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Abstract   Core-annular flow is common in nature, representing, for example, how 

streams of oil, surrounded by water, move in petroleum reservoirs. Oil, typically a non-

wetting fluid, tends to occupy the middle (core) part of a channel, while water forms a 

surrounding wall-wetting film. What is the thickness of the wetting film? A classic theory 

has been in existence for nearly 50 years offering a solution, although in a controversial 

manner, for moving gas bubbles. On the other hand, an acceptable, experimentally 

verified theory for a body of one liquid flowing in another has not been available. Here 

we develop a hydrodynamic, testable theory providing an explicit relationship between 

the thickness of the wetting film and fluid properties for a blob of one fluid moving in 

another, with neither phase being gas. In its relationship to the capillary number Ca, the 

thickness of the film is predicted to be proportional to Ca2 at lower Ca and to level off at 

a constant value of about 20 % the channel radius at higher Ca. The thickness of the film 

is deduced to be approximately unaffected by the viscosity ratio of the fluids. We have 

conducted our own laboratory experiments and compiled experimental data from other 

studies, all of which are mutually consistent and confirm the salient features of the 

theory. At the same time, the classic law, originally deduced for films surrounding 

moving gas bubbles but often believed to hold for liquids as well, fails to explain the 

observations.  
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The Problem 

 

 Consider a straight cylindrical capillary channel of small radius filled with a 

wetting fluid. Subsequently another, non-wetting, fluid begins to flow into the same 

capillary. This is the scenario of an invasion “core-annular” flow. The non-wetting fluid 

will tend to occupy the middle part of the channel (the “core”), and the one being 

displaced will stay adjacent to the channel’s wall as a residual wetting film. How thick is 

this annular film?  

 The phenomenon is common in nature. For example, it has long been suggested as 

a scenario for two-phase immiscible fluid motion through natural porous channels in 

petroleum reservoirs; it thus describes the movement of oil, as the core phase, through 

reservoir rock. Despite the apparent simplicity, no adequate, experimentally tested 

theoretical solutions for the thickness of the wetting film in liquid-liquid displacement, as 

a function of fluid parameters, have been proposed. The difficulty stems from the fact 

that the core-annular flow is a “free-boundary” problem, in which the fluid/fluid interface 

is not fixed but moves and deforms with the flow, with its configuration having to be 

obtained as part of the solution. Free-boundary fluid-mechanics problems are notoriously 

difficult to solve (e. g, [Ref. 1, Section 1-1]).  

 The phenomenon is more easily theoretically described, with some assumptions, 

if the invading phase is gas. A classic theory of the thickness of an annular film left 

behind by a retreating pore-filling fluid driven by gas (e. g., air), in the limit of low 

capillary numbers Ca, was developed by Bretherton [2]. The theory predicted that the 

thickness of the wetting film, normalized by the channel radius (this dimensionless 
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thickness will be denoted as b in the following), has a power-law relationship with the 

capillary number: b = 1.34×Ca2/3 [Ref. 2, equation 17]. Although the predicted functional 

form has not truly withstood experimental verification, plausible theoretical explanations 

for its observed departure from at least a portion of experiments have been offered (see a 

synopsis of relevant studies in Table 1). Bretherton found a limited agreement with his 

own experimental data, while noticing the dependence of the observed behavior on a 

particular wetting fluid used and contradiction of his data with earlier experiments of 

others [Ref. 2, Figure 4]. Similar experiments repeated a quarter-century later by 

Schwartz et al. [Ref. 3, Figure 3] found a dependence of the residual film thickness and 

the exponent of the power law on bubble’s length, which further departed from 

Bretherton’s predicted behavior. There is general belief that the deviations noted by 

Bretherton and Schwartz et al. in the capillary-number range of ~ 10-5-10-2 are caused by 

the presence of trace amounts of surfactants and the resulting Marangoni surface flows in 

the fluids used. For example, Ratulowski and Chang [4] found that an ad-hoc 

combination of parameters controlling the convective, diffusive, and adsorption effects in 

a low-concentration surfactant solution (their “convective-equilibrium” asymptotics) is 

capable of explaining the scatter of experimental relationships reported by Bretherton and 

Schwartz et al. [Ref. 4, Figure 8]. In effect, the free, not experimentally constrained 

parameters of the model were adjusted to produce a fit to the data. An ad-hoc, albeit 

plausible, character of this explanation is somewhat unsatisfactory, since there was no 

guarantee that the required parameter regime was indeed realized in the experiments. 

Also note that Ratulowski and Chang [4] could not consistently explain the smaller 

exponent of the power law of ½ at the higher end of their capillary-number range found 
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by Fairbrother and Stubbs [5], which was found compatible with the measurements of 

Taylor [6]. Furthermore, Quéré [7] shows that Ratulowski and Chang’s predictions are 

not necessarily compatible with fluid-coating observations. It can be further argued that 

the departure of Bretherton’s theory from experiments might alternatively be explained 

by the oversimplifications made in the theory, as discussed in a later section in this 

article.  

