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Abstract 

A term-ranking approach is proposed to globally model the underlying dynamics of 

chaotic series. The basic idea of this approach is to rank candidate bases before they are 

used to construct the global model. The ranked bases are involved in the global model 

one by one in a sequence from high to low until the best model is found. Simulations 

show that the model obtained by the term-ranking approach has a much longer prediction 

time, but fewer coefficients than the widely-used standard model. The proposed approach 

is also successfully applied to coding and synthesis of chaos-like voice data, showing 

promise for its use with truly noisy experimental data.  

 

PACS numbers: 05.45.Gg, 05.45. Tp, 43.70.+i, 87.19.-j 
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I. Introduction  

Global modeling of a complex data series has continuously received a great deal of 

attention because of its capabilities in forecasting the evolution of a chaotic system of 

unknown underlying dynamics [1–4], estimating the largest Lyapunov exponent [5] for 

sparse series, diagnosing chaos [6], determining the embedding dimension [7], and many 

other useful functions. 

The general idea of global modeling is to choose a flexible functional form with 

appropriate coefficients to reproduce dynamic behavior of experimental data on the whole 

attractor. A widely used global modeling approach [1-4, 8-9] is to assume that the 

functional form is a linear superposition of basis functions (e.g. power function), that is 

[4]: 
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where K is the dimension of the nonlinear system and D is the order of the power 

function. The number M of terms and coefficients in Eq. (1) is very large: M = 

(D+K)!/D!K!. Ideally (without any error), the exact values of coefficients 
Klllc ,...,, 21

 can 

be calculated using the least squares technique [3-4], chaos synchronization, and genetic 

algorithm [10-11]. If the model is not effective, the order D or the dimension K can be 

increased until a satisfactory model is found. The aforementioned process is called the 

standard approach and the global model created by this approach will be referred to as 

the standard model in this study.  
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A standard model usually must contain a large number of coefficients and terms to 

approach the unknown underlying dynamics of experimental data. However, due to 

calculation error and system noise in practice, the more coefficients the model has, the 

less accurate its coefficient value estimation is. Therefore, the standard approach often 

fails to describe an observed process, even if the degree and dimension are increased. In 

short, it can be said that failure of the standard approach is due to numerous inefficient 

terms and the dynamical effects of overparametrization [12-13]. 

In order to overcome the limitations of the standard approach, one must decide 

which function basis should be involved in the global model. Since the mid 1990s, many 

adaptations have improved the global model with a selective effect basis. 

Zeroing-and-refitting [14] is one of the easiest methods for model selection, which 

estimates the parameters of a large model and eliminates terms with sufficiently small 

parameters. Aguirre and Billings [15] proposed an alternative, simple method, where, 

instead of deleting specific model terms, entire term clusters are deleted based on 

behavior of the respective cluster parameters [15-16]. Besides term parameters, other 

measures of complexity for a given model are defined to address the structure selection 

problem, such as the entropy [17], the maximum description length [18-20], the 

minimum description length [7], Bayesian information criterion, and Akaike information 

criterion [21-22]. Error reduction ratio (ERR) is another practical method to optimize 

the model structure. By selecting the most relevant regressor according to regressor 

quality in an orthogonal space [6, 15, 23-25], ERR has been successfully applied to 
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experimental data. Finally, Aguirre and Letellier have presented a comprehensive review 

on modeling nonlinear dynamics and chaos [26]. Despite these advances, global 

modeling of a complex data series is still a challenge of nonlinear science.  

Recently, a method was proposed to detect the underlying dynamical structure from 

short and noise time series [27]. Using this method, the intrinsic dynamical structure, i.e., 

those terms that actually exist in the original system, can be effectively detected, and 

global models with intrinsic terms could be constructed. Unfortunately, this method 

often requires specific embedding space or knowledge of the state vector in order to get 

intrinsic dynamics. Moreover, even for the intrinsic terms, each of them is not equal but 

has hierarchies from the aspect of global modeling. If all terms were treated equally, 

many inefficient terms would be inevitably included, causing model failure.  

This study generalizes the concenpt of structure detection [27], and proposes a 

term-ranking principle to globally model a complex data series. Instead of determining 

which terms actually exist in the original system, the basis functions are graded according 

to their possible contribution to the predictability of global models. The purpose of the 

current study is not to build parcimonious models, but to obtain the model with the best 

predictability. Therefore, the ranked basis functions are involved in the global model in a 

one by one, high to low sequence until the longest prediction time has been achieved. The 

details of the term-ranking principle are presented in Section II. Then, we examine the 

validation of the proposed method for discrete and continuous data series, respectively. 

