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Sub-ensemble decomposition and Markov process analysis of Burgers turbulence

Zhi-Xiong Zhang∗ and Zhen-Su She
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and College of Engineering, Peking University, Beijing 100871, P.R. China

A numerical and statistical study has been performed to describe the positive and negative local
sub-grid energy fluxes in the one-dimensional random-force-driven Burgers turbulence (Burgulence).
We use a sub-ensemble method to decompose the field into shock wave and rarefaction wave sub-
ensembles by group velocity difference. We observe the shock wave sub-ensemble shows a strong
intermittency which dominates the whole Burgulence field, while the rarefaction wave sub-ensemble
satisfies K41 scaling law. We calculate the two sub-ensemble probabilities and find in the inertial
range they keep scale-invariance, which is the important feature of turbulence self-similarity. We
reveal the interconversion of shock and rarefaction waves during the equation’s evolution displays in
accordance with a Markov process, which having a stationary transition probability matrix with the
elements satisfying universal functions and, when time interval is much greater than corresponding
characteristic value, exhibiting the scale-invariant property.

PACS numbers: 47.27.Gs, 02.50.Ga, 47.27.eb

I. INTRODUCTION

One of the most important features of turbulence is the
energy flux or the energy cascade, which has two transfer
directions: from large to small scales – (positive) energy
flux – derived by Kolmogorov for 3D turbulence [1], and
from small to large scales – negative/inverse energy flux
– proposed by Kraichnan for 2D turbulence [2]. These
two physical processes exist in most of turbulence fields
at same time from a local point of view suggested by
Kraichnan [3]. Typically, in Burgers turbulence (abbre-
viated as “Burgulence” by Frisch and Bec [4]), a simpli-
fied approximation of Navier-Stokes equation, the posi-
tive and negative local energy fluxes are corresponding
to shock wave and rarefaction wave, respectively. Now,
the forced Burgulence has been at the center of studies
that allowed unifying different branches of physics and
mathematics [5]. Revealing the property of the local en-
ergy fluxes is one of the most fundamental problems in
turbulence.
In 1939, the Dutch scientist J.M. Burgers introduced

a 1D model for pressure-less gas dynamics [6], famously
known as the Burgers equation

∂u

∂t
+

1

2

∂u2

∂x
= ν

∂2u

∂x2
, (1)

which is widely studied in statistical physics, cosmol-
ogy, and hydrodynamical turbulence today. In the 1950s,
Hopf [7] and Cole [8] demonstrated mathematically that
Burgers equation can be integrated explicitly. Later,
Meecham and Siegel [9], and Hosokawa and Yamamoto
[10] numerically investigated this model with random ini-
tial values using Wiener-Hermite expansion and Hopf
theory, respectively. While, its dynamical behavior is
fundamentally different from the Navier-Stokes dynamics
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for the absence of pressure term and the local interactions
only in x-space. To model the pressure, Jeng [11] imposed
a random force f(x, t) on the RHS of Eq. (1) and found
the numerical velocity field satisfied quasi-Gaussian dis-
tribution and the energy spectrum E(k) ∝ k−2.

Soon after, many important efforts were devoted to the
study of the solutions of Burgulence arising from random
initial conditions or a random forcing. For the solution of
inviscid Burgers equation with random initial data, Avel-
laneda and Weinan [12], who’s work inspires us consider-
ing Markov process in this paper, rigorously proved some
statistical properties for velocities, shock-strengths and
rarefaction intervals. For the random forcing, based on
Renormalization Group (RNG) methods, Forster, Nelson
and Stephen [13] proposed a widely spread, white-in-time
random, and zero mean formula in spectral space,

〈f̂(k, t)f̂(k′, t′)〉 = 2(2π)2Dk−1δ(k + k′)δ(t− t′), (2)

where ·̂ stands the Fourier representation.