 Despite the not completely satisfactory experimental verification, Bretherton’s 

theory is generally believed to be accurate in its appropriate capillary-number range of ~ 

10-5-10-2, found by Ratulowski and Chang [4], and has been used extensively in the 

calculation of thicknesses of wetting films left behind by invading gas bubbles in 

capillary channels.  

 When the invading phase is gas, with some reservations, this usage is therefore 

still acceptable. However, Bretherton’s theory has often been assumed to equally apply to 

the films left behind by one fluid displacing another where neither phase is gas (e. g., 

[Ref. 8, p. 1998; Ref. 9, equation 4.27]) followed Bretherton’s theoretical argument and 

arrived at an identical solution, although the original theory was limited exclusively to the 

films surrounding moving gas bubbles. Does such a suggestion stand experimental test? 

Experimental evidence has been scarce, controversial, and not necessarily supportive; we 

will address limited available data in an appropriate section. Alternative hydrodynamic 

theories, which would be better compatible with the data, have not been explored. The 

questions, therefore, are still outstanding: are film thicknesses, deposited on capillary 

walls, the same for gas bubbles moving in liquids and for bodies of liquids moving in 

liquids? Is there sufficient theoretical and experimental evidence suggesting that 
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Bretherton’s law necessarily applies to the liquid/liquid invasion? In this paper, we 

develop a hydrodynamic theory applying to the case of liquid/liquid displacement and 

test it in a direct laboratory experiment. We also examine existing experimental data in 

the context of the present results. The conclusion, supported by both the theory and the 

experiment, is that Bretherton’s power law does not apply to liquid-liquid invasion.  

 

Theory 

 

 Our theoretical problem deals with a core-annular, incompressible, axisymmetric 

Poiseuillean flow, which allows analytical solution of the Navier-Stokes equations. It is 

assumed that the Reynolds number is small. When the interface between the core and the 

annulus deforms, pressure gradients in each phase will generally be different because of 

the curvature of the interface according to Laplace’s law of capillary pressure. One thus 

needs to begin with a general solution for the two-phase Poiseuillean flow in 

axisymmetric geometry with non-equal pressure gradients in both phases [10]. The 

boundary conditions to satisfy are no-slip at the channel wall, continuity of velocity at the 

fluid-fluid interface, and continuity of shear stress at this interface.  

 In a typical capillary geometry, Bond numbers, expressing the ratio of 

gravitational to capillary forces, tend to be small (10-2-10-3) [10, 11]. It is known that 

core-annular flow with gravity effects can maintain steady state but acquire axial 

eccentricity [12]. We assume the smallness of Bond number, which allows us to neglect 

gravity and use an axisymmetric geometry.  
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 It is convenient to cast the analysis in non-dimensional variables. If we designate 

by asterisks the variables that have dimensions and drop asterisks for their non-

dimensional counterparts, the latter are introduced as follows, r = r*/R*, x = x*/R*, τ = 

t*/(μ1*R*/σ*), p = p*/(σ*/R*), Q = Q*/(σ*R*2/μ1*). Here r* and x* are the radial and 

axial coordinates, respectively; t* is the time, p* is the pressure, Q* is the volumetric 

flow rate, R* is the radius of the tube, σ* is the interfacial tension, and μ1* is the core 

dynamic viscosity. The subscripts “1” and “2” denote the variables in the core and the 

suspending (wetting) fluids, respectively. 

 The boundary conditions resolve the axial-velocity profiles ),,( *
2

*
1
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1 ** xx ppru  and 
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2
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2 ** xx ppru  in the core and the film, respectively, through the pressure gradients 
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2 *xp , where the subscript *x  indicates the derivative with respect to *x . These 

solutions are given by Beresnev and Deng [Ref. 10, equations 6], and, for the sake of 

brevity, we do not reproduce them here. Integration of these profiles over the cross-
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where κ is the radial position of the fluid-fluid interface normalized by R*.  
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 The volume fluxes (1) still contain the unknown pressure gradients; however, 

Laplace’s law supplies another (non-dimensionalized) equation relating p1 and p2: 

xxpp κ
κ

−=− 1
21 , where the right-hand side is the dimensionless mean curvature of the 

interface [Ref. 13, equation 7; Ref. 14, equations 2, A5-A7]. Here we used the 

assumption of a “small slope” of the interface, which allowed us to neglect the terms 2
xκ  

with respect to unity in the full expression for the curvature. The same approach was 

taken by Bretherton [Ref. 2, equation 4], allowing the use of the solutions for Poiseuillean 

flow. Note, also, that the use of Laplace’s law has implied the smallness of the capillary 

number, which characterizes the ratio of viscous to capillary forces. We therefore neglect 

the viscous normal stresses in the moving fluid.  