Finally, the term-ranking method is applied to coding and synthesis of real voice signals.  
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II. GLOBAL MODELING USING THE TERM-RANKING APPROACH  

A. Global modeling using the term-ranking approach 

It is assumed that experimental data are recorded in the form of a time series N
nns 1)}({ = , 

where n represents the discrete time, and N is the number of data. Global modeling using 

the term-ranking principle includes three main steps:  

The first step is ranking the candidate bases. If there are M candidate bases used to 

construct a global model, we write them as },...,,...,{ ][][]1[ Mm ΦΦΦ , where the subscript [m] 

shows that the bases are not arranged in hierarchical order. In the standard approach to 

global modeling, all of the bases are treated equally and directly used to construct the 

global model. In contrast to this standard approach, the term-ranking approach ranks 

candidate basis functions before they are used in the global model. For the sake of 

distinction, we write the ranked bases as {Φ1, …, Φm,…, ΦM}. The basis function with a 

small subscript has a high ranking and one with a large subscript has a low ranking, i.e., 

the ranking of the basis Φi is hgher than that of the basis Φj if i < j. In subsection II-B, we 

will introduce how to rank the bases in detail. 

The second step is to construct a global function by involving the ranked bases in a 

one by one, high to low ranking sequence. In order to approach the global dynamics of 

s(n), a function  

)]([)1( nn xfx =+  with T
K nxnxnxn )](),...,(),([)( 21=x ,    (1) 

is constructed using the ranked bases. The state vector x(n) can be reconstructed from the 

observed series s(n) using the time-delay method, that is, xk(n) = s(n – (k–1)τ) with k=1, 



 7

2, …, K, where K is the embedding dimension and τ is lag. The nonlinear function f[x(n)] 

is a linear superposition of the ranked basis function Φm:  

)],([...)]([)]([)]([ 2211 nnnn mm xΦcxΦcxΦcxf +++=     (2) 

where m = 1, 2, …, M represents the number of terms and coefficients in the function. 

The values of coefficients cm are calculated by the least squares technique, that is, their 

values are selected so as to minimize the one-step prediction error: 

[ ][ ]∑
=

−+=
N

n

nn
N 1

22 )()1(1 xfxε .     (3) 

The third step is to find the best global model. Prediction ability could be closely 

associated with application of the global model, such as dimension estimation, entropy 

calculation, Lyapunov exponent calculation, forecasting, signal coding/decoding, and the 

chaos test. Therefore, in order to obtain a global model with the best predictability, we 

also use the prediction time Tpred as a criterion to quantitatively measure model quality in 

this study [4, 28]. With the known coefficients, a model phase orbit y(n) can be calculated 

with  

)]([)1( nn yfy =+  with )1()1( xy = .     (4) 

When comparing the model phase orbit y(n) with the original phase orbit x(n), a 

prediction time Tpred can be calculated. Tpred is the time interval in which a 

root-mean-squared prediction error σ(n) (normalized to the standard deviation of the 

observable s) achieves a certain preset threshold σth. We choose the threshold value 

σth=0.05 for the simulation in Section III, unless otherwise specified. The prediction time 
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Tpred is presented in units of discrete time n in this study. 

As shown in Eq.(2), graded basis functions are involved in the global model in a 

ranking sequence from high (small subscript) to low (large subscript). Once a new term 

Φm is involved in the global model, the coefficients of Eq.(2) are estimated and the 

prediction time Tpred of the global model with m bases is also calculated. Finally, the 

model with the longest prediction time Tpred is determined as the optimal global model. 

 B. Term-ranking method 

One pivotal step of the above global modeling approach is in grading the candidate 

bases. In this study, an algorithm developed from Barahona and Poon’s nonlinear 

detection method [29-30] is used to rank the candidate bases [27]. A similar approach was 

also used to detect the intrinsic dynamic structure from noise and short chaotic series [27]. 

This term-ranking method can be described as follows: 

Initially, all basis functions are not arranged in order hierarchically, and are written as 

{Φ[1], …, Φ[m],…, Φ[M]}. One-step prediction functions are constructed with the sum of 

the first [m] candidate bases,  

( ) ( ) ( )xΦaxΦaaxg ][]1[10)( ... mmm +++= .     (5) 

Their coefficients are estimated by solving the least-squares problem x(n) = g(m)[x(n – 1)], 

where the subscript (m) represents the number of bases included in the function. With 

known coefficients, the one-step prediction series can be calculated 

by )]1([)(~
)( −= nn m xgx . The one-step prediction error power ε2(m) of the function g(m) is 

calculated by 
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where )(nx  is the time average value of x(n). Involving the candidate bases in the 

prediction function one by one, the one-step prediction error power ε2(m) of a series of 

function g(m) (m = 1, 2, …M) is calculated.  

