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We report 3D numerical simulations of the flow of an electrically conducting fluid in a spherical
shell when an magnetic field is applied. Different spherical Couette configurations are investigated,
by varying the rotation ratio between the inner and the outer sphere, the geometry of the imposed
field, and the magnetic boundary conditions on the inner sphere. Either a Stewartson layer or a
Shercliff layer, accompanied by a radial jet, can be generated depending on the rotation speeds and
the magnetic field strength, and various non-axisymmetric destabilizations of the flow are observed.
We show that instabilities arising from the presence of boundaries present striking similarities with
the magnetorotational instability (MRI). To this end, we compare our numerical results to experi-
mental observations of the Maryland experiment [Sisan et al, Phys. Rev. Lett. 93, 114502 (2004)],
who claimed to observe MRI in a similar setup.

PACS numbers: 47.65.-d, 52.65.Kj, 91.25.Cw

INTRODUCTION

Spherical Couette flow, i.e. the flow between differen-
tially rotating concentric spheres, has attracted a revival
of interest in recent years. It has been shown that despite
the simplicity of the problem, the flow undergoes many
bifurcations as Reynolds number increases, depending in
ratios of sphere radii and rotation speeds. When one
considers an electrically conducting fluid and imposes
magnetic field, magnetohydrodynamic effects can signif-
icantly change the purely hydrodynamical problem and
lead to new instabilities. This problem has evident conse-
quences in geophysical and astrophysical contexts (stars,
planetary interiors), where setups similar to magnetized
spherical Couette flow are often encountered.

This problem has also been extensively studied in
cylindrical Taylor-Couette flow, i.e. the viscous flow
between two differentially rotating concentric cylinders.
This interest in magnetized conducting fluids confined
by rotating walls has been renewed in the last decade by
investigation of the magnetorotational instability (MRI)
in the laboratory. The MRI is currently the best can-
didate to explain angular momentum transport in ac-
cretion disks around stars and black holes [1]. Balbus
and Hawley, rediscovering an instability first studied by
Velikhov[2] and Chandrasekhar [3], have shown that a
weak magnetic field can destabilize otherwise stable Ke-
plerian flows. The MRI eventually yields a magnetohy-
drodynamical turbulent state, enhancing the angular mo-
mentum transport and allowing inward flow, as observed
in accretion disks.

Several experiments are currently working on this in-
stability. The Princeton experiment has been designed to
observe MRI in a Taylor-Couette flow of liquid Gallium,
with an axial applied magnetic field [4]. So far, MRI has
not been identified, but non-axisymmetric modes have

been observed when a strong magnetic field is imposed
[5]. The PROMISE experiment, in Dresden, is based on
a similar set-up, except that the applied field possesses
an azimuthal component. Axisymmetric traveling waves
have been obtained, and identified as being Helical MRI,
an inductionless instability different from but connected
to the standard MRI [6].

On the other hand, spherical Couette flows have been
widely studied, through theoretical analyses, laboratory
experiments, and numerical simulations. For instance,
without magnetic field but for sufficiently large Reynolds
numbers, it is known that the flow can be hydrodynami-
cally unstable to a rich variety of axisymmetric and non-
axisymmetric modes. When a magnetic field is applied,
additional magnetohydrodynamic effects are generated.
Hollerbach [7] first shows numerically that a free shear
layer is created in the flow when a strong magnetic field is
imposed. This configuration was later asymptotically an-
alyzed by Kleeorin et al [8] and Starchenko [9]. When the
inner sphere is conducting, Dormy et al [10] discovered
that imposing a dipolar magnetic field yields a super-
rotating jet, that is, a region of fluid with angular ve-
locity larger than either boundary’s. This super-rotation
was recently observed experimentally in the DTS exper-
iment, using a spherical shell filled with liquid Sodium
in presence of a dipolar magnetic field imposed by a per-
manent magnet inside the inner sphere [11],[12]. More
recently, it was shown that several non-axisymmetric in-
stabilities are generated from these magnetized spherical
Couette flows, including destabilization of the meridional
return flow [13],[14], or from the free shear layers and jets
produced by the magnetic field [15], [16].

A few years ago, it has been claimed that MRI was
obtained in a spherical Couette flow of liquid Sodium in
Maryland [17]. In this experiment, in which the outer
sphere is at rest and an external axial magnetic field is
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applied parallel to the rotation axis, non-axisymmetric
oscillations of both velocity and magnetic fields have been
observed, together with an increase of the torque on the
inner sphere. Although the instability appears from a hy-
drodynamical state already turbulent, these oscillations
have been interpreted as a signature of the MRI.
In this article, we numerically investigate magnetized

spherical Couette flow for different configurations, in-
cluding a setup similar to the Maryland experiment [17].
In the first section, we present the equations and the
numerical method used to study this problem. In sec-
tions II and III, we report numerical simulations with a
dipolar magnetic field applied to the flow, and with a
rotating outer sphere. We show that magnetized spher-
ical Couette flow yield different non-axisymmetric insta-
bilities with a rich variety of structures and non-linear
interactions. We compare our MHD instabilities to the
MRI, and highlight the striking similarities between both
type of instabilities, including the enhancement of an-
gular momentum transport and the transition to MHD
turbulence. Finally, our numerical results using an ax-
ial magnetic field are directly compared to the Maryland
experiment [17].

I EQUATIONS

We consider the flow of an electrically conducting fluid
induced in a spherical shell. The aspect ratio of the inner
sphere radius ri to the outer radius ro is set to 0.35. Ωi

and Ωo are respectively the angular speed of the inner
and the outer sphere. The governing equations for this
problem are the Navier-Stokes equations coupled to the
induction equation :

ρ
∂u

∂t
+ρ (u∇)u = −∇P+ρν∇2

u+
1

µ0
(∇×B)×B . (1)

∂B

∂t
= ∇× (u×B) + η∇2

B . (2)

where ρ is the density, ν the kinematic viscosity, η is
the electrical resistivity, µ0 the magnetic permeability, u
is the fluid velocity, and B the magnetic field. Lengths
are scaled by the shell gap l0 = ro − ri, and we use
the viscous time t0 = l20/ν as a typical time scale. The
magnetic field B is scaled by

√
ρµ0ηΩi. The problem

is thus characterized by 3 dimensionless numbers: the
Reynolds number Re = (Ωil

2
0)/ν, the magnetic Reynolds

number Rm = (Ωil
2
0)/η and the Elsasser number Λ =

B0/
√
Ωiρµ0η. It is also useful to define the magnetic

Prandtl number Pm = ν/η, which is simply the ratio
between Reynolds numbers. The magnetic and kinetic
energies reported in this article are respectively scaled
by ρνΩi and ρν2/l20, and the torques by ρνl0. These
equations are numerically integrated using the PARODY

code [10],[18]. In this code, velocity and magnetic fields
are decomposed in poloidal and toroidal components and
expanded in spherical harmonics. In the radial direction,
a finite differences method is used on an irregular mesh,
which decreases in geometrical progression towards the
boundaries. Time stepping is implemented by a Crank-
Nicholson scheme for the diffusive terms and an Adams-
Bashforth for the non-linear terms. Depending on the
values of our dimensionless numbers, typical numerical
resolutions involve between 150 and 250 radial grid points
and between 64 and 150 spherical harmonics degrees and
orders.

Magnetized spherical Couette flow has been largely
studied in an interesting series of papers [13], [15], [16]
and some of these results are confirmed by the present
work. However, these previous studies rely on the as-
sumption that the magnetic Reynolds number Rm can
be neglected for very resistive fluids. This assumption
greatly simplifies the governing equations, in particular
the time derivative can be omitted from the induction
equation (2). This is one of the motivations for the
present study, since induction processes could play an
important role when describing liquid metal experiments.
In particular, a finite value of Rm is necessary to observe
the standard magnetorotational instability. For instance,
in the Maryland experiment [17] (initially designed to ob-
serve dynamo action), the electrical conductivity of the
liquid Sodium yields magnetic Reynolds numbers up to
30, meaning that Rm can no longer be neglected in the
MHD equations.

II DIPOLAR MAGNETIC FIELD AND GLOBAL

ROTATION

In this section and the next one, the inner sphere is
rotating such that Ωi/Ωo = 8. The global rotation of
the system is thus relatively weak. This configuration
is particularly interesting in the context of MRI experi-
ments. Indeed, in a cylindrical geometry, this choice of
the rotation ratio would correspond to a system slightly
below the Rayleigh stability criterion, but MRI unstable.
Both spheres are taken insulating and an internal dipolar
magnetic field (held by the inner sphere) is applied to the
system. The magnetic Prandtl number is set to 1 in this
section.
For small Reynolds numbers and with no magnetic

field applied, the solution is axisymmetric and corre-
sponds to the well known spherical Couette solution.
It consists of a strong azimuthal flow associated with a
poloidal recirculation. The Taylor-Proudman theorem
states that for a sufficiently strong global rotation of the
system, the velocity tends to be uniform in the z direc-
tion, due to a dominant balance between the pressure
gradient and the Coriolis force [19]. As a consequence,
the flow outside the tangent cylinder is in solid body
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FIG. 1: (Color online) Purely hydrodynamical Couette
flow, obtained for Re = 2000 and Ωi/Ωo = 8 . Left:
Radial component ur of the axisymmetric velocity.

Note the strong equatorial jet in the midplane. (lines
represent streamlines of the axisymmetric poloidal

recirculation). Right: angular velocity in the meridional
plane, showing a broad Stewartson layer on the tangent

cylinder. Contours of Ω are also shown.

rotation with the outer sphere. The difference of rota-
tion between inner and outer spheres, together with the
Taylor-Proudman constraint, yield the so-called Stewart-
son free shear layer, located on the tangent cylinder [20].
Inside the Stewartson layer, the azimuthal flow rapidly
varies from the velocity of the outer sphere (outside the
tangent cylinder) to a velocity intermediate between in-
ner and outer spheres (inside the tangent cylinder). The
structure of the axisymmetric component of the flow for
Re = 2000 is illustrated in figure 1, and shows a Stew-
artson layer developing on the tangent cylinder. Note
that since these numerical simulations involve a rela-
tively weak global rotation, the Stewartson layer is dif-
fuse. Moreover, because of the differential rotation be-
tween the inner and the outer sphere, the poloidal re-
circulation is characterized by a strong equatorial jet in
the midplane. A similar jet can be observed in Taylor-
Couette flow with short aspect ratio (see for instance
[21]).

For sufficiently large Reynolds number, this axisym-
metric state becomes unstable to non-axisymmetric per-
turbations. Figure 2 shows the different states obtained
in the parameter space (Re,Λ), and their corresponding
marginal stability curves. For Re > 2000, the desta-
bilization of the spherical Couette flow yields a non-
axisymmetric instability, strongly dominated by the az-
imuthal wavenumber m = 2 (green squares in figure 2).

In figure 3 (bottom), we report the structure of
this hydrodynamical instability by showing the non-
axisymmetric radial component of the velocity field. The
non-axisymmetric pattern drifts at a constant speed in
the azimuthal direction. A cut in the equatorial plane
(left) shows the m = 2 structure of the instability, and
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FIG. 2: (Color online) Parameter space for a dipolar
magnetic field applied to a system such that Ωi = 8Ωo,
and with insulating spheres. Green squares indicate
m = 2 hydrodynamical instabilities modified (and

suppressed at large Λ) by the applied field. Red circles
are MHD instabilities of the return flow or the free

shear layer triggered by the magnetic field, dominated
by m = 1 and m = 2 azimuthal wavenumbers. Black
crosses indicate classical spherical Couette solutions,

purely axisymetric.

the meridional plane (right) illustrates its symmetry with
respect to the equatorial plane. Following [13], we denote
this state by ’symmetric’, i.e. velocity and magnetic fields
satisfy:

(ur, uθ, uφ, Br, Bθ, Bφ) (r, θ, φ) =

(ur,−uθ, uφ,−Br, Bθ,−Bφ) (r, π − θ, φ) (3)

whereas antisymmetric modes satisfy:

(ur, uθ, uφ, Br, Bθ, Bφ) (r, θ, φ) =

(−ur, uθ,−uφ, Br,−Bθ, Bφ) (r, π − θ, φ) (4)

In such spherical Couette flows, two distinct situations
are generally considered: configurations with a strong
global rotation, or configurations with the outer sphere
at rest. Two types of instability are thus observed when
Re is increased: In the first case, the Stewartson layer is
destabilized and rolls up into a series of vortices in the
(r, φ) plane, leading to an equatorially symmetric mode
localized on the tangent cylinder. In the second case,
if Re is sufficiently large, the strong equatorial jet be-
comes unstable by adopting a wavy structure, and yields
an antisymmetric mode localized in the equatorial plane.
In the present configuration, global rotation is relatively
small and Reynolds numbers are large enough for both
instabilities to be generated, so the interpretation is not
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FIG. 3: (Color online) Top: Evolution of magnetic
(squares) and velocity (circles) modes when the Elsasser

number is increased, for Re = 4000. The
hydrodynamical m = 2 non-axisymmetric instability is

suppressed by the action of the applied dipolar
magnetic field. Bottom: Non-axisymmetric ur showing
the structure of the hydrodynamical instability in the
equatorial plane (left) and in a meridional plane at

φ = 0 (right), for Re = 4000 and Λ = 0. On the left are
also indicated streamlines of the horizontal flow of the

instability integrated in the z-direction.

as clear-cut. Indeed, as it can be seen in figure 3, the
instability is symmetric with respect to the equator and
consists of a series of vortices in the horizontal plane (i.e.
the velocity perturbations are mainly horizontal), as it is
expected from a Stewartson layer instability. Note how-
ever that a large part of the energy of the mode is local-
ized in the equatorial plane, suggesting the the system is
close to a transition to an equatorial jet instability.

When a magnetic field is applied to this new hydrody-
namical state, the instability can be suppressed: the flow
is hydrodynamically unstable only in a limited pocket in
the parameter space (suggested by the green(light gray)
dashed line in figure 2). Figure 3 (top) shows a bifurca-
tion diagram of the m = 2 component of the kinetic and
magnetic energies when Λ is increased, for Re = 4000. It
illustrates the inhibiting role of the magnetic field: this
m = 2 non-axisymmetric mode is strongly damped by the
applied field. It is interesting to note that the observa-
tion of the magnetic energy alone would rather suggests

a destabilizing effect of the magnetic field. For Λ ∼ 0.35,
the instability is completely suppressed, and the solution
is back to an axisymmetric state.

In addition to this stabilizing effect, the applied mag-
netic field is also able to drive instabilities. In figure 2,
the red circle indicate non-axisymmetric states, differ-
ent from the hydrodynamical instabilities described pre-
viously.
This has been interpreted as a destabilization of the

poloidal return flow by the applied field. In recent induc-
tionless simulations, Hollerbach [13] has shown that in
the presence of a weak magnetic field, the poloidal return
flow is destabilized to a non-axisymmetric state. As the
intensity of the magnetic field is increased, this instabil-
ity continuously connects to another type of instability
related to a free shear layer in the flow. Indeed, when
a strong magnetic field is applied to a spherical Couette
flow, the magnetic tension couples fluid elements together
along the direction of magnetic field lines. This creates
a particular surface Σ in the flow, separating the region
where magnetic field lines are connected to both spheres
from the region where magnetic field lines are only touch-
ing one of the sphere. Depending on the region consid-
ered, the flow will behave very differently. For instance,
when the applied field is dipolar, like in this section, Σ
is defined by magnetic field lines just touching the outer
sphere at the equator. In this case, the fluid inside Σ, cou-
pled only to the inner sphere, co-rotates with it, whereas
fluid outside Σ rotates at an intermediate velocity (except
near the sphere boundaries). The jump of velocity on
the surface Σ therefore results in a new free layer, the so-
called Shercliff layer [22]. This effect was first described
in spherical geometry by Starchenko [9], who found that
the thickness of this layer scales like (Λ

√
Re)−1/2. Like

the Stewartson layer, the Shercliff layer becomes unsta-
ble to non-axisymmetric perturbations when the shear
is strong enough. However, in the case of a dipolar ap-
plied field, the significance of the field lines Σ can be
completely eliminated if the Reynolds number is large
enough [23], and only instabilities of the return flow will
remain. Despite the differences in the geometry of the
applied field and in the parameter regime, it is surprising
to note that our figure 2 is very similar to Fig.2 of [13].
Figure 4 shows the evolution of the non-axisymmetric

components of the magnetic field when the Elsasser num-
ber is increased, for Re = 2000. For this small Reynolds
number, both Stewartson layer and equatorial jet are
hydrodynamically stable to non-axisymmetric perturba-
tions for Λ = 0. As Λ is increased from this axisymmetric
state, the return flow becomes unstable, and the system
undergoes a bifurcation to an m = 1 rotating mode at
Λc = 0.2 (corresponding to red dots in figure 2).

When Λ is increased further, one observes a transfer
between this m = 1 mode and an m = 2 structure. Fig-
ure 5 shows that the modes are still symmetric with re-
spect to the midplane. The structure of the instability is
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FIG. 4: (Color online) Bifurcation diagram of the
magnetic energy when the Elsasser number Λ is

increased for a fixed Reynolds number Re = 2000. Note
the non-axisymmetric destabilization of the meridional
return flow by the applied field, dominated by m = 1
and m = 2 non-axisymmetric modes. Strong applied

fields suppress these MHD instabilities.

similar to the one obtained in [13] and the localization of
the energy of the mode indeed suggests that the instabil-
ity is related to the meridional return flow. Note however
that close to the threshold, our large Rm calculations
lead to the generation of an m = 1 mode, whereas induc-
tionless simulations of [13] predicted an m = 2 mode.
When m = 1 and m = 2 azimuthal modes are both

excited, a phase locking is achieved between these two
modes, and nonlinear interactions can become important.
Finally, if the Elsasser number is increased up to 1.8, the
magnetic tension of the applied magnetic field suppresses
any instability, and the system comes back to an axisym-
metric state.

III COMPARISON WITH MRI

At this point, we would like to briefly compare these
instabilities, mainly due to the presence of boundaries, to
what would be expected in a cylindrical geometry. Ve-
likhov [2] and Chandrasekhar [3] first studied the effect of
an axial applied magnetic field on a Couette flow confined
between two infinite cylinders. They considered rotations
of the cylinders such that the flow is stable under the cen-
trifugal instability. According to the Rayleigh criterion,
this means that the rotation profile follows Ω ∼ rγ , with
γ > −2. However, this flow can be destabilized by ap-
plying an magnetic field to the system if γ < 0. This
powerful magnetorotational instability (MRI), later re-
discovered by Balbus and Hawley in the framework of
accretion disks, yields a radial outflow of angular mo-
mentum and can lead to an MHD turbulent state. The

FIG. 5: (Color online) Structure of the MHD instability
for Re = 2000. The figure shows the radial

non-axisymmetric component of the magnetic field just
above the equatorial plane (left) or in a given

meridional plane at φ = 0(right). The two top figures
show the m = 1 mode obtained for Λ = 0.35 and the

two bottom figures show the field obtained for Λ = 0.9,
dominated by the m = 2 azimuthal wavenumber.

magnetic field can also have a stabilizing effect: for un-
stable flow satisfying γ < −2, the magnetic field is able
to suppress the centrifugal instability [24]. Finally, the
MRI is also suppressed if the applied magnetic field is
too strong.
Despite the fact that MRI is generally considered as a

local instability (without regard to the boundaries of the
system) , it is interesting to note that most of the above
features are encountered in the instabilities of our finite
geometry system. First, figure 2 shows that the MHD
instability is excited only in a delimited pocket in the
parameter space: it requires a finite value of the mag-
netic field to be unstable, but is stabilized if the applied
magnetic field is too strong. Second, the critical value of
the Elsasser number for restabilization rapidly increases
with Rm, similarly to the magnetorotational instability.
In addition, one can find similarities between the suppres-
sion of the hydrodynamical instability by the magnetic
field and the suppression of the centrifugal instability in
Taylor-Couette flow.
From an astrophysical point of view, an important

characteristic of the MRI is its ability to ensure an ef-
ficient outward transport of the angular momentum and
to yields accretion, and eventually turbulence. Since
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there are different ways to measure the level of fluc-
tuations in our simulations, we compare three differ-
ent quantities. For instance, we computed the quantity

ζ =

√
<(uφ−<uφ>)2>√

<uφ>2
, measuring the level of fluctuation

of uφ, where <> denotes time averaging. The velocity is
probed in the equatorial plane at r = 0.7 and φ = 0. Fig-
ure 6 shows the evolution of ζ when the Elsasser number
is increased, for a fixed value of the Reynolds number
Re = 8000. In figure 6, we also show the evolution of

the parameter β =
<(uφ−<uφ>)(ur−<ur>)>

<uφ>2 related to the

Reynolds stress, and the evolution of the total torque
G applied on the inner sphere (after subtraction of the
value obtained at Λ = 0, Re = 8000), which quantify the
amount of angular momentum transported.

For this value of Re = 8000, the purely hydrodynami-
cal state consists of a basic spherical Couette flow asso-
ciated with an m = 2 component, and the total kinetic
energy is steady. As Λ is increased, the flow becomes un-
stable to several azimuthal wavenumbers, and non-linear
interactions rapidly lead to a chaotic evolution of the
flow. As can be seen on figure 6, this corresponds to a
growth of the three quantities ζ, β and G, evidencing
an increase of the level of turbulence and of the amount
of angular momentum transported outward. This tran-
sition is illustrated by the two snapshots of figure 6: for
Λ = 0 (left), the radial flow taken at r = (ro + ri)/2 is
dominated by a smooth m = 2 perturbation. For Λ = 1
however (right), far from the MHD instability onset, the
velocity field appears more fluctuating and spatially dis-
organized. It is remarkable that the three different quan-
tities used to measure this transition show a good agree-
ment. This is particularly interesting for comparison be-
tween different experiments, where only either torque or
velocity measurements are often available.

Here again, we find that this instability plays a role
similar to the MRI, by destabilizing an otherwise stable
flow and leading to a strong MHD turbulent state. These
striking similarities between our instability and the mag-
netorotational instability have important consequences
for experimental studies of the MRI. In particular, it
points out the difficulties to make a clear distinction be-
tween both types of instability from experimental diag-
nostics. In the next section, we therefore compare our
numerical simulations to experimental results obtained
in the Maryland experiment [17], which have been inter-
preted as non-axisymmetric MRI.

IV COMPARISON WITH EXPERIMENTS:

AXIAL FIELD AND OUTER SPHERE AT REST

In this section, we now keep the outer sphere at rest,
and the applied magnetic field is purely axial, aligned
with the axis of rotation. While the outer sphere is
always taken insulating, two types of boundary condi-

0 0.2 0.4 0.6 0.8 1
Elsasser number Λ

0

0.5

1

1.5

2
level of fluctuation ζ
β  parameter (1.e-4)
Total torque (5.e-5)

FIG. 6: (Color online) Effect of the imposed magnetic
field on the turbulence level, for Re = 8000 and

Ωi = 8Ωo. Top: non-axisymmetric uφ at the spherical
surface of radius r = 1.2 showing that for Λ = 0. (left),
the flow is dominated by an m = 2 mode due to an
hydrodynamic instability, and is weakly fluctuating.
Right: For Λ = 1, when boundary-driven instabilities
are generated by the applied field, the flow becomes

more complicated and chaotic. Bottom: evolution of the
turbulence intensity when the magnetic field is

increased. MHD instabilities due to boundaries yield
turbulent fluctuations and angular momentum

transport, similarly to the MRI.

tions have been used for the inner sphere: insulating
or conducting (with the same electrical conductivity as
the fluid). This configuration is similar to the one used
in the Maryland experiment [17]. This experiment con-
sists of Sodium flowing between an inner sphere of radius
a = 0.050 m and an outer sphere of radius b = 0.15 m.
The inner sphere is made of high conductivity copper,
and an external axial magnetic field is applied coaxially
using a pair of electromagnets. In [17], the authors re-
port that axisymmetric and non-axisymmetric modes are
spontaneously excited for sufficiently large Rm when a
magnetic field is applied. Most of the parameter space is
dominated by an m = 1 precessing pattern, and the ap-
pearance of these instabilities is correlated with a strong
increase of the torque applied on the inner sphere. Some
of the non-axisymmetric modes are suppressed for large
magnetic field. These results have been interpreted by
the authors to be a signature of the magnetorotational
instability. Note that since the outer sphere is at rest,
the background flow is already very turbulent without
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applied field, in contrast with the initial stable laminar
state generally considered in studies of MRI.

As can be seen in figure 7, the flow without magnetic
field is very different from the one obtained in the pre-
vious sections, when the outer sphere was rotating: a
strong equatorial jet is produced in the midplane, and
no Stewartson layer is generated. It is useful to intro-
duce the velocity exponent γ = ∂ logΩ(r)/∂ log r, where
Ω(r) is the rotation rate at a cylindrical radius r. The
Rayleigh criterion for stability, γ > −2, is thus expected
to be violated when the outer sphere is at rest. However,
in [17], a very weak level of turbulent fluctuations has
been reported, together with a velocity exponent around
−1.5, surprisingly close to a stable keplerian flow. In fig-
ure 7, we show the radial profile of γ(r), for different al-
titudes z in a purely hydrodynamical simulation. Except
near the boundaries (where the flow is strongly Rayleigh
unstable), stable profiles with γ > −2 can be obtained,
depending on the altitude z (for instance, γ ∼ −1 at
z = 0.2 ). However, as the measurements are done closer
to the midplane, the velocity exponent significantly de-
creases, and unstable profiles are obtained, with γ much
smaller than −2. This is also the case if z is too large.
This variability of the angular profile underlines the dif-
ficulties of studying the MRI in a spherical Couette flow,
particularly in the absence of global rotation uniformiz-
ing the flow in the axial direction.

As Re is increased, the flow undergoes bifurcations to
non-axisymmetric modes. Indeed, it is well known that
for sufficiently large Reynolds number, the equatorial
jet becomes unstable to non-axisymmetric perturbations,
and gives rise to a Kelvin-Helmoltz instability [25], [26],
[27]. The critical wavenumber for this instability depends
on the aspect ratio and on the Reynolds number. Figure
8 shows a bifurcation diagram of the kinetic energy as Re
is increased. The flow bifurcates to a non-axisymmetric
state at Re = 2700, where the equatorial jet is desta-
bilized to an m = 3 structure. For higher Re, there is
a transition to an m = 2 mode. It is numerically ex-
pensive to conduct simulations at higher Reynolds num-
bers, but it is expected that successive bifurcations in-
volving higher azimuthal wavenumbers eventually yield
a turbulent state [28]. It has been recently shown that
these non-axisymmetric instabilities can trigger dynamo
action, but only when Pm > 1 [29], which will not be
considered here. An important feature is that these non-
axisymmetric modes are antisymmetric, in contrast with
the symmetric hydrodynamical modes obtained when the
outer sphere is rotating.

Let us now study the magnetized regime. In this sec-
tion, the magnetic Prandtl number is set to Pm = 0.01,
which allows us to obtain magnetic Reynolds number Rm
comparable to the ones used in the Maryland experiment
[17]. In the presence of an external axial magnetic field,
the system exhibits most of the features obtained with
a rotating outer sphere and described in the previous
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FIG. 7: (Color online) Top: Structure of the spherical
Couette flow when the outer sphere is now at rest, for
Λ = 0 (left) and Λ = 2 (right), with Re = 5000. Colors
indicate azimuthal flow uφ and streamlines show the

meridional recirculation. Note the absence of
Stewartson layer in the purely hydrodynamical case (no
global rotation) and the generation of the Shercliff layer
in the magnetized one. Bottom: Velocity exponent γ
taken at different altitude z, for Λ = 0. Note the
Rayleigh unstable profiles (γ < −2) close to the

midplane.

section of this article. For instance, when a magnetic
field is applied to the hydrodynamical state, the non-
axisymmetric destabilizations of the equatorial jet can
be suppressed. Various non-axisymmetric states, differ-
ent from this equatorial jet instability, are also generated
by the magnetic field. In figure 7-right, we show the flow
obtained when a strong axial magnetic field is applied
(with a conducting inner sphere).

In this case, the particular surface Σ (which separates
flow into two regions according to whether magnetic
field lines are touching both spheres or only one of
them) is located on the tangent cylinder: the fluid is at
rest with the outer sphere outside the tangent cylinder,
while the fluid inside the tangent cylinder rotates at Ωi

(for a conducting inner sphere) or at the intermediate
rate Ωi/2 (for an insulating inner sphere). The spatial
extension of the Ekman recirculation is also reduced.
As noted before, this shear layer becomes unstable to
non-axisymmetric perturbations for sufficiently large
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FIG. 8: (Color online) Bifurcation diagram of the total
kinetic energy when Re is increased. The outer sphere
is at rest and Elsasser number is set to zero. As Re is
increased, the equatorial jet adopts a wavy structure
corresponding to non-axisymmetric modes, first m = 3
then m = 2. For larger Re, it is expected that the flow

tends to a fully turbulent state.

Reynolds number. For smaller values of the applied
field, the return flow instability described in the previous
section is also generated.

Figure 9 shows the evolution of the magnetic energy of
different azimuthal modes for Re = 5000 and Rm = 50
as a function of the Elsasser number Λ.

In figure 9-top, the inner sphere is insulating. In the
whole range of Elsasser numbers explored here, the mag-
netic energy is dominated by an m = 2 instability. At
small Elsasser number (Λ < 0.5), this corresponds to
the hydrodynamical jet instability, equatorially antisym-
metric, which extends into the magnetized regime. For
Λ > 0.5, a different instability occurs, which is symmetric
with respect to the equator. Figure 10 shows the struc-
ture of this instability for two different Elsasser numbers.
As Λ is increased, the oscillations gradually transits from
a return flow instability associated with the meridional
recirculation (top, Λ = 0.6), to a Shercliff layer instabil-
ity (bottom, Λ = 2). In the latter case, the energy is
concentrated on the tangent cylinder and consists of a
series of vortices roughly independent of the z-direction.

In figure 9-bottom, the inner sphere is electrically
conducting. The electrical conductivity is identical to
that of the fluid, and thus smaller than the conductivity
used in the Maryland experiment [17], where an inner
sphere made of copper is used. In spite of this difference
and of our lower Reynolds number, our numerical
simulations show a very good agreement with the results
obtained in the experiment (see for instance figure 4 of
[17]):
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FIG. 9: (Color online) Bifurcation diagram of the
magnetic energy when Λ is increased, for Re = 5000

and Rm = 50, with an outer sphere at rest and an axial
applied magnetic field (Maryland experiment [17]

configuration). Top: insulating inner sphere. Bottom:
conducting inner sphere. In the latter case, a good

agreement with the Maryland experiment is obtained,
including the generation of an m = 1 mode and increase
of the torque on the inner sphere (to be compared with

Fig.4 of [17]).

- An m = 1 mode is generated in a range of the El-
sasser number similar to the experiment. The generation
of this m = 1 mode is clearly due to the conductivity of
the inner sphere. Note in particular that this instability
is antisymmetric with respect to the equator, unlike
Shercliff or return flow instabilities. However, the insta-
bility is still concentrated near the tangent cylinder(see
figure 11).

- This non-axisymmetric mode can be suppressed by a
strong field, and a transition between different azimuthal
wavenumbers is observed for higher fields, in agreement
with the Maryland experiment [17].

- The structure of the radial magnetic field, as shown
in figure 11, possesses the same symmetry with respect to
the equator as the first mode obtained in the Maryland
experiment [17]. At larger Elsasser number, this m =
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FIG. 10: (Color online) Structure of the MHD
instabilities for Re = 5000 with an insulating inner
sphere and an axial field, formed of vortices in the

horizontal plane. Figure shows the radial
non-axisymmetric component of the velocity field ur in
the equatorial plane (left) or in a given meridional plane
at φ = 0(right). The two top snapshots show the m = 2
mode obtained for Λ = 0.6 (instability related to the
meridional return flow) and the two bottom snapshots

show the field obtained for Λ = 2. (Shercliff layer
instability).

FIG. 11: (Color online) Structure of the m = 1
instability obtained for Λ = 0.5, Re = 5000 and

Rm = 50, in the case of a conducting inner sphere.
Left: non-axisymmetric Vr in the meridional plane at
φ = 0. Right: non-axisymmetric Br at the surface of

the outer sphere. The structure is identical to the mode
observed in the Maryland experiment [17], with the

same equatorial and azimuthal symmetries.

1 instability is replaced by return flow instability and
Shercliff layer instability, rather equatorially symmetric.
This change of symmetry has also been reported in [17].

-The suppression of the m = 1 mode and the gener-
ation of a smaller m = 2 mode when the inner sphere
is switched from conducting to insulating has also been
observed in the Maryland experiment [30].

-Finally, we computed the evolution of the excess
torque G (i.e. obtained after subtraction of the value of
the torque for Λ = 0 at this Reynolds number) applied
to the inner sphere in the conducting case. Like in
the previous section, as the flow becomes unstable to
non-axisymmetric perturbations, we observe a strong
increase of the torque applied to the inner sphere (see
the black curve in figure 9-bottom). This evolution
has been interpreted as an indication of MRI in the
Maryland experiment[17]. The fact that our simulations
reproduce this feature suggests that Shercliff layer and
return flow instabilities are also efficient mechanisms to
enhance the amount of angular momentum transported
outward. However, a large amount of the augmentation
of our torque for this conducting case and the one
reported in the Maryland experiment could be simply
due to the attachment of magnetic field lines to the inner
conducting sphere. Indeed, analytical calculations of a
rotating conducting sphere with a uniform axial imposed
field and surrounded by an infinite medium of stationary
Sodium, predict an important rise of the torque [31].
Applied to our configuration, these calculations lead to
a torque of the same order of magnitude than the one
reported in the figure 9. In any case, this shows that the
torque measured in the Maryland experiment cannot be
assumed to be a direct reflection of MRI instabilities.

An important observation is that both Shercliff layer
instability and return flow instability are inductionless
instabilities, in the sense that they can be generated for
arbitrary small magnetic Reynolds number if the hydro-
dynamical Reynolds number is large enough. Figure 12
shows for instance the m = 2 instability obtained for
Re = 5000, Rm = 0.5, Λ = 1.5 and a conducting inner
sphere. Note that this m = 2 mode is in good agree-
ment with inductionless calculations of [13], in which a
similar setup is used (except for the magnetic bound-
ary condition on the inner sphere which is insulating in
[13]). This underlines the difference of nature between
the boundary driven instability reported here and the
standard MRI (for which induction is necessary), despite
the strong similarities between both instabilities.

The several similarities between our simulations and
the results of the Maryland experiment [17] emphasize
the importance of considering the role of boundaries in
MRI experiment. These numerical simulations indeed
strongly suggest that the non-axisymmetric modes ob-
served in the experiment are destabilizations of either the
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FIG. 12: (Color online) Structure of the
non-axisymmetric component of the Shercliff layer

instability for Re = 5000, Rm = 0.5 and Λ = 1.5, with a
conducting inner sphere. Left: non-axisymmetric ur in
the meridional plane φ = 0. Right: non-axisymmetric

Br at the surface of the outer sphere. Induction is not a
necessary condition for the instability to be generated.

Shercliff layer (at large applied field) or the return flow
(at smaller applied field), rather than the MRI. These
instabilities appear to be very robust, and extend in a
large region of the parameter space. This is therefore
reasonable to expect them to occur in the Maryland ex-
periment, which uses a setup similar to our numerical
problem.
In addition to these non-axisymmetric modes, an m =

0 mode equatorially symmetric has also been reported
in [17]. It is interesting to mention that this axisym-
metric mode measured in the experiment has not been
obtained in our numerical simulation at Pm < 1. How-
ever, for Pm ∼ 1, axisymmetric modes are generated
in the simulations with an axial magnetic field, with or
without global rotation. They seem analogous to magne-
tostrophic MRI modes, a modified version of the MRI in
spherical geometry, possibly relevant to the Earth core
[32] but relying on a magnetostrophic equilibrium not
achieved in our simulations. Their analysis is beyond the
scope of this paper, and will be studied in a future work.
This m = 0 mode thus could be of a different nature
than the non-axisymmetric ones, and may not be related
to the Shercliff layer.

CONCLUSION

In this article, the flow of an electrically conducting
fluid in a spherical shell has been studied numerically.
When a magnetic field is applied to the system, two dif-
ferent effects are observed. First, non-axisymmetric hy-
drodynamical bifurcations from the Stewartson layer or
from the equatorial jet can be suppressed by a sufficiently
strong magnetic field. But the applied field also has a
destabilizing effect, by either disrupting the axisymme-
try of the meridional return flow, or through a two-step
process: first, an axial or dipolar applied field creates a

Shercliff layer, and second, this MHD shear layer eventu-
ally becomes unstable to non-axisymmetric modes if the
magnetic field is not too strong.

We have seen that this Shercliff layer instability, or the
meridional return flow instability, are dominated by dif-
ferent azimuthal wavenumbers depending on the param-
eters (Re,Λ) and the details of the configuration. These
instabilities are very important in the context of labora-
tory studies of the magnetorotational instability. Indeed,
they are relatively robust, and share a lot of characteris-
tics with the non-axisymmetric MRI. The marginal sta-
bility curve is similar, with a destabilization occurring
only in a given range of the value of the applied field.
Whereas a finite value of the field is required to trigger
the instability, the free energy come from the azimuthal
velocity and its associated differential rotation (at least in
the case of the Shercliff layer instability). Moreover, we
have shown that, like the MRI, these instabilities yield an
MHD turbulent state, and are very efficient to transport
the angular momentum outward. It is however important
to insist on the fact that Shercliff layer and return flow
instabilities are inductionless (unlike the standard MRI),
and rely on a different destabilization mechanism.

These similarities have important consequences for lab-
oratory studies of the MRI. First, as was suggested in
[13], our numerical simulations strongly confirm that re-
sults of the Maryland experiment are related to these
boundary driven instabilities rather than MRI. A very
good agreement is obtained with experimental observa-
tions, including the sequence of non-axisymmetric bifur-
cations, the geometry of the magnetic field and the in-
crease of the torque on the inner sphere. This work could
also have interesting echos for investigation of the MRI in
a cylindrical geometry. In this case, the finite geometry
imposed by the experimental approach makes it impossi-
ble to obtain an ideal Couette flow or a quasi-Keplerian
flow, because of the poloidal recirculation created by the
viscous stress at the vertical endcaps. This problem has
been circumvented by replacing the rigid endcaps at the
top and the bottom by two rings that are driven indepen-
dently. It has been shown that a flow profile in a short
Taylor-Couette cell can be kept stable until Re ∼ 106 if
the appropriate configuration of split end caps is used [4].
Similarly, the use of such split rings in the Promise ex-
periment has led to a significant reduction of the Ekman
pumping and a much clearer identification of the HMRI
[33]. Recent three-dimensional numerical simulations [34]
suggest that the jump of angular velocity between inner
and outer rings can be reinforced by applying an axial
magnetic field, and extended in the z direction. This
leads to the creation of a Shercliff layer very similar to the
one described in this paper, which also undergoes some
transition to non-axisymmetric modes. It is thus possi-
ble that similar instabilities could be generated from the
Shercliff layer or from the poloidal return flow in these
cylindrical MRI experiments. This interpretation is rein-
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forced by the fact that the modes observed in the Prince-
ton MRI experiment appear to be inductionless [35].
Finally, our numerical simulations show that investi-

gation of the MRI in the laboratory is significantly com-
plicated by the presence of no-slip boundaries. In spher-
ical or cylindrical geometry, the applied magnetic field
interacts with these boundaries and can trigger MHD in-
stabilities very similar to the MRI. It could make very
difficult any distinction between these instabilities and
MRI in an experiment. The inductionless nature of Sher-
cliff layer instability, in contrast to the required induc-
tion for standard MRI, may be an important key for the
needed distinction between them. However, as pointed in
the introduction, standard MRI continuously connects to
the Helical MRI (HMRI) [36], an inductionless version of
the MRI which can be regarded as an inertial oscillation
destabilized by resistive MHD in presence of an helical
magnetic field [37]. In this particular case, it would be
interesting to see how our boundary-driven instabilities
can therefore be related to global manifestations of the
MRI.
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