 The last equation leads to xxx
x

xx pp κ
κ
κ −−=− 221 . If we combine it with the 

conservation-of-mass condition Q1(p1x, p2x) + Q2(p1x, p2x) = Q, where Q is the total 

volume flux through the tube, the two equations form the system from which both p1x and 

p2x can be resolved. When substituted them back into Q1 in equation (1a), this leads to an 

explicit formula  
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 Q1 described by equation (2) is the volume flux in the core fluid when it moves 

into the suspending phase that initially fills the capillary tube. Since we are looking for 

stationary solutions, the front meniscus, separating the two fluids, moves without 

changing its shape with constant speed U*. The geometry is illustrated in Figure 1. The 

core displaces part of the suspending fluid that is ahead of the moving meniscus, leaving 

part of it behind as a wetting film on the wall. The film thickness, normalized by R*, is b. 

In this geometry, conservation of mass requires that Q1 be also equal to 2
1 )1( bUQ −= π , 

which is the flow rate of the displaced fluid ahead of the invading core body [Ref. 15, 

equation 3], where the speed has been non-dimensionalized using U = U*/(σ*/μ1*). Note 

that the respective conservation-of-mass condition, used by Bretherton [Ref. 2, equations 

7-8] and reproduced by Middleman [Ref. 1, equations 2-4.6 – 2-4.7], inconsistently 

neglects the flow in the film, whereas Goldsmith and Mason’s condition is more general 

and correct. The last formula, rewritten in terms of the capillary number, Ca = µ2*U*/σ* 

= Uμ2*/μ1*, becomes 2
*
2

*
1

1 )1Ca( bQ −=
μ
μπ . Equating this expression for Q1 with that from 

equation (2) leads to the differential equation for the wetting-film profile κ(x).  

b 

b 

1 
U 

Figure 1. Geometry of the core-fluid invasion. 
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 The resulting equation is extremely complex and cannot be approached 

analytically without simplifications. We notice, however, that somewhere near the nose 

the moving front in Figure 1 has a round (but not necessarily spherical) shape. Following 

Bretherton [Ref. 2, discussion leading from his equation 11 to 12] (also see [Ref. 1, 

equations 2-4.10 – 2-4.11]), we seek a simplified form of equation (2) somewhere in the 

transition zone between the nose of the invading core phase and the residual film, at small 

values of κ, by retaining only the important terms. At sufficiently small κ, constant terms 

can be neglected compared to 1/κ2, 1/κ4, and ln κ. In the same approximation, we can 

neglect 22 κQ  with respect to Q1 and, assuming a bounded third derivative, xxxκκ 2  with 

respect to xκ . This leads to a simpler form of the film-profile equation, 

22 )1Ca(ln
2
1 bx −=− κκκ . The transition to this form and the approximations made are 

equivalent to Bretherton’s numerical solution of his main film-profile equation (11), 

assuming the asymptotic interface shape near the nose (12), which led to the final 

equation (17) (this transition is also discussed by Middleman [Ref. 1, equations 2-5.41 – 

2-5.45]). Note that the viscosity ratio has dropped out. Rearranging, we write 

κκ
κ

ln
)1(Ca2

2

2b
x

−−=  and, differentiating one more time, 

 

κκ
κ 25
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ln
)1(Ca8 b

xx
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 Formula (3) is valid somewhere in the transition zone. In this region, the meniscus 

has a round shape, but, because the meniscus is moving, is not exactly a sphere. The 
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curvature of the sphere would be )1/(2 b− , and therefore a matching condition 

)1/(2)1/(1 bb xx −≈−− κ , or )1/(1 bxx −≈κ , will approximately hold [Ref. 1, equations 2-

4.12 – 2-4.13; Ref. 2, discussion leading from equation 12 to equation 13]. To 

approximate the departure from the spherical shape, we add a correction to make the 

right-hand side equal 1)1/(1 Cb +− ; the value of C1 is to be determined. Using (3) for xxκ  

in the result leads to the equation for b, 
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where we approximated bb 51)1( 5 −≈−  and introduced a notation κκ 25
2 ln≡C .  

 We are now able to constrain the value of C1. At small capillary numbers, 

equation (4) becomes 11 /)1( CCb += . We immediately see that C1 cannot be positive or 

zero, since b, by definition, cannot be greater than one. Also, b must be non-negative, 

which further constraints C1 to be 11 −≤C . Furthermore, the curvature in the right-hand 

side of the equation 1)1/(1 Cbxx +−=κ  must be non-negative, 0)1/(1 1 ≥+− Cb . For 

small values of b, this leads to 11 −≥C . The only value of C1 compatible with the last two 

conditions is 11 −=C . Using this in (4), we arrive at the final expression for the 

dimensionless thickness of the surrounding annulus, as a function of capillary number, 
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 Equation (5) still contains an unknown quantity C2, which is the value of the 

function κκ 25 ln  at an unknown position in the transition region between the nose of the 

moving meniscus and the film. It cannot be too close to the nose, though, where this 

function has a mathematical limit of zero, because this would violate our assumption of 

the small slope of the fluid-fluid interface. All we can say at this point is that C2 is small, 

but its exact value cannot be deduced from the theoretical argument alone.  