The only difference between g(m–1) and g(m) is the basis Φ[m] in the function g(m), and 

therefore, the change of prediction error is highly related to Φ[m]. Barahona and Poon 

revealed that if nonlinear terms can significantly reduce the one-step prediction error, this 

indicates that the underlying dynamics of the data could be nonlinear [29]. Tao et al. 

extrapolated on this idea [27] and claimed that the terms that can significantly decrease 

the one-step prediction error, and could be exist in the original system. This concept is 

generalized in the present study: the changes in prediction error of g(m) and g(m–1) actually 

imply the potential performance of the basis in a global model; therefore, the one-step 

prediction error difference between g(m) and g(m–1) may be used to rank the candidate 

bases Φ[m].  

The parameter “information discrepancy” [ ])(/)1(log)( mmmV εε −=  is used to 

qualify the changes of one-step prediction error [27], with positive V meaning ε(m) < 

ε(m–1). Moreover, a large V value indicates that its corresponding basis has a high 

potential in improving the global model. Therefore, the basis corresponding to the highest 

V value is permanently given the 1st (highest) ranking in all candidates and renamed as 

Φ1. The left terms are temporarily ranked according to their V value. From high ranking 
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to low ranking, they are rewritten as Φ[2], Φ[3],…, Φ[M]. 

To continue, the above process is repeated. For the j-th step, there are j–1 basis 

functions, which have been permanently ranked in the first (j-1)-steps. They are written 

as Φ1,…, Φj-1. Constructing the nonlinear one-step prediction function 

 ]1[1][110)1( ...... −−−−− +++++= mmjjjjm ΦaΦaΦaag ,        (7) 

 ][]1[1][110)( ...... mmmmjjjjm ΦaΦaΦaΦaag ++++++= −−−− .     (8) 

The V value of the basis Φ[m]
 (m = j, …, M) can be calculated by 

[ ])(/)1(log)( mmmV εε −= , where )1( −mε  and )(mε  are the one-step prediction 

errors calculated by g(m-1) and g(m). The basis function Φ[m]
 (m = j, …, M) with the highest 

V value is permanently given the jth-rank and renamed as Φj. The left basis functions are 

temporally ranked j+1 to M {Φ[j+1], …, Φ[M]} according to their V value from large to 

small.  

Finally, repeating the above process M times, the ranking procedure is finished, and 

all bases are permanently ranked {Φ1, Φ2,…, ΦM}. 

III. NUMERICAL EXAMPLES 

 Numerical simulations are employed to examine the proposed global modeling 

approach.  

A. Continuous System 

The first example is modeling the global dynamics of continuous time series 

generated by the Rössler system, which is governed by the differential equations:  
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The observed time series is s(n) = y(nΔt), where n = 1, 2, …N represents the discrete time 

and Δt = 0.1 is the sampling interval. The state vector x(n) is reconstructed from the 

scalar time series s(n), where the embedding dimension K = 3 is determined by using  

the false nearest neighbor method [31] and the time lag 12Δt = 1.2 is closed to the first 

zero of the autocorrelation function. It is known that the Rössler system with a = 0.398, b 

= 2.0 and c = 4.0 will generate chaotic behavior, as shown in Fig. 1 (a). Both the standard 

approach and the term-ranking approach were used to model globally dynamic behavior 

of the observable {s(n)}, with 1000 points used for this modeling. 

Figure 1 (b) is the attractor generated by a standard global model. The global model 

with order D = 7 and dimension K = 3 is reconstructed from observed data using the 

standard approach. With the same initial state as the attractor shown in Fig.1(a), the 

attractor of the standard global model is plotted in Fig.1(b). From comparing Fig.1(b) 

with Fig.1(a), it is apparent that the attractor of the global model is evidently different 

from the original attractor. After a short transient stage, the trajectory of the global model 

is attracted to a limit cycle, i.e., the output of the reconstructed standard model is not 

chaotic, but periodic. The prediction time of this global model is Tpred = 102. The standard 

global model does not reflect the dynamical characteristics of the original system.  

Figure 1 (c) presents the attractor of the global model obtained by the term-ranking 

approach with the order D = 7 and dimension K = 3. The state vector x(n) is also 
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reconstructed from the scalar time series s(n) using the time-delay method with a time lag 

12Δt = 1.2. All bases are initially involved in the one-step prediction function in a 

sequence from low power to high power, i.e., 0
3
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1 . The V value of each candidate is calculated, as shown in Fig. 2(a). 

The third basis ]3[Φ  = 0
3

1
2

0
1 xxx  has the largest V value and it is permanently ranked as 

1st. The remaining bases are sorted again according to their V value. For the 62nd steps, 

the first 61 bases have been ranked. So only the V values of the remainnig 59 bases are 

calculated, as shown in Fig. 2(b). Finally, the basis with the highest V value of these 59 is 

permanently given the 62nd rank. This process is repeated 120 times, and all bases are 

ranked. The ranked terms are then involved one by one in the global model, arranging in 

a sequence from high to low. Figure 2(c) illustrates the prediction time Tpred as a function 

of the number of bases in the model with the solid (red) circles. The best model is 

obtained when the first 90 most highly ranked bases are involved in the model. Its 

prediction time is Tpred=2283. With the same initial state as the original attractor, the 

trajectory generated by the term-ranking model (the first 90 terms) is plotted in Fig.1(c).  

It was argued that a bifurcation diagram is more sensitive indice than other tests, such 

as variance of residuals, prediction error, or a correlation test [15, 32]. Therefore, 

bifurcation diagrams are also used to assess the model quality. The parameter a of the 

Rössler system is varied from 0.32 to 0.52. Then, the global model is reconstructed from 

1000 recorded time series. By plotting the intersection point [labeled as y(N)] of the 

trajectory and the Poincaré section y(t) = 0 in the delay embedding space, the bifurcation 
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diagram is illustrated in Fig.3. It reveals a number of dynamical regimes in the range of 

0.32 ≤ a ≤ 0.52, including period, bifurcation, and chaos. The term-ranking global model 

[Fig.3 (b)] has the same dynamical behavior as the original system [Fig.3(a)].  

Prediction time is also illustrated as a function of parameter a in Fig.3 (c). In general, 

the term-ranking approach can provide a much longer prediction time than the standard 

model can. Particularly, the prediction time of the term-ranking model is always infinite 

[the infinite prediction time is expressed as Tpred = 10000 in Fig.3(c)] for all the periodic 

regimes, but is short for the chaotic regime. This is because the chaotic orbit is sensitively 

dependent on initial conditions, but the stable periodic orbit is not. The term-ranking 

model accurately reflects the difference between the periodic orbit and the chaotic 

attractor, while the standard model fails in this aspect, since its prediction horizon often 

falls short of even the stable periodic orbit. 

When 0.43295 < a < 0.556 for b = 2 and c = 4 [33], the Rössler system corresponds 

to the phase non-coherent attractor, which is associated with more complicated topologies. 

Therefore, global modeling of phase non-coherent attractor is more difficult than the 

phase coherent attractor. Fig.3, shows that the term-ranking model can still accurately 

reproduce dynamical characteristics of the original system with a much longer prediction 

time than the standard model.  

The unstable periodic orbit is closely related to the topological characterization of the 

attractors and could be helpful for controlling dynamical systems [33]. Therefore, 

reconstruction of the global model from the unstable periodic orbit has important 
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scientific and practical values. The Rössler attractor with a = 0.398, b = 2, and c = 4 has 

24 unstable periodic orbits up to period-11 [33] from which the global model is 

constructed. As shown in Fig.4, the term-ranking model provides a long prediction time 

and generally shows better performance than the standard one.  

Finally, using model length [Fig.5(a)] and predictive ability [Fig.5(b)], we 

quantitatively compare the global models obtained by the standard and term-ranking 

approaches. The model dimension is fixed at K=3 but the order of power function is 

varied as D = 1, 2, 3, 4, 5, 6, 7, 8. The results obtained by the standard approach are given 

in Fig. 5 represented by empty (blue) circles. It is apparent that when the order is D = 1, 

the standard global model has only 4 bases, but its prediction time Tpred = 2 is also very 

short. The model cannot reproduce the dynamical behavior of the original data on the 

whole attractor. As suggested by the standard approach, increasing order D to 2, 3, 4 

gradually increased prediction time to 17, 129, 734, and simultaneously, the number of 

bases in the model was increased to M = 10, 20, 35. When the order is increased to D = 5, 

6, 7, 8, the number of bases increases dramatically to M = 56, 84, 120, 165. However, the 

added terms do not enlarge the prediction time Tpred but reduce it to 493, 257, 102, and 

38.  

The global model obtained by the term-ranking approach has fewer terms but longer 

prediction time than the standard model. The results obtained by this approach are given 

in Fig. 5 with the solid (red) circles. When D ≤ 4, the term-ranking model has similar 

prediction time and term number as the standard model. Whereas, when D > 4, the 
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prediction time of the standard model no longer increases with order, while it keeps 

increasing for the term-ranking model. When order D = 8, the prediction time of the 

term-ranking model reaches Tpred = 2499, which is more than three times longer than the 

best standard model (Τpred=734. K = 3 and D = 4). 

This numerical example shows that the term-ranking approach can provide a much 

better global model of continuous systems than the standard approach.  

B. Discrete System 

Discrete system modeling (or map modeling) designates the case when a signal is 

generated by difference equations. Much attention has been paid to map modeling [34], 

since its potential for not only the signal from the discrete system, but also the return map 

of the continuous system. In the second example, the performance of the proposed 

method will be examined in discrete systems. A chaotic signal is generated by a discrete 

ecological system [35] 

( )
( )
( ).)1(025.0)1(05.0exp)1(8.0

)1(07.0)1(07.0exp)1(2.0)(
,)1(001.0)1(001.0exp)1(118)(

−−−−−+
−−−−−=

−−−−−=

nxnyny
nxnynxny

nxnynynx
   (10) 

As shown in Fig.6 (a), the trajectory of this discrete ecological system evolves in an 

attractor composed of fractals in several disconnected domains and visits each of them in 

a periodic manner as indicated by the arrows. Moreover, Eq. (10) is not in a polynomial 

form but in an exponential form. The strong periodicity and the exponential structure of 

this system make global modeling difficult [8]. In this example, it is supposed that both 

x(n) and y(n) are observed and 1000 points (N = 1000) are used for modeling.  
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Figure 6(b) gives the prediction time as a function of the number of terms in the 

model with K = 2 and D = 11. Using a standard approach, the longest prediction time is 

only Tpred = 12 (the blue empty circle), while using the term-ranking approach, the longest 

prediction time is Tpred = 63 (the red solid circles), which is more than 5 times that of the 

standard model.  

Figure 7 quantitatively compares the performance of the standard approach and the 

term-ranking approach, where the model dimension is fixed at K = 2 and the order D is 

varied from 1 to 14. As shown in Fig. 7(a), using the standard approach, prediction time 

increases with order D only when D ≤ 8. The maximum prediction time of the standard 

model is about Tpred = 12, however, using the term-ranking method, prediction time 

increases exponentially with D. The relationship between the prediction time Tpred and the 

order D can be approximated by Τpred = a×bD with a = 0.86166 and b = 1.44711 [the green 

solid line in Fig. 7(a)]. When D = 14, the prediction time of the best model dramatically 

increases to Tpred = 161, which is more than 13 times that (Tpred = 12) of the best standard 

model.  

A more important advantage of the term-ranking approach is that the model is much 

shorter than the standard model. For K = 2 and D = 11 [the case shown in Fig. 6(b)], the 

standard model has 78 coefficients. The best model obtained by the term-ranking method 

has only 20 coefficients. Figure 7(b) compares the number of coefficients of the model 

obtained by the standard approach (the blue empty circles) and term-ranking approach 

(the red solid circles). When D = 14, there are 120 coefficients in a standard model, while 
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there is only 26% of that, or 32 coefficients total, when using the term-ranking approach 

model. This example shows that the term-ranking approach can increase the predictive 

ability of the global model, and simultaneously decrease its length.  The ecological 

system [Eq.(10)] is in an exponential form. Using a Taylor series, an exponential function 

can be expanded in a polynomial form ex = 1 + x + x2/2!+x3/3!.... Resulting in yex+y = y + 

xy + y2 + x2y/2 + xy2 + y3/2 + x3y/6 + x2y2/2+ xy3/2+ y4/6 + …. It is apparent by comparing 

this polynomial with the standard model, that many terms in the model do not belong in 

this equation. These terms are inefficient and do not make the global model structure 

more closely related to the unknown underlying dynamics. They decrease the accuracy of 

coefficient estimation. Therefore, even a great number of terms do not redeem the 

inefficiency of the standard model. The term-ranking approach, on the other hand, grades 

each term, and only involves the most efficient terms in the global model, which provides 

a much longer prediction time with fewer terms than the standard model.  

IV. APPLICATION OