
2 given by

Wi

(
x
u

)
=

[
ai 0
ci di

](
x
u

)
+

(
ei
fi

)
, (1)

where ai = ∆xi−1/(xn − x0), ci = ∆ui−1/(xn − x0) −
di(un − u0)/(xn − x0), ei = xi − aixn and fi = ui −
cixn − diun. For u is usually regarded as a function of
x, hereafter, the LHS of Eq. (1) is denoted by Wi[u](x).
When |di| < 1, i = 0, 1, . . . , n, the operator set W =
{Wi|i = 0, 1, . . . , n} is a contractive mapping over the
continuous function space. The infinite iteration of W
generates a fractal function uf (x) as the fixed point of the

mapping which satisfies uf (x) = limm→∞ W
(m)[u](x) ≡

W[W[W...W[u]...]](x). Fig. 1 illustrates an example for
the first three steps and the 10th iteration of FI process
with n = 2 and d1 = −d2 = 0.8, which produces higher
and higher resolution by getting values on smaller and
smaller scales.
As we can see, the main feature of FI technique is to

model the fluctuations on small scale through a given
mapping W from large one, and the fluctuation struc-
tures at adjacent small and large scales connected by
W are geometrically similar. Based on this fundamental
idea, let us do some expansibility thinking. First, any 1D
velocity signal u(x), x ∈ [0, 2N∆] (∆ is the resolved scale
or the initial coarse grid size), can be discretized into 2N
small segments with size ∆ and N large segments with
size 2∆. In each segment, the signal can be decomposed
into base part and fluctuation part expressed as

{
us = usb + usf ,
uL = uLb + uLf ,

(2)

where subscripts b and f are denoted to base part and
fluctuation part respectively, while s and L are denoted
to small and large scale respectively. Then, the fractal
mapping Wi in Eq. (1) for the ith small scale segment
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FIG. 1. A demonstration of FI procedure, which inter-
polates the points (x0, u0), (x1, u1) and (x2, u2). The
solid line, dashed line, dotted line and thin line denote
W

(0)[u](xi),W
(1)[u](xi), W

(2)[u](xi) and W
(10)[u](xi), re-

spectively.

with the interval [xi, xi+1], xi = i∆, i = 0, 1, . . . , 2N − 1,
can be rewritten equivalently as





Wi[u](x) = usb(x) + diuLf(y),
y = Mi(x),
x ∈ [xi, xi+1],

(3)

where the vertical stretching factor di determines the
amplitude ratio between similar fluctuations at small
and large scales, and Mi describes the preset coordi-
nate/position mapping from corresponding large seg-
ment to small one. The interpolation procedure can be
sketched by Fig. 2.
Considering Eq. (2) and Eq. (3), we can see three

aspects in Fig. 2 need to be defined. The first as-
pect is how to define the base part or the fluctuation
part in subsegment. In early works [9, 10, 12] and in
Fig. 1, the base parts usb and uLb are defined as lin-
ear function pass throigh the anchor points. The second
and third aspects are how to set Mi and di. For in-

FIG. 2. A sketch for mimicking small scale fluctuations by
fractal iteration. Here uLf is resolved on coarse grid and
usf is unresolved. At each iteration step, usf is replaced by
usf = duLf , where the stretching factor |d| satisfies |d| < 1.
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stance, Scotti and Meneveau [9, 10] built their FI scheme
by choosing di satisfying |di| = 2−1/3 with a random
sign, and setting Mi(x) = xi + 2(x − xi) for odd i and
Mi(x) = xi−1 + 2(x − xi) for even i. They obtained a
turbulence-like field with its fractal dimension equaling
to 5/3 and energy spectrum satisfying Kolmogorov −5/3
spectrum [22]. Basu et al. [12] gave an FI scheme by
setting two different stretching factors d1 = −0.887 for
odd i and d2 = 0.676 for even i with the same Mi as in
Scotti and Meneveau’s work. They modeled multi-fractal
properties that most turbulent fields possess [23].
With several considerations about above aspects, we

extend FI to SRFI. The spatially randomized setting of
Mi is the main improvement in SRFI scheme. As we
have pointed out in [19], the former FI models assumed
that each small scale structure is comprised in the cor-
responding similar large one, but the spatial relative po-
sition of similar fluctuations at different scales is almost
randomly distributed in real turbulence. Fig. 3 offers a
concrete evident about this feature in a 3D DNS turbu-
lence field with resolution 10243. We consider this as
one of the most important features of turbulence field.
So the locations of similar fluctuations on different scales
are modeled randomly with homogeneous distribution in
SRFI.
Besides, SRFI has several other improvements, includ-

ing: choosing the stretching factors di randomly with a
random sign and the probability of the absolute value
obeys a log-Poisson distribution, defining the base part
in Wi by a special linear combination function, and even
more mimicking the dissipation behavior through an en-
ergy spectrum modification. All these arrangements will
be detailed in 3D case in the next section. Nevertheless,
we want to emphasize that the key concept, namely, the
potential of FI or SRFI in constructing turbulence-like
field is due to the self-similarity existing in both fractal
and turbulence.

FIG. 3. A section in 3D DNS velocity field with resolution
10243. The fluctuations in small square (322) A and B’ are
similar to those in large square (642) B and C respectively.
Here B’ is included in B, but they aren’t similar fluctuations.
The location relations of similar fluctuations at different scales
are provided random.

III. 3D SPATIALLY RANDOMIZED FRACTAL

INTERPOLATION

Obviously, 3D SRFI is more complicated than 1D case.
One of the main problems is how to define the base and
fluctuation part in subsegment, which is in the shape of
cubes here. We choose a linear function to solve this
problem and transplant the method developed in previ-
ous work [19] into 3D case.

For a 3D vector or scalar field u(x) resolved at scale
∆, we divide the whole region [0, 2N∆]3 into 8N3 small-
scale cubes with each cube size ∆3,

KI = [xi, xi+1]× [yj, yj+1]× [zk, zk+1],

i, j, k = 0, 1, . . . , 2N − 1,

I = i+ 2jN + 4kN2.

Here i,j and k are the indices of the resolved dis-
crete point (xi, yj , zk) in three directions and I, I =
0, 1, . . . , 8N3− 1, is the unique index of small-scale cube.
The resolved value at point (xi, yj , zk) is denoted by
ũ(i, j, k). At the same time, we divide the whole region
[0, 2N∆]3 into N3 large-scale cubes with size 8∆3,

K ′
J = [x2i′ , x2i′+2]× [y2j′ , y2j′+2]× [z2k′ , z2k′+2]

i′, j′, k′ = 0, 1, . . . , N − 1,

J = i′ + j′N + k′N2.

Here J, J = 0, 1, . . . , N3− 1, is the unique index of large-
scale cube.

Before modeling the unresolved fluctuations, the base
parts on small-scale and large-scale cubes need to be de-
fined. For any x = (x, y, z)T ∈ KI and x

′ = (x′, y′, z′)T ∈
K ′

J , we define coefficients C and C′ as

Cα1α2α3
(x) =

(1 + α1x
∗)(1 + α2y

∗)(1 + α3z
∗)

8
,

(x∗, y∗, z∗) =
2[xT − (xi, yj , zk)]

∆
− e

T ,

C′
α1α2α3

(x′) =
(1 + α1x

′∗)(1 + α2y
′∗)(1 + α3z

′∗)

8
,

(x′∗, y′∗, z′∗) =
[x′T − (x2i′ , y2j′ , z2k′)]

∆
− e

T ,

where e
T = (1, 1, 1) and αm = ±1,m = 1, 2, 3. We

choose linear combinations of the values at the eight ver-
texes of corresponding cubes to define the base parts
usb,I(x) and uLb,J(x

′),
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usb,I(x) =
∑

αm=±1
m=1,2,3

Cα1α2α3
(x)ũ(i +

α1 + 1

2
, j +

α2 + 1

2
, k +

α3 + 1

2
), (4)

uLb,J(x
′) =

∑

αm=±1
m=1,2,3

C′
α1α2α3

(x′)ũ(2i′ + α1 + 1, 2j′ + α2 + 1, 2k′ + α3 + 1). (5)

Such base part will keep the eight vertices resolved val-
ues unchanged during the fractal interpolation. From
Eq. (2), the fluctuation parts on small-scale cube KI and
large-scale cube K ′

J write

usf,I(x) = u(x)− usb,I(x) x ∈ KI ,

uLf,J(x) = u(x)− uLb,J(x) x ∈ K ′
J .

Then the three dimensional fractal interpolation operator
WSRFI from large-scale cube K ′

J to small-scale one KI

has the form




WSRFI [u](x) = usb,I(x) + dIuLf,J(x
′),

x
′ = MI(x) = (x2i′ , y2j′ , z2k′) + 2(x− (xi, yj , zk)),

x ∈ KI , I = 0, 1, . . . , 8N3 − 1,

(6)
where dI is the stretching factor, and MI is the location
mapping between small-scale and large-scale cubes.
Because in real turbulence there is little correlation

between similar fluctuation locations, the index mapping
J(I) in MI : I 7→ J is chosen randomly. And a restriction
on J(I) is imposed so that each cube K ′

J maps and only
maps to eight different small cubes KIl , l = 1, 2, . . . , 8.
J(I) is set as follows in detail. Let I denote the set con-
taining all possible choice of I,

I = {I|I = 0, 1, 2, . . . , 8N3 − 1}.

Then, with J passing from 0 to N3 − 1, we randomly
choose Il, l = 1, 2, . . . , 8, from the set I, set J(Il) = J
and then remove Il from I. As a result, for each J , there
are eight, and only eight, I’s, Il, l = 1, 2, . . . , 8, satisfying
J(I) = J .
As to the stretching factor dI , like the 1D case, we

choose it randomly with random signs and the proba-
bility of the absolute value |dI | obeying the log-Poisson
distribution [24, 25]:

P

(
|dI | =

(
1

2

)γ

βn

)
= e−λλ

n

n!
, n = 0, 1, ..., (7)

where the parameters λ, γ and β are relative by

λ =
1− 3γ

1− β3
ln 2.

This log-Poisson RMP can illuminate the famous She-
Leveque (SL) model verified widely in turbulence [25],

ζp = γp+ C(1 − βp), (8)

where γ, β are parameters in Eq. (7), which measure the
degree of intermittency of the field and how singular

the most intermittent structure is, respectively, and C
is given by ζ3 = 1. ζp is the scaling exponents of the
turbulence scaling law [23]

Sp(l) ∼ lζp .

Here, Sp(l) is the velocity structure function defined by
Sp(l) ≡ 〈|u(x + l)− u(x)|p〉, l is increment distance, p is
the order and 〈·〉 stands for ensemble average.
Furthermore, since most real turbulence don’t obey

absolute scaling laws but perfectly obey ESS scaling
laws[20, 26], a modification should be introduced into
the SRFI algorithm. A simple way is making an ESM in
Fourier space on the SRFI synthetic field as follows [19]:

u
′(x) = F−1

[
F(u(x))

(
E′(k)

E(k)

) 1

2

]
. (9)

Here E(k) is the SRFI synthetic field spectrum, and
E′(k) is measured from real field or modeled through ex-
trapolating the initial coarse-grained field spectrum us-
ing a theoretical formula[21]. The spectrum formula pro-
posed in [13] is also a good choice. F and F−1 denote
Fourier transformation and inverse Fourier transforma-
tion, respectively. This method can also be regarded as
a simple filter discussed in [27]. Similarly, one can also
set the spectrum E′(k) with weaker/stronger viscosity to
mimic a field with weaker/stronger dissipation.
Considering u

′(x) may no longer be solenoidal, it is
projected to its divergence-free part in Fourier space

û(k) = P(k) · û′(k) (10)

to make sure that ∇·u = 0, where P(k) is the projection
tensor Pij = δij − kikj/k

2, and k is the wavenumber.
Now, the construction of a turbulence-like field u(x) is
accomplished.

IV. STATISTICAL ANALYSIS OF 3D

SYNTHETIC FIELD

In the following we present statistical analysis of a sam-
ple synthetic velocity field generated using the SRFI pro-
cedure described in previous section. And we mainly fo-
cus on statistical quantities corresponding to scaling be-
havior of the field in comparison between the synthetic
field and DNS data (see Fig. 4). Fig. 4 shows the velocity
field component u in the x-direction of the original DNS
(a) and the synthetic (b) fields generated by SRFI. One
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(a)3D DNS field (b)3D SRFI field

FIG. 4. (Color online) Contours of velocity u for (a) the DNS field and (b) this SRFI synthetic field. In both cases u has
been normalized by its root mean square (rms) in the respective domain. The figure shows one-eighth of the cube (the octant
[257, 512]× [257, 512]× [257, 512] of the 5123 field).

can see that the velocity of synthetic field is close to that
of original DNS field though there are still some different
structures on small scale.

The main procedure of constructing the synthetic field
through SRFI is represented as follows. As the initial re-
solved field, a coarse velocity field ũ with resolution 323

is obtained by choosing a point every 16 points in each di-
rection from an original homogenous isotropic turbulence
field u0, which is obtained by DNS with resolution 5123

and Reynolds number Reλ = 105. The DNS is carried
out via solving the forced Navier-tokes equations using
a pseudospectral code on a cubic box of side L = 2π
with periodic boundary conditions. More details of the
DNS algorithm can be referred to [28, 29]. Thus the set-
ting of ũ is approximately equivalent to a low-pass filter
with cut-off wavenumber kc ∼ 10 (see Fig. 5) and the
filter scale is ∆ = 16δ (δ = π/256 is the mesh size of
DNS). It should be noted that, choosing the cut-off scale
in inertial subrange is very important for reconstructing
statistically the typical turbulence scale invariance in the
SRFI field.

With parameters γ = 1/9 and β = (2/3)1/3 in
the log-Poisson distribution Eq. (7) and a random ho-
mogeneous distribution for J(I) (MI) in Eq. (6), the
SRFI operator WSRFI is applied on ũ four times. The
iteration of WSRFI leads to convergence to a fixed
point function/field u(x) with resolution 5123 and the
values at the interpolation points ((xi, yj , zk), i, j, k =
0, 1, . . . , 2N,N = 16) equaling to the given initial re-
solved values ũ(xi, yj , zk).

Then, an ESM is made on u(x) and the target spec-
trum in Eq. (9) is modeled by composing that of the ini-
tial coarse field (k 6 kc) and a universal form proposed

in [21] (k > kc),

E′(k) = E(kp)

[(
k

kp

)−5/3

+ a

(
k

kp

)−b
]
e−µk/kp , (11)

with a = 1.6, b = 1.0 and µ = 0.95. And kp = 25
is the peak wavenumber of the dissipation spectrum and
E(kp) is corresponding energy spectrum value in the orig-
inal DNS data. After applying a projection to the syn-
thetic field’s divergence-free part in Fourier space, the
final turbulence-like field is obtained.

1 2 4 8 16 32 64 128 256
10-6

10-5

10-4

10-3

10-2

10-1

100

k-5/3

E(
k)

k

k
c
~10

FIG. 5. Log-log plot of the energy spectra of the original
DNS(dots), the SRFI(solid line) and the SRFI field before
applying ESM(circles) fields. The cut-off wavenumber kc ∼
10 is marked and the Kolmogorov spectrum (dashed line) with
slope -5/3 is also plotted as a comparison.
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u

FIG. 6. PDF of velocity u for the SRFI sythetic field (balls)
and the original DNS field (solid line).

The main feature of SRFI acting on the velocity field
can be illustrated by the spectra shown in Fig. 5. The
spectrum of SRFI field before ESM exhibits a straight
line in log-log plot, close to the Kolmogorov k−5/3 spec-
trum [22]. This means during SRFI, the information
above cut-off scale is preserved and corresponding struc-
ture property is transferred to the smaller and smaller
scales. Here, to choose the cut-off scale kc ∼ 10 in iner-
tial subrange is important. So a scale-invariance cascade
without dissipation is mimicked, corresponding to flows
with infinity Reynolds number. However, in DNS field
at relatively low Reynolds number, the scale-invariance
is broken and the spectrum is bent on small scales. Mod-
ification need be made on SRFI to capture scaling prop-
erties of such DNS data.

Fig. 6 shows the probability distribution function
(PDF) of all velocity components in three directions for
the synthetic field comparing with DNS result. One can
see the velocity distribution is reproduced well enough by
interpolating the unresolved points with SRFI method.
It also implys our synthetic velocity field resembles the
DNS velocity field well, which has been shown in Fig. 4.

Fig. 7 shows the longitudinal and transverse velocity
derivatives ∂βuα in both the synthetic and DNS fields
(the plot shows the average of the PDFs for the three lon-
gitudinal gradients and the average for the six transverse
gradients, which are very similar to each other in both
cases). And the PDFs show tendency to form exponen-
tial, stretched tails, as well as skewness (asymmetric) for
the longitudinal gradient. This turbulence feature has
been shown in many data (see, e.g. results from DNS
[30–32]). From the figure, we can see there are still some
difference between the PDF tails for the synthetic and
DNS fields, which maybe the effect of the local structure
feature.

Then, let’s compare the longitudinal and transverse
velocity increments at all scales in both fields. The two

-15 -10 -5 0 5 10 15
10-6

10-5

10-4

10-3

10-2

10-1

100

PD
F

u /<( u )2>1/2

FIG. 7. PDF of velocity derivatives for DNS (lines) and SRFI
(symbols) fields. Solid line, circles: longitudinal gradient (α =
β); dashed line, squares: transverse gradient (α 6= β). Dotted
line shows the standard Gaussian PDF.

kind of velocity increments are defined respectively as
{

δ‖uα(l) = uα(x+ lb(α))− uα(x),
δ⊥uα(l) = uα(x+ lb(β))− uα(x), β 6= α,

(12)

where b
(α), b(β) are unit vectors in corresponding direc-

tions. Fig. 8 and 9 show results for the PDFs of normal-
ized δ‖uα and δ⊥uα.
Here it is also apparent that the resulting PDFs of this

synthetic SRFI field exhibit the analogous behavior (see,
e.g., results from DNS [33, 34, 36]). As the separation
distance l decreases, the velocity increments statistics de-
viates increasingly from the Gaussian (approximates to
l/δ = 256), and the PDFs present wider tails. Moreover,
the transversal increments is almost symmetric often ob-
served in DNS data. The statistical behavior of longitudi-
nal increment is modeled better than that of transversal

-15 -10 -5 0 5 10 1510-20

10-16

10-12

10-8

10-4

100

l/  =256

 PD
F

u / ( u )2 1/2

l/  =2

FIG. 8. PDF of normalized longitudinal velocity increments
for the SRFI field (filled circles) and the original DNS field
(open circles) with separations l/δ = 2, 3, . . . , 256.
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10-4

100

l/  =256
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F

u / ( u )2 1/2

FIG. 9. PDF of normalized transverse velocity increments
for the SRFI field (filled squares) and the original DNS field
(open squares) with separations l/δ = 2, 3, . . . , 256.

increment, which means the chosen dI in SRFI is more
suitable for longitudinal increment.
Fig. 10 shows the resultant values of skewness and

S(l) = 〈(δβuα)
3〉/〈(δβuα)

2〉3/2 and flatness F (l) =
〈(δβuα)

4〉/〈(δβuα)
2〉2 (〈·〉 stands for ensemble average,

which is replaced by space average in an instantaneous
field in this paper without weakening the main conclu-
sions). It is possible to see that the longitudinal incre-
ments are skewed in both synthetic and DNS data but the
synthetic transversal increment displays weaker intermit-
tent state than the DNS result at small scales. This is a
typical character of fractal interpolation, with which the
skewness and the flatness can be inherited from coarse
scale. And it’s difficult to generate obviously stronger
intermittency at small scales than at large scales. It also
means that skewness and flatness are scale invariant dur-
ing FI and the corresponding invariables are relative to

1 2 4 8 16 32 64 128 256 512
2

4

6

8

-0.4

-0.2

0.0

F

l

S

FIG. 10. Skewness (top) and flatness (bottom) coefficients of
longitudinal (circles) and transverse (squares) velocity incre-
ments as a function of separation distance ∆ for the SRFI
synthetic (open symbols) and the original DNS fields (filled
symbols).

-7 -6 -5 -4 -3 -2 -1
-12

-9

-6

-3

0

3

p=1

 ln
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3
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FIG. 11. Longitudinal ESS scaling laws for SRFI field (circles
with dash line) and DNS field (solid line). Different lines
correspond to orders p = 1, 2, . . . , 9 in the direction of the
arrow.

the initial coarse data.
To study the statistical scaling behavior in a field, the

key quantities are the velocity structure functions, which
are defined as

SL
p (l) = 〈|δ‖uα(l)|

p〉, ST
p (l) = 〈|δ⊥uα(l)|

p〉. (13)

Fig. 11 and Fig. 12 show the ESS results through the
relationship of the longitudinal SL

p (l) and the transverse

ST
p (l) structure functions with respect to the correspond-

ing third order moment SL
3 (l) and ST

3 (l) for both SRFI
synthetic and DNS fields. The two plots demonstrate
that the velocity structure functions in both the syn-
thetic field and the original DNS data obey ESS scal-
ing laws precisely. It is also revealed that through SRFI
method, the synthetic field’s longitudinal ESS properties
on small-scale exhibit perfect agreement with DNS data

-7 -6 -5 -4 -3 -2 -1 0
-12

-9

-6

-3

0

3

p=1

 ln
ST p(l)

lnST
3
(l)

p=9

FIG. 12. Transverse ESS scaling laws for SRFI field (squares
with dash line) and DNS field (solid line). Different lines
correspond to orders p = 1, 2, . . . , 9 in the direction of the
arrow.
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FIG. 13. ESS scaling exponents ζLp (circles) and ζTp (squares)
for SRFI field (open symbols) and DNS field (filled symbols).
The solid line corresponds to the K41 prediction ζp = p/3 and
dashed line to SL94 model.

but the transverse ESS properties has obvious deviation,
especially at high orders.
Theoretically, using log-Poisson distribution and cor-

responding parameters used here to set dI , the scaling
exponents of the SRFI field will follow She-Leveque 1994
(SL94) model [35]

ζp = p/9 + 2(1− (2/3)p/3), (14)

which is testified in Fig. 13. In the figure, the longitudinal
ESS scaling exponents of the synthetic field are in good
agreement with the DNS turbulence field and obey the
SL94 model; the transverse ESS scaling exponents is also
close to SL94 model but deflected from the DNS data;
none of them fits the Kolmogorov 1941 (K41) scaling law
[22].
We have emphasized in [19], the random affine map-

ping network in SRFI and the stretching factors with
Log-Poisson distribution are essential for constructing a
field with anomalous scaling behavior. While Fig. 13 in-
dicates that the transverse scaling behavior is restricted
by the log-Poisson random multiplicative process with
not suitable parameters. The deviation between ζLp and

ζTp can be referred to typical results in [36–38]. In the
3D SRFI scheme proposed here, only one group of pa-
rameters can be used. This group parameters support
the scaling law described by equation Eq. (14), both in
the longitudinal and transverse directions theoretically.
But transverse velocity component in typical DNS tur-
bulence does not satisfy this equation even in the initial
field. So there are some disagreements between the frac-
tal interpolated results and DNS data. Applying the 1D
SRFI separately in the longitudinal and transverse direc-
tions (using appropriate spectra) and using two groups
of log-Poisson RMP parameters at the same time maybe
a good method to capture the right ζLp and ζTp .
From the statistical analysis above, it can be concluded

that the synthetic SRFI field exhibits some typical non-
Gaussian features similar to the DNS turbulence field,

such as PDFs for velocity, velocity gradient and velocity
increment, the anomalous scaling behavior of the longi-
tude velocity structure functions, etc. At the same time,
some departures from the homogenous isotropic turbu-
lence field should be noticed.

V. DISCUSSION AND CONCLUSION

Like the 1D case, the 3D SRFI scheme builds a random
affine mapping network to imitate the geometrical and
statistical similarities of turbulence, which are bridges be-
tween phenomenological models and quantitative predic-
tions. During the interpolation, a new succinct method
for setting the base part of physical quantities in differ-
ent scale cubes is introduced. The restriction that each
cube maps and only maps to eight distinct smaller cubes
implies that the probabilities of similar fluctuations at
different scales are the same, which leads to the existence
of scaling laws.
Though there are many evident successful reproduc-

tions of turbulence properties using our 3D SRFI pro-
cedure, some differences are also noticed, such as the
statistical characteristics of local continuity structure de-
scribed by some kinds of joint velocity gradient, which is
an increasing concern over the past two decades[39].
For example, Fig. 14 illustrates the PDFs for the

cosines of the angles between the vorticity vector ω and
the eigenvectors e

(1), e(2), e(3) of the strain-rate tensor

S, Sij = 1
2 (

∂ui

∂xj
+

∂uj

∂xi
), ordered according to their cor-

responding eigenvalues λ1 > λ2 > λ3. These distri-
butions are not so consistent with those in real tur-
bulent flows[40, 41], e.g. the PDFs of cos(ω, e(1)) and
cos(ω, e(3)) are too close each other.
As another distinct case in point, the invariants Q and

R of the velocity gradient tensor Aij ≡ ∂jui are consid-
ered with the definitions[42, 43]

Q = −
1

2
AijAji, R = −

1

3
AijAjkAki, (15)

for incompressible flow. The joint PDF of R and Q nor-
malized by the rate of strain |S|−1 is shown in Fig. 15.
The plot depicts contours of probability density spaced
logarithmically by factors of 1.6, starting at a value of
0.0001 for the outermost contour. The solid line corre-
sponds to the separatrix D =

(
1
2R

∗
)2

+
(
1
3Q

∗
)3

(below
this separatrix D < 0 the eigenvalues of Aij are real,
while above it D > 0 they are complex [42, 44]). While
the symmetrical distribution shows that the plot doesn’t
represent the teardrop shape observed from DNS data
[45, 46] and experimental measurements [47].
The problems above are mainly interrelated with the

velocity gradients and their relationship among three di-
rections. One of possible reasons is that the SRFI method
proposed here implies a strict succession from large to
small scales. So the joint PDF of R and Q at very small
scale is the same as that at large scale, which is almost
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FIG. 14. PDFs of the cosine of the angle between ω and
the eigenvectors e

(α) of Sij (corresponding eigenvalues are

denoted as λα) for the SRFI field. Lozenge: e
(1); squares:

e
(2); circles: e

(3).

symmetric, while it has scale dependence in real turbu-
lence [48]. Another reason might be that the SRFI algo-
rithm takes little account of local gradient, thus it is too
hard to capture the dynamical tensor correlations.

It is apparent that the dynamical tensor correlations
come from the Navier-Stokes equations in essence, so we
carried out a standard DNS computing using the SRFI
synthetic field as initial conditions. Fortunately, after
about one turnover computing time, the modified field
has resultant PDFs for cos(ω, e(α)) and joint PDF of R
and Q shown in Fig. 16 and 17, respectively. These distri-
butions are quite consistent with those in real turbulence.
It indicates once more that the SRFI synthetic field is a
non-Gaussian field which isn’t exactly the same but very
close to turbulence field.

In conclusion, we have offered a SRFI scheme for con-
structing a 3D synthetic field sharing many characters
with turbulence based on prior works[19], such as PDFs
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0

1

2

3

 Q
*

R*
FIG. 15. Joint PDF of the normalized invariants Q∗ ≡
Q/〈|S|2〉, R∗ ≡ R/〈|S|2〉3/2 for the SRFI field. PDF levels
are separated logarithmically with the value range (10−4, 59).
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FIG. 16. PDFs in Fig. 14 for the DNS field using the SRFI
synthetic field as initial conditions.

for velocity, velocity gradient and velocity increment, and
the scaling law of the longitude velocity structure func-
tions. This method is a simple way for generating initial
field for massive numeric simulations in the sense of com-
putational time cost reduction. Here, it should also be
pointed out, some possible improvements can be imposed
on the SRFI method, e.g. applying the 1-D fractal map
separately in three different directions like [10] and using
two groups of parameters for longitude and transverse
quantities, or even replacing velocity with vorticity in
SRFI. In addition, using SRFI to establish a sub-scale
stress model for large eddy simulation as in [10] and as-
sociating SRFI with RFD [16] are also interesting issues.
We leave these topics for future investigation.
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