 We have two immediate, testable physical predictions from equation (5). At 

relatively large capillary numbers, the film thickness b levels off at a constant value of b 

= 0.2. At small capillary numbers, it becomes proportional to Ca2, that is, has a constant 

slope of two if plotted on a log-log scale. The thickness dependence on the capillary 

number is therefore predicted to have a corner separating a sloping, lower-Ca, region 

from a constant, higher-Ca, region. The film thickness does not appear to depend on the 

viscosity ratio of the core and film fluids. These predictions can be tested against 

experiment; by fitting experimental data, the constant C2 can be determined as well. 

Theories of residual film thickness for liquid-liquid invasion scenarios in core-annular 

flow, developed earlier [3, 16] failed to propose a similar, closed-form and testable 

relationship.  

 We would like to emphasize here in what respects our theory deviates from 

Bretherton’s [2]. First, our theory is strictly applicable to the case of liquid-liquid 

displacement only. It assumes incompressibility of both phases and therefore is not 

expected to correctly describe the invasion of a gas bubble. A bubble is compressed in 

response to capillary pressure, but this effect is absent from the formulation of Laplace’s 

law that we have used. An augmented form of Laplace’s law, which would include the 
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compressibility effect, would incorporate the volume of the bubble, resulting in the 

bubble’s size being controlled by the pressures in both phases (e. g., [Ref. 17, pp. 233-

234]). This would make the problem even more complex. That is why our theory will 

only be compared to experimental results involving liquid-liquid displacement. Note that 

Bretherton [2] also founded his theory on the same incompressible-fluid assumption, 

although he compared it with experiments involving gas bubbles.  

 Second, Bretherton’s derivation of his film-profile equation (11), performed in the 

assumption of a “planar” interface [Ref. 2, p. 169], neglected the transverse-curvature 

term 1/κ (in our notation) in the expression for the mean curvature in Laplace’s law. This 

can be directly checked by re-deriving Bretherton’s equation (9) from his equation (7). 

We have retained this term, important for the rendition of the cylindrical geometry. Third, 

Bretherton’s analysis assumed a lubrication flow in the film but neglected it in the 

formulation of the mass balance underlying the ultimate film-thickness equation. We 

have chosen to use a different mass-balance formulation instead. Fourth, Bretherton made 

an assumption of constant, zero pressure inside the gas phase. This is also inaccurate. 

Bretherton’s theory [Ref. 2, p. 169] assumes an inviscid bubble with zero tangential stress 

at the interface; therefore, there is no drag on the bubble in this model. In the absence of 

both the drag and an internal pressure gradient, a bubble would have no driving force to 

move. On the other hand, our approach uses the actual variable pressure in the core.  

 It is noteworthy in this regard that the validity of Bretherton’s relationship, for 

sufficiently small capillary numbers (~ 5×10-5-10-2), was confirmed by direct 

computational-fluid-dynamics simulations [Ref. 18, Figure 3]. However, the authors’ 

model, similarly to Bretherton’s, postulated a constant zero pressure inside the moving 
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inviscid gas bubble. It was therefore founded on the same approximation of the reality 

and cannot be considered a truly independent verification. Oversimplifications made in 

Bretherton’s theory may be an alternative reason for its departures from various 

experimental validations.  

 

Experiment 

 

 An experimental apparatus was built to directly observe the displacement of the 

pore-filling suspending fluid by an invading liquid core phase (Figure 2). It consists of a 

glass capillary tube with the length of 100 mm and inner diameter of 1.14 ± 0.05 mm 

inside a transparent Lucite viewing box with square cross-section. The region between 

the viewing cell and the capillary tube is filled with glycerol to reduce optical distortion 

due to the curvature of the tube. Small ports at either end of the viewing cell provide 

access for feeding and removing the working fluids into or out of the capillary. At the 

inlet side (the right side of the picture) there are two ports: one for the annular fluid and 

one, covered with a rubber septum, for the injection of the core fluid. The viewing cell is 

(Color online) Figure 2. Schematic of the experimental apparatus showing the 

capillary tube inside the viewing box. 
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illuminated from below using a fiber-optic light source and a diffuser. Images of the 

capillary tube are captured at a magnification of (11.6±0.5)x approximately 75 mm 

downstream from the entrance of the straight test section by using a reverse-mounted 28-

mm Nikon lens and bellows connected to a Photron FASTCAM APX-RS high-speed 

digital camera mounted above the flow cell.  

 Aqueous solutions of glycerol were used as suspending fluids, as listed in Table 2. 