In 1995, Chekhlov and Yakhot [14] numerically studied
the random-force-driven Burgers equation again, where
the viscous term was replaced by a hyperdissipation form
ν(−1)p+1∂2pu/∂x2p and a special group of random forc-
ing parameters were employed. They obtained a remark-
able result that the dynamics of the forced equation be-
came more similar to that of Kolmogorov turbulence with
a long inertial range, where energy flux was a constant
as the viscosity goes to zero, energy spectrum satisfied
Kolmogorov’s k−5/3 law [15], but the scaling law was
different from the Kolmogorov’s prediction p/3 [16] and
indicated that the higher order correlation functions were
still dominated by shocks. Recently, abundant numeri-
cal, statistical, and theoretical investigations on forced
Burgulence, including the field theory results deduced
by Polyakov [17], have been reported [17–27], in which
many features such as asymmetry probability distribu-
tion, anomalous scaling law and strong intermittence
etc., are discussed deeply.
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Here, we focus on the statistical scaling behavior and
Markov process evolution of Burgulence’s shock and rar-
efaction waves, which are corresponding to the positive
and negative sub-grid scale energy fluxes, respectively.
Sect.II is a sketch about the Burgulence fields generated
using Chekhlov and Yakhot’s method [14]. In Sect. III,
a new sub-ensemble decomposition are used to distin-
guish the shock wave from rarefaction wave at different
scales, and two different scaling laws are shown, which
evinces that the shock wave ensemble has a strong inter-
mittency which dominates the Burgulence intermittency,
while the scaling behavior of the rarefaction wave ensem-
ble satisfies K41 theory. In Sect. IV, after certifying the
scale-invariance of sub-ensemble probabilities, we reveal
the interconversion of shock and rarefaction waves dur-
ing the equation’s evolution displays in accordance with
a Markov process, which having a stationary transition
probability matrix with the elements satisfying universal
functions and, when time interval is much greater than
corresponding characteristic value, exhibiting the scale-
invariant property. At last, the effects of random forcing
parameter y are represented in Sect. V.

II. DNS FOR BURGULENCE

Using the Fourier-Galerkin pseudospectral method de-
scribed in [14], the direct numerical simulation (DNS)
for constructing Burgulence field is sketched as follows.
As the governing equation of velocity signal u(x, t), the
random-force-driven Burgers equation writes

∂u

∂t
+

1

2

∂u2

∂x
= ν(−1)p+1 ∂

2pu

∂x2p
+ f, (3)

where p = 6 and ν = 9.0 × 10−40 which are set mainly
for getting a long inertial range. To apply the Fourier-
Galerkin pseudospectral method, periodic boundary con-
ditions, ∂nu(0, t)/∂xn = ∂nu(2π, t)/∂xn, n = 0, 1 · · · ,
are imposed on the computational domain x ∈ [0, 2π].
Then, the random force satisfying Eq.(2) in Fourier

space is given as

f̂(k, t) =





Af |k|−y/2σk√
∆t

k < kc,

0 k > kc,
(4)

where σk is the Gaussian random function with |σk|2 = 1,

and other parameters are chosen to be Af =
√
2 × 10−3

and y = 1. The force cutoff kc is chosen well inside the
dissipation range of the energy spectrum, with kc = 3895.
The time step is set as ∆t = 5.0× 10−5.
When implementing the algorithm, the initial field is

given by a sine function, u(x, 0) = 0.08 sin(x). The tem-
poral discretization includes two second-order schemes:
Runge-Kutta for restarting and stiffly stable Adams-type
scheme with the explicit formulation as

û(k, t+∆t) = û(k, t)+
3

2
∆t·ĝ(k, t)−1

2
∆t·ĝ(k, t−∆t), (5)

where ĝ(k, t) = f̂(k, t)− ik[û2](k, t)/2− νk2pû(k, t).

During the computing, the spatial discretization is
based on the pseudospectral method with the nonlinear

[û2] computation in the conservative form and dealiasing
procedure based on the 2/3 rule. The spectral resolu-
tion employed here is N = 12288 including the de-aliased
modes, and the random force generated at different com-
puting time is non-repeating.

As results, the velocity field at t = 300 and the average
energy spectrum with t ∈ [100, 300] are shown in Fig.1
and Fig.2, respectively. In the plots, the typical fractal-
like and sawtooth structures in velocity field and the Kol-
mogorov k−5/3 spectrum with a long inertial range are
reproduced, which conform well to the results in [14].
Here, we want to point out that the statistical features
of shock and rarefaction waves depend on the random
forcing much more than the initial data.
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FIG. 1. Velocity signal of Burgers equation at t = 300 (solid
line) and t = 0 (dot line, the initial field).
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FIG. 2. Energy spectrum averaged in t ∈ [100, 300] (solid
line). A dot line with slope −5/3 is also ploted.
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III. SUB-ENSEMBLE DECOMPOSITION AND

CORRESPONDING SCALING LAW

In traditional generalized opinion, the shock and rar-
efaction waves in 1D Burgulence, can be defined though
the speed difference δu(x, l) = u(x + l/2) − u(x − l/2),
where x+ l/2 and x− l/2 are the start and end locations
of corresponding structure. If δu(x, l) > 0, the struc-
ture is regarded as rarefaction wave. On the contrary, if
δu(x, l) < 0, the structure is belong to shock wave. From
Burgers’ results[28] on the distribution of the separations
between rarefaction intervals and the Markovian nature
of the equation solution, the set of shock locations, which
have no thickness (l → 0), is expected to be countable
and discrete. In his case, the structure of shocks depends
crucially on the similarity properties of the random initial
data. While in the random-force-driven Burgulence, un-
der the unceasing action of random forcing, the affection
of initial data to the statistical features of shock and rar-
efaction waves becomes smaller and smaller. From Fig.1,
we can see that the Burgulence field has typical fractal
characteristic, since there is shocks in any arbitrary scale
rarefaction wave.
Now, we introduce the concept of group velocity dif-

ference (GVD) denoted as h(x, l) to identify “new” shock
and rarefaction waves from a filtered field point of view.
In mathematics, the GVD h(x, l) can be written as dif-
ference of local integrations,

h(x, l) =
2

l

∫ l/2

0

u(x+ l′)dl′ − 2

l

∫ 0

−l/2

u(x+ l′)dl′. (6)

Moreover, h(x, l) has an equivalence definition as

h(x, l) =
1

l

∫ l

0

δu(x, l′)dl′ = δũ(x, l/2), (7)

where ·̃ stands a box filtering. Through the sign of h(x, l),
the fluctuation structures in the whole field can be di-
vided into two sub-ensembles, namely,

J ∈
{

A h(x, l) > 0
B h(x, l) < 0.

(8)

Here, J marks the structure style; A and B denote the
rarefaction wave and shock wave sub-ensembles, respec-
tively. Fig.3 is a sketch of this definition: if its right half
group/average velocity is larger or less than the left one,
the structure in [x− l/2, x+ l/2] with l denoted as inter-
val size or structure scale will be regarded as an element
of sub-ensemble A or B.
No doubt, this decomposition is in accord with the

common comprehension about the positive and negative
local energy fluxes or energy cascade. Following Eyink’s
definition [29], we represent the local energy flux in Bur-

gulence as Π(x, l/2) = −(ũ2 − ũ2)∂ũ(x, l/2)/∂x. Ap-

proximatively, there is Π(x, l/2) ≈ −2(ũ2 − ũ2)h(x, l)/l,
which means that when h(x, l) < 0, Π(x, l/2) > 0, the

x2
l/2l/2 l/2l/2

B

u(
x)

x

A

x1

FIG. 3. A sketch for the definition of sub-ensemble A (rar-
efaction wave) and B (shock wave) using an enlarged segment
in Fig.1 (solid line). The heavy horizontal lines in small boxes
state the local group/average velocities.

energy cascade is forward – from large to small scales;
when h(x, l) > 0, Π(x, l/2) 6 0, the energy cascade is
reverse – from small to large scales.
Then, based on above sub-ensemble decomposition,

we can investigate the scaling behaviors in each differ-
ent sub-ensemble, respectively. Following the traditional
method, we define the statistical moment function of
h(x, l) as