Figure 3. Series of images showing a long heptane drop invading the capillary tube filled 

with glycerol solution. Flow is from left to right; for this experiment, Ca = 0.04. The 

capillary wall is nearly invisible due to index-of-refraction matching between the suspending 

fluid and the glass; the wall edges are indicated by a pair of horizontal solid lines drawn next 

to the menisci. These images were obtained at low magnification (1x) to allow viewing of a 

large portion of the drop. At this magnification, the thin film between the dark drop and the 

almost invisible wall is not clearly seen. Accurate measurements of film thicknesses were 

obtained from images at much higher magnification (11.6x). 
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The core fluid was heptane dyed with Oil Blue N, with the viscosity of 3.9×10-3 Pa s and 

density of 684 kg/m3. The fluid-fluid interfacial tension measured with a DuNouy 

tensiometer was 1.5×10-2 N/m for all three glycerol/heptane systems studied.   

 To remove any organic residue and increase the hydrophilicity of the glass, the 

capillary was first cleaned in a NaOH-ethanol-deionized-water solution and then flushed 

with deionized water and dried before being sealed in the viewing cell that coupled the 

tube with the flow system. In a given run, the capillary was first filled with the annular 

fluid, and the core phase was injected upstream of the test section via a syringe. The 

system was allowed to equilibrate, in such a way that there was no residual flow induced 

by the injection of the core fluid. A syringe pump then pumped the annular fluid through 

the capillary tube, and recording of images took place. The recording ended when the 

trailing meniscus exited the test section. The drop velocity U could be controlled by 

changing the speed of the syringe pump.  

 The measurement of the film thickness in pixels was performed in a digital-image 

editor after the completion of the experiment. This thickness was converted to absolute 

units through the known optical magnification and the known camera-sensor’s absolute 

pixel size. The film thicknesses were obtained one-to-two tube diameters from the front 

meniscus, where the film reached a constant thickness (Figures 3A and B). The thickness 

remained constant between this point and the trailing meniscus (Figures 3C and D); the 

total drop length was approximately 16 tube diameters. Notice from Figure 3 that both the 

leading and the trailing menisci maintain constant shape as they pass through the tube.  
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Discussion of Experimental Data 

 

 Our experimental data are tabulated in Table 3 in the rows without superscripts. 

The lower limit on the resolved film thickness is prescribed by the value of the 

magnification of the optical system. After magnification, the absolute value of one pixel 

is 1.46 µm, which, divided by the mean radius of the tube, gives b = 2.55×10-3 as the 

smallest value that we could resolve, corresponding to the thickness of one pixel. This is 

the smallest b listed in Table 3 for our data. The experiments run at respectively lower 

capillary numbers led to the film “disappearance”, meaning that its thickness fell below 

the limit of resolution of one pixel.  

 A note is in order regarding the methods that various experimenters have used to 

report film thicknesses in either gas-liquid or liquid-liquid displacements. Bretherton [2] 

and Schwartz et al. [3], who observed gas-bubble motion, employed the similar indirect 

approach, in which they observed a reduction in length of a moving liquid slug pushed by 

the gas phase. The film thickness was inferred from the length reduction over the distance 

traveled by the slug. This method can be argued to have a significant disadvantage of 

“not seeing” the film. For example, the authors have extended their experiments down to 

Ca = 10-6 [2] and 10-5 [3]. Using Bretherton’s relationship and the tube radii reported, the 

absolute film thicknesses at these capillary numbers are expected to be on the order of 0.1 

and 1 µm, respectively. On the other hand, the roughness of the glass wall in the tubes, 

examined directly under an electron microscope in a related study by Chen [Ref. 19, p. 

344], was on the order of 1 µm. What is noteworthy is that both Bretherton [Ref. 2, 

Figure 4] and Schwartz et al. [Ref. 3, Figure 3] reported deviation of a constant-slope 
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behavior (on the log-log scale) in the inferred film thickness toward leveling-off to zero 

slope around the same Ca = 10-5. In either case, the theoretical film thickness at this 

capillary number is close to 1 µm, or the anticipated size of microscopic roughness of the 

surface. In such a situation, the amount of wetting fluid left behind can be expected to 

become independent of the motion of the slug, as it should be entirely controlled by the 

fluid collecting in the hollows of the surface. A trend towards capillary-number-

independent constant value of film thickness at very small Ca was qualitatively predicted 

by Teletzke et al. [Ref. 16, Figure 5] and attributed to molecular effects. However, a 

simpler explanation, based on the disappearance of a continuous film because of rough 

surface, seems to be more natural. On the other hand, if the film could be visually 

observed, this difficulty of resolving a “film” if none actually existed would not arise.  

 Chen [19] reported film thicknesses for both gas- and liquid-liquid displacement 

using a different but also indirect method. The technique, borrowed from Marchessault 

and Mason [20], consisted in measuring electrical resistance of a capillary containing the 

core and film fluids. The resistance was converted into film thickness using an idealized 

model of an electrical conductor composed of coaxial inner and outer cylinders. A 

disadvantage of this technique is in its reliance on an idealized cylindrical geometry. An 

(unknown) increase in measured conductance is always contributed by the fluid collected 

in the hollows of the tube surface. This contribution becomes dominant when the size of 

the surface roughness is comparable to the expected thickness of the film. The inferred 

thickness is therefore always inaccurate and becomes virtually meaningless in the latter 

case. Calibration studies were not reported that could quantify the error.  
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 Because of the increase in conductance contributed by the fluid in the roughness, 

the method is expected to always overpredict the true film thickness and measure a 

“constant” thickness at capillary numbers at which the expected thickness is comparable 

to the roughness size. Because the amount of overprediction grows with the decreasing 

capillary number, the method will also tend to diminish the true slope of the b-Ca 

relationship. Chen [Ref. 19, Figure 3] indeed overpredicts Bretherton’s theoretical film 

thickness at all capillary numbers and also reports a slope reduced compared with 

Bretherton’s relation. The “leveling-off” to a constant value around Ca = 10-5 for gas 

invasion (which virtually coincides with the respective leveling-off Ca values reported by 

Bretherton and Schwartz et al.) and 10-4 for liquid invasion is also reported. For the tube 

radius used, Bretherton’s relationship gives the anticipated film thicknesses of 

approximately 0.2 and 1 µm, respectively. The depth of the hollows, estimated from 

electron microscopy, is 1 µm, too. The film overprediction is evident from the fact that, 

for stationary air bubbles, Chen [Ref. 19, p. 346] measured the film “thickness” of 0.7 

µm, while it should theoretically be zero. An anomalous character of Chen’s data is also 

indicated by Ratulowski and Chang [Ref. 4, Figure 8]. While the authors were able to 

give a consistent theoretical fit, based on a single model, to the scatter of experimental 

results of Bretherton and Schwartz et al., they could not fit Chen’s constant-slope data 

within the same approach. Overprediction with the electrical-resistance method is also 

demonstrated by the fact that Marchessault and Mason’s [20] results (as compared by 

Bretherton [Ref. 2, Figure 4]) consistently exceed Bretherton’s predicted film thickness at 

all capillary numbers as well.  
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 For the reasons explained, we prefer to use only the data on film thicknesses in 

liquid-liquid invasion measured by direct film observation by optical means. Table 3 

contains a compilation of such measurements in addition to ours ([Ref. 15, Figure 3; Ref. 

21, Table 2; Ref. 22, Figures 7, 8, 12, 13]) (identical rows mean availability of 

experiments with exactly same results). All data are graphically presented in Figure 4, 

where the values from various authors are indicated by different symbols. For our 

experiments, the average uncertainty of a film-thickness measurement is 0.5 pixel, which 

leads to the relative error of 50 % when the thickness approaches the limit of resolution. 

This determines the value of the error bars for our results shown in Figure 4. Clearly, the 

errors grow as b decreases but are only visible, on the scale of the graph, at the three 

Figure 4. Summary of experimental data and theories on the wetting-film thickness versus capillary 
number. 

Ca

0.0001 0.001 0.01 0.1 1

b

0.001

0.01

0.1

1

Our experiment
Aul and Olbricht (1990, Table 2)
Soares et al. (2005, Figures 7, 8, 12, 13)
Goldsmith and Mason (1963, Figure 3)
Curve: equation (5)
Straight line: Bretherton (1961)
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lowest values of the capillary number; in all other cases, the errors are smaller than the 

circle size.  

 The solid curve in Figure 4 is equation (5) visually fit to all the data, with C2 = 

3×10-4. Bretherton’s equation b = 1.34×Ca2/3 is plotted as the solid straight line. The 

combined experimental data unambiguously indicate the presence of a “corner” between 

Ca = 10-3 and 10-2, separating the two general slopes in the observed relationship, which 

is missed by the application of Bretherton’s single-slope theory. The low-Ca slope is 

correctly captured by the present theory, as well as the leveling off at b ≈ 0.3 at the higher 

Ca

0.0001 0.001 0.01 0.1 1

b

0.001

0.01

0.1

1

μ2*/μ1* = 2, 4
μ2*/μ1* = 12, 19, 20
μ2*/μ1* = 80, 92
μ2*/μ1* = 173, 282
μ2*/μ1* = 1000, 1250, 3650

Figure 5. Data from Figure 4 coded according to viscosity ratios. 
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end of the capillary number. The intermediate range is captured reasonably well, with 

deviations of no more than a factor of 2 to 3. The data compiled from different 

investigations are mutually consistent, in that no systematic deviation of points of one 

study from another is seen.  

 One corollary from the present theory is an approximate independence of the film 

thickness of the viscosity ratio. Figure 5 presents the same data points as in Figure 4, 

which are coded in groups of close viscosity ratios. No systematic separation of one 

group from another is found, despite the fact that viscosity ratios vary by more than three 

orders of magnitude. Points, different in viscosity ratio by this amount, in certain 

instances overlap. This supports the theory’s conclusion, in the range of capillary 

numbers tested.  

 The present theoretical derivation, as well as previous attempts to build such a 

theory, seem to indicate that, due to the complexity of the phenomenon, it is not possible 

to deduce a simple relationship between the annular film thickness and Ca that would be 

able to match experimental data with better precision in the entire capillary-number 

range. 

 

Conclusions  

 

 A hydrodynamic theory of the thickness of a residual wetting film left behind 

during invasion of a core fluid into a capillary channel leads to equation (5). 

Notwithstanding the value of the constant C2, the theory predicts two distinct slopes in 

the dependence of b on capillary number, separated by a “kink”. The lower-Ca 
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asymptotic behavior is Ca2, while a constant level of b = 0.2 is predicted to be reached at 

the higher end.  

 We collected laboratory measurements in which the values of b for liquid-liquid 

invasion have been reported using direct optical observation. Direct observation is the 

most unambiguous method that does not infer the presence of the deposited films but 

rather measures them only if they realistically exist. We have also conducted our own 

laboratory experiment. The data, obtained by different investigators, are mutually 

consistent, and the theoretically predicted behavior is seen in all the data.  

 The only conclusion about the constant C2 in equation (5), available from within 

the theory, is that it is a small number. Based on experimental data, C2 is evaluated to be 

0.0003. With this value, the film thickness in the entire range of capillary numbers 

available from the experiments is matched reasonably well.  

 It follows from the theory that the film thickness, described by equation (5), is 

roughly independent of the viscosity ratio between the core and film fluids. The data, 

coded according to viscosity ratio in Figure 5, do not show any significant scatter for the 

viscosity ratios changing over three orders of magnitude. This supports the theory’s 

conclusion. Computational-fluid-dynamics simulations conducted by Soares and 

Thompson [Ref. 23, Figure 6] reached the same conclusion for Ca of less than 

approximately 0.2, while the authors computationally predicted thickening of the films 

with decreasing film-to-core viscosity ratios at greater capillary numbers. The data in 

Figure 5 do not show a clear trend toward such a behavior, although it cannot be ruled out 

that it may reveal itself at higher capillary numbers.  
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 The classic theory of Bretherton [2], developed for the displacement of liquids by 

gas bubbles but often believed to describe the wetting films during liquid/liquid invasion, 

fails to capture the salient features of the experimental relationship.  

 Hodges et al. [24] proposed an asymptotic theory, seeking the dimensionless film 

thickness b in the form 3/2*
2

*
1 Ca)Ca,/( μμFb = . The results are presented implicitly: the 

function F is expressed in different asymptotic regimes defined by b itself, offering no 

explicit, testable predictions for b. For all small core-to-film viscosity ratios, Bretherton’s 

relation is predicted to hold. Park and Homsy [Ref. 9, equation 4.27] also suggested that 

Bretherton’s result extended without change to liquid-liquid invasion. Their main 

evolution equation (4.15), on which this conclusion is based, has the same form as 

Bretherton’s equation (11), which allowed the authors to apply their theory to liquid-

liquid invasion. However, Park and Homsy did not provide the derivation of this 

equation. If it is the same as Bretherton’s derivation, the latter was explicitly dependent 

on the assumption of constant zero pressure in the core (gas) phase. This is an 

oversimplification, which may explain why the suggested behavior is not seen in the 

experiments. To fit an experimentally observed b-Ca relationship, we have used the 

actual variable pressure gradients in the core.  

 Overall, the experiments do not support the proposed extensions of Bretherton’s 

single-slope relation to liquid-liquid invasion. Note that the present theory is not expected 

to be valid for invading gas bubbles, either, due to possible effects of compressibility 

[17].  
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Figure Captions 

 

Figure 1. Geometry of the core-fluid invasion.  

 

(Color online) Figure 2. Schematic of the experimental apparatus showing the capillary 

tube inside the viewing box.  

 

Figure 3. Series of images showing a long heptane drop invading the capillary tube filled 

with glycerol solution. Flow is from left to right; for this experiment, Ca = 0.04. The 

capillary wall is nearly invisible due to index-of-refraction matching between the 

suspending fluid and the glass. These images were obtained at low magnification (1x) to 

allow viewing of a large portion of the drop. At this magnification, the thin film between 

the dark drop and the almost invisible wall is not clearly seen. Accurate measurements of 

film thicknesses were obtained from images at much higher magnification (11.6x).  

 

Figure 4. Summary of experimental data and theories on the wetting-film thickness 

versus capillary number. 

 

Figure 5. Data from Figure 4 coded according to viscosity ratios.  
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Table 1 
 

Synopsis of Studies on b-Ca Behavior for Moving Gas Bubbles 
 

Authors Range 
of Ca 

b = 1.34×Ca2/3 
or 0.5×Ca1/2 ?  

Fairbrother and Stubbs [5] 10-4-10-2 0.5×Ca1/2 
Bretherton [2] 10-6-10-2 1.34×Ca2/3 
Schwartz et al. [3] 10-5-10-3 Both 
Ratulowski and Chang [4] 10-6-10-1 Both 
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Table 2 
 

Properties of the Wetting (Annulus) Fluid 
 

Annulus Fluid Viscosity (Pa s) Density (kg/m3) 
Glycerol 100% wt 1.4 1260 
Glycerol 85% wt 0.11 1220 
Glycerol 75% wt 0.036 1170 
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Table 3 
 

Experimental Data on Wetting-Film Thickness for Liquid-Liquid Invasion 
 

Ca b *
1

*
2 / μμ  

0.00026 0.0026 92
0.00035 0.0051 92
0.00041 0.010 92
0.00065 0.015 92
0.00080 0.018 92
0.00088 0.015 92
0.00096 0.023 92
0.0010 0.020 92
0.0012 0.028 92
0.0015 0.033 92
0.0024 0.031 92
0.0024 0.033 282
0.0024† 0.037† 19†

0.0031 0.054 92
0.0049 0.054 282
0.0061 0.059 92
0.010 0.061 282
0.010† 0.059† 80†

0.011* 0.061* 1000*

0.011* 0.070* 4*

0.012‡ 0.053‡ 1250‡

0.015‡ 0.050‡ 1250‡

0.018‡ 0.065‡ 1250‡

0.020* 0.083* 20*

0.021 0.079 282
0.021 0.079 282
0.022† 0.067† 173†

0.022* 0.088* 1000*

0.031‡ 0.085‡ 1250‡

0.033‡ 0.093‡ 1250‡

0.038‡ 0.10‡ 1250‡

0.039* 0.11* 1000*

0.047* 0.13* 20*

0.048* 0.13* 12*

0.048* 0.13* 2*

0.050* 0.12* 1000*

0.062* 0.13* 1000*

0.072 0.13 3650
0.073‡ 0.14‡ 1250‡

0.074* 0.16* 12*
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0.075* 0.15* 1000*

0.082* 0.17* 4*

0.082‡ 0.14‡ 1250‡

0.087‡ 0.14‡ 1250‡

0.090* 0.16* 1000*

0.100* 0.17* 1000*

0.11 0.16 3650
0.11* 0.19* 4*

0.12* 0.19* 12*

0.13 0.15 3650
0.13* 0.21* 2*

0.13* 0.21* 20*

0.14* 0.20* 1000*

0.14 0.19 3650
0.15* 0.21* 1000*

0.15* 0.23* 2*

0.16‡ 0.18‡ 1250‡

0.17* 0.21* 12*

0.18* 0.22* 1000*

0.18* 0.24* 4*

0.19* 0.22* 1000*

0.19* 0.21* 12*

0.19* 0.24* 4*

0.20 0.21 3650
0.20* 0.20* 20*

0.20* 0.25* 20*

0.20* 0.21* 12*

0.20* 0.23* 4*

0.20* 0.24* 2*

0.20‡ 0.20‡ 1250‡

0.21* 0.23* 1000*

0.21* 0.25* 4*

0.21* 0.27* 2*

0.21‡ 0.21‡ 1250‡

0.22 0.21 3650
0.23* 0.23* 1000*

0.23* 0.26* 4*

0.25 0.21 3650
0.26* 0.30* 2*

0.29* 0.24* 1000*

0.50* 0.27* 20*

0.69 0.26 3650
0.83 0.26 3650
0.87 0.27 3650
0.88 0.27 3650
0.92 0.27 3650
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1.0 0.27 3650
1.0* 0.32* 20*

   *Data from Soares et al. [Ref. 22, Figures 7, 8, 12, 13] 
   †Data from Aul and Olbricht [Ref. 21, Table 2] 
   ‡Data from Goldsmith and Mason [Ref. 15, Figure 3] 
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Figure 1. Geometry of the core-fluid invasion. 
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(Color online) Figure 2. Schematic of the experimental apparatus showing the 

capillary tube inside the viewing box. 
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Figure 3. Series of images showing a long heptane drop invading the capillary tube filled 

with glycerol solution. Flow is from left to right; for this experiment, Ca = 0.04. The 

capillary wall is nearly invisible due to index-of-refraction matching between the suspending 

fluid and the glass; the wall edges are indicated by a pair of horizontal solid lines drawn next 

to the menisci. These images were obtained at low magnification (1x) to allow viewing of a 

large portion of the drop. At this magnification, the thin film between the dark drop and the 

almost invisible wall is not clearly seen. Accurate measurements of film thicknesses were 

obtained from images at much higher magnification (11.6x). 
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Figure 4. Summary of experimental data and theories on the wetting-film thickness versus capillary 
number. 
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Curve: equation (5)
Straight line: Bretherton (1961)
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Figure 5. Data from Figure 4 coded according to viscosity ratios. 