Zp(l) = 〈|h(x, l)|p〉, (9)

where 〈·〉 stands for ensemble average. From 20000 sta-
tistical stable velocity fields obtained in previous sec-
tion with equal time interval and t ∈ [100, 300] (without
special explanation, all statistics in this paper are mea-
sured from the same 20000 velocity fields), Zp(l) for sub-
ensemble A and B are measured and plotted in Fig.4 and
Fig.5 with l/δ = 2, 4, . . . , 1024 and p = 1, 2, . . . , 8 (δ is
the physical resolution equaling to 2π/(2N/3) in DNS).
The plots reveal that both sub-ensembles satisfy good
absolute scaling law in an inertial range,

Zp(l) ∝ lζp . (10)

From Fig.4 and Fig.5, we can see both of sub-ensemble
A and B have the same inertial range, the slope of line
in log-log plot of Fig.4 is growing gradually with order
number p increasing from 1 to 8, but the slopes of lines
in Fig.5 change no more after a certain order number
p ≈ 3. Furthermore, we plot out these scaling exponents
for sub-ensemble A, sub-ensemble B and whole field with-
out decomposition in Fig.6. It’s distinctly clear that the
scaling behaviors in sub-ensemble A and B are very dif-
ferent from each other.
For sub-ensemble A, the scaling behavior is very ap-

proximative to K41 theorem [16] with

ζp,A(l) = p/3, (11)
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FIG. 4. Structure function for sub-ensemble A(solid line) at
different scales l/δ = 12, 16, . . . , 1024.
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FIG. 5. Structure function for sub-ensemble B(dot line) at
different scales l/δ = 12, 16, . . . , 1024.
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FIG. 6. Exponents of structure function for sub-ensemble A
(fill squares), sub-ensemble B (open squares) and the whole
field (fill circles). Dash line and dot line are corresponding to
ζp = p/3 and ζp = 1, respectively.

which means sub-ensemble A has a conspicuous Gaussian
property with little intermittence. For sub-ensemble B,
an anomalous scaling law is observed:

ζp,B(l) = p/3, p < 3; ζp,B(l) ≈ 0.92, p > 3. (12)

Evidently, it’s more like the typical anomalous scaling
law in Burgers equation and different from either K41
theory [16] or SL94 model [30]. The scaling exponents
in the whole field with ζp(l) ∼ 0.95 when p > 3 are
close to those in sub-ensemble B, since the the statistical
moment function Zp(l) of sub-ensemble B is much larger
than that of sub-ensemble A at same order number p,
which can be confirmed through comparing Fig.4 with
Fig.5. So it’s surprisingly explicit that sub-ensemble B –
shocks – dominate the intermittency of Burgulence.
As background, the typical anomalous scaling in Burg-

ers equation has been obtained in [14], where the scaling
exponents ζp of the ordinary velocity structure functions,
defined by Sp(l) = 〈|v(x + l)− v(x)|p〉 ∝ lζp , were found
to be almost independent of p, (ζp=0.91 at p=4,6,8). It
is also noted that, Mitra et al.[27] argued that in the
stochastically forced Burgers equation, they have found
an artifact in which logarithmic corrections can appear
disguised as anomalous scaling and conclude that bifrac-
tal scaling is likely. In fact, the probability distribution
function (PDF) of h(x, l) in A and B have different prop-
erties and the PDF of h(x, l) in B also have algebraic
tails, similar to the results discussed in [19, 22, 26].
Above results signal that, through sub-ensemble de-

composition, the difference of shock and rarefaction
waves within the same dynamical system – Burgulence–
can be clearly revealed from corresponding statistical
scaling behaviors. In other words, the two kinds of self-
organization processes, the positive and negative local en-
ergy fluxes, in Burgulence have extremely different states:
one has little intermittence, but another has strong inter-
mittence; one has Gaussian property, but another does
not. When they are mixed together, one of them may
be obscured in the whole system behavior, which is wit-
nessed by the scaling law shown Fig.6.

IV. MARKOV PROCESS EVOLUTION

BETWEEN TWO SUB-ENSEMBLES

Based on the sub-ensemble definition above, we employ
the Markov process analysis to describe the transition
between the positive and negative local energy fluxes.
For a velocity field u(x,t) at fixed t with x ∈ [0, 2π], it’s
easy to count the probability of sub-ensemble at structure
scale l,

PA(l, t) = P (h(x, l, t) > 0|x ∈ [0, 2π]); (13)

PB(l, t) = P (h(x, l, t) < 0|x ∈ [0, 2π]). (14)

Obviously, PA(l, t) + PB(l, t) = 1, and if sub-ensemble A
and B have the same probability, there will be PA(l, t) =
PB(l, t) = 0.5. But the truth of the matter is quite dif-
ferent.
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In fact, PA(l, t) is distinctly greater than PB(l, t) at
the statistical equilibrium state of Burgulenc, in which
the probabilities have rarely changes after time t =
100, though they are fluctuating with time going for-
ward. Fig.7 shows the time average probabilities of sub-
ensemble A and B at different scales with error bars
marked by the standard deviations. Here, the time av-

erage probabilities are 〈PA(l)〉 =
∫ te
t0

PAdt/(te − t0) and

〈PB(l)〉 =
∫ te
t0

PBdt/(te − t0), where t0 = 100, te = 300.
The plot illustrates that the probabilities are indepen-
dent with l at a large scale range 10 < l/δ < 600:

〈PA(l)〉 = 0.575; 〈PB(l)〉 = 0.425.

Namely, the probabilities satisfy scale invariance in the
inertial range, which is the important feature of self-
similarity and is the basic of Markov process analysis
below.
Markov process, named after the Russian mathemati-

cian Andrey Markov[31], is a time-varying random phe-
nomenon for which a specific property (the Markov prop-
erty) holds. The most famous Markov process is Markov
chain. In real world, many processes are belong to the
Markov process, such as the Brownian motion of particle
in liquid, the animal number change in forest, the num-
ber of people infected by disease, the number of people
waiting bus in station, the transition of free electron in
atomic nucleus, the population growth, some courses of
inheritance, and so on. After Markov, many famous the-
orist in probability, statistics, mathematics and physics
etc have made important improvements on relative stud-
ies, such as Kolmogorov [32], Ito [33], Feller [34], Dynkin
[35], Dvoretzky [36], and Hunt [37] etc.
Markov chain [38] is a sequence of stochastic variable,

X1, X2, X3..., with their range as state space gathering
all of the possible value, where Xn denotes the state at
time tn. A stochastic process has the Markov property
if the conditional probability distribution of future state
Xn+1 depends only upon the present state Xn; that is,

2 4 8 16 32 64 128 256 512 1024 2048 4096
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1.0
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>

l/

FIG. 7. Time average probabilities for sub-ensemble A
(squares) and sub-ensemble B (dots) at different scales. The
corresponding error bars are also plotted.

given the present, the future does not depend on the past.
This feature can be written with a probability form:

P (Xn+1 = x|X0, X1, X2, . . . , Xn) = P (Xn+1 = x|Xn).

During the Burgers equation evolution under the ac-
tion of random forcing, the energy cascade at point x with
fixed scale l will change between positive and negative di-
rection. The transition appears as the interconversion of
shock and rarefaction waves is a kind of Markov process.
Fig.8 shows a sketch about this feature in the Eulerian
sense. There are totally four kinds of structure style tran-
sitions between A and B: A  A; A  B; B  A; and
B  B. The key quantities to describe Markov process
are so-called transition probabilities defined as:

PAA(l, t1, δt) = P (h(x, l, t2) > 0|h(x, l, t1) > 0),
PAB(l, t1, δt) = P (h(x, l, t2) < 0|h(x, l, t1) > 0),
PBA(l, t1, δt) = P (h(x, l, t2) > 0|h(x, l, t1) < 0),
PBB(l, t1, δt) = P (h(x, l, t2) < 0|h(x, l, t1) < 0),

(15)

where the time interval δt = t2 − t1.
For PAB ≡ 1 − PAA and PBA ≡ 1 − PBB , we need

to only focus on two variables defined in Eq.(15) such as
PAA and PBB. Through statistical counting, we found
that the transition probabilities are independent with the
reference time point t1 but depend only on the time in-
terval δt at the stable state (t1 > 100). The time average
of PAA and PBB at different scale l and time interval δt
are defined as:

〈PAA(l, δt)〉 =
1

te − t0

∫ te

t0

PAA(l, t
′, δt)dt′, (16)

〈PBB(l, δt)〉 =
1

te − t0

∫ te

t0

PBB(l, t
′, δt)dt′, (17)

where t0 = 100 and te = 300. Fig. 9 shows that when
δt = 163 in the inertial range, like the probability of A
and B, the four time average transition probabilities are
scale-invariance, too. In fact, for a small time interval δt,
the transition probability scale-invariance is untenable.

t2>t1

t2

u(
x,

t)

x

A    A

B    A A    B
B    B

t1

0

FIG. 8. Transitions between sub-ensemble A and B from t1
to t2 with fixed structure scale in the Eulerian sense.
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FIG. 9. Time average of transition probabilities: 〈PAA(l, δt)〉
(fill squares); 〈PAB(l, δt)〉 (fill circles); 〈PBB(l, δt)〉 (open
squares); and 〈PBA(l, δt)〉 (open circles).

Fig. 10 and Fig. 11 display the changing of 〈PAA(l, δt)〉
and 〈PBB(l, δt)〉, respectively, with different time interval
δt at different scales. Though the transition probability
scale-invariance is broken at a fixed small δt, we can see,
all of the transition probabilities possess a same simi-
larity, which expresses the probabilities gradually con-
verge towards 1 when δt → 0 and towards a constant
when δt → +∞. As a simple explanation, the value
〈PAA(l, δt → 0)〉 ≈ 1 or 〈PBB(l, δt → 0)〉 ≈ 1 indicates
the time is too short to change the structure style from
one to another.

To inspect the transition probability similarity, let us
introduce the Chapman-Kolmogorov equation, which is
often used to describe Markov chain,

(
PA(l, t2)
PB(l, t2)

)
=

(
PAA(l, t1, δt) PBA(l, t1, δt)
PAB(l, t1, δt) PBB(l, t1, δt)

)(
PA(l, t1)
PB(l, t1)

)
. (18)
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FIG. 10. Time average of transition probabilities 〈PAA(l, δt)〉.
The dot line is corresponding to 〈PAA〉 = (1 + 〈PA〉)/2.

Considering in the inertial range 10 < l/δ < 600,

PA(l, t1) ≈ PA(l, t2),

PB(l, t1) ≈ PB(l, t2),

PAB(l, t1, δt) = 1− PAA(l, t1, δt),

PBA(l, t1, δt) = 1− PBB(l, t1, δt),

and using the time average form, we can derive a new
simple equation replacing Eg. (18),

(
〈PA(l)〉
〈PB(l)〉

)
=

(
〈PAA(l, δt)〉 1− 〈PBB(l, δt)〉

1− 〈PAA(l, δt)〉 〈PBB(l, δt)〉

)(
〈PA(l)〉
〈PB(l)〉

)
.(19)

Fig. 10 and Fig. 11 also tell us that when δt → +∞,
〈PAA(l,+∞)〉 ≈ 〈PA(l)〉 and 〈PBB(l,+∞)〉 ≈ 〈PB(l)〉,
which is just right a group solution of Eq.(19). Similarly,
〈PAA(l, 0)〉 ≈ 1 and 〈PBB(l, 0)〉 ≈ 1 are another group
solution of Eq.(19). Meanwhile, the speeds of the tran-
sition matrixes going to above two special solutions are
different at different structure scales.
Here, we define a so-called characteristic time δt∗(l)

to normalize 〈PAA(l, δt)〉 and 〈PBB(l, δt)〉, respectively.
For example, the characteristic time δt∗(l) is equal to the
horizontal ordinate value of crossing points between the
line 〈PAA〉 = (1 + 〈PA〉)/2 and the lines 〈PAA(l, δt)〉 in
Fig. 10. The measured characteristic times at different
l/δ are shown in Fig. 12 and markedly satisfy line func-
tions with slop close to 1 in the inertial range,

δt∗(l) = Ct(l/δ)
α, 10 < l/δ < 600, (20)

where α ≈ 1 and Ct is a system parameter.
Using the data in Fig. 12, we redraw Fig. 10 and Fig.

11 again into Fig. 13, where the horizontal ordinate are
replaced by δt/δt∗. Clearly, all the transition probabil-
ities, 〈PAA〉 and 〈PBB〉, collapse together as two curves
with specific lower bounds, which satisfy the function

〈Pββ(l, δt)〉 = (1−〈Pβ(l)〉)
(
1

2

)δt/δt∗(l)
+〈Pβ(l)〉, (21)
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FIG. 11. Time average of transition probabilities 〈PBB(l, δt)〉.
The dot line is corresponding to 〈PBB〉 = (1 + 〈PB〉)/2.
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FIG. 12. Characteristic time of transition probabilities 〈PAA〉
(fill squares) and 〈PBB〉 (open squares) at different structure
scale l. The dot line has a slope 1.
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FIG. 13. Transition probabilities 〈PAA(l, δt/δt
∗)〉 (top) and

〈PBB(l, δt/δt∗)〉 (down). The sold lines are corresponding to
Eq. (21).

where β represents A or B. In the plot, some points de-
parting from the curves are those out of the inertial range.
So based on the stationary transition probability ma-

trix, 〈Pββ(l, δt)〉 ≈ Pββ(l, δt), a collapsed Markov chain
[39] have been built in fact. The probability 〈Pβ〉 in
Eq.(21) is found to depend mainly on the random force
f(x, t), especially the spectral exponent y in Eq.(5).

V. EFFECTS OF RANDOM FORCING

PARAMETER y

In order to probe the effects of random forcing on the
Burgulence field, we carried out five DNS cases with pa-
rameter y = 0.25, 0.5, 0.75, 1.0, 2.0 in Eq.(5), respectively
and the others computation conditions are set identically
as the case y = 1.0 discussed above. Using the sub-
ensemble decomposition method explained in Sect. III,
we obtained some statistical results for each case shown
in Tab. I .

TABLE I. DNS cases and statistical quantities for Burgulence
with different parameter y.

Case y E(k) Slope of ζp,A 〈PA〉

1 0.25 ∝ k−1.209 0.137 0.523

2 0.50 ∝ k−1.402 0.200 0.537

3 0.75 ∝ k−1.545 0.273 0.556

4 1.00 ∝ k−1.657 0.334 0.575

5 2.00 ∝ k−2.005 0.630 0.664

Fig. 14 shows the energy spectra of the five Burgu-
lence fields. In the plot, the slopes of log-log plot en-
ergy spectra in inertial range is a monotone decreasing
function of y, which deviates from Yakhot’s prediction,
E(k) ∝ k−5/3+2/3(d−y), deduced in [40], where the di-
mension d = 1. When y is large, e.g. y = 2.0, the velocity
field is close to a decaying Burgulence field with energy
spectrum slope −2, which means the random forcing ef-
fect can be ignored. On the other hand, when y becomes
smaller, the random forcing is bigger, the velocity field
seems more like white noise, and the energy spectrum is
flatter. Furthermore, a demonstrable proposition is that:
when the energy spectrum becomes flatter and flatter,
the entire average local energy flux at same scale be-
comes less and less referring to the total kinetic energy,
which indicates the relative difference between the aver-
age positive and negative local energy fluxes is smaller.
So when y is small enough, the phenomenon of the whole
field being dominated by shock is no longer apparent.
Another important and interesting result is that, all of

the exponents for sub-ensemble A exhibit linear scaling
behaviors, and the slopes of ζp,A vs p form a monotone
increasing function of y within inertial range,

ζp,A ≈

yp

3
,

which is shown in the insert of Fig. 15. At the same
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FIG. 14. Energy spectrum averaged in t ∈ [100, 300] (solid
line) with y = 0.25, 0.5, 0.75, 1.0, 2.0 respectively. The slopes
are plotted in the inset, in which the dot line show Yakhot’s
prediction.
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p/3 respectively. The inset shows the slopes of ζp,A vs y.
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FIG. 16. Transition probabilities 〈PAA(l, δt/δt
∗)〉 (top) and

〈PBB(l, δt/δt∗)〉 (down) with y = 0.75. The sold lines are
corresponding to Eq. (21).

time, we can see from Fig. 15, the scaling behaviors
of sub-ensemble B in all of the five cases are anomalous.
The exponents of sub-ensemble B converge towards a dif-
ferent constant with different y at high orders p. Thus
the shock waves, the positive energy fluxes, dominate the
intermittency of Burgulence, but the domination level is
lower when y is small, at the case of which the scaling
behaviors of sub-ensemble A and B are close together.
By the way, the total kinetic energy is at a high level
with the same other conditions, though the relative en-
ergy fluxes is small at small y, when the field receives its
statistical equilibrium.

At last, following the Markov analysis in Sect. IV, we
obtained the collapsed time average transition probabil-
ities 〈PAA(l, δt/δt

∗)〉 and 〈PBB(l, δt/δt
∗)〉 shown in Fig.

16 for the case y = 0.75. In this case, the relationship
of Eq. (21) is still holden with new different parameters,
which is mainly corresponding to the characteristic times
and the sub-ensemble probabilities. Considering on the

comparison among the five cases, we can conclude that:
the smaller y is, the more the random forcing dominate
the Burgulence field, the smaller the probability of sub-
ensemble A is, and the smaller the characteristic time
changing from one state to another is.

VI. CONCLUSION AND DISCUSSION

This paper presents a new description of the transition
between the positive and negative local energy fluxes, or
the shock and rarefaction waves, from the angle of sub-
ensemble decomposition. Using the concept of group ve-
locity difference (GVD), we divide Burgulence field into
sub-ensemble A and B corresponding to rarefaction wave
and shock wave. These two sub-ensembles possess prob-
ability scale-invariance in the inertial range and show
K41 scaling law and typical Burgers anomalous scaling
law respectively, which are corresponding to two differ-
ent energy flux or cascade processes. Furthermore, we
investigate the interconversion between A and B through
Markov process analysis, and find the elements of the
transition probability matrix in the stationary Chapman-
Kolmogorov equation Eq. (19) fit a universal form at dif-
ferent scales, namely Eq. (21), which offers an uncompli-
cated probabilistic description for the structure evolution
and exhibits some new properties of nonlinear dynamic
self-organization in Burgulence.

Since the similarities between in 1D Burgulence and 3D
Navior-Stocks turbulence, the statistical analysis method
proposed here can be applied upon 3D turbulence, too.
In 3D case, the local energy flux can be defined as [29]:

Π(x, l) = −∂〈ui〉l
∂xj

τij = −∂〈ui〉l
∂xj

(〈uiuj〉l − 〈ui〉l〈uj〉l),

where 〈·〉l denotes the average at scale l. For the integral
energy flux is nonzero, the distribution of local energy
fluxes will be asymmetric about zero, and the scaling
behaviors may be different in the two sub-ensembles cor-
responding to positive and negative sign of Π(x, l), re-
spectively.

Another important issue is introducing the Lagrangian
description to study the Markov process of sub-ensemble
transition process, which will display a similar and more
physical visualized pattern, we think. In addition, the
two kinds of different cascade properties indicate that a
new large eddy simulation (LES) may be erected based on
the sub-ensemble decomposition idea. Beyond statistical
theory, the concept itself of ensemble or sub-ensemble
decomposition in the sense of self-organization [41] of-
fers a simple hydrodynamical training ground for devel-
oping mathematical tools to study not only turbulence
but also multi-structure, multi-scale, multi-state or La-
grangian problems.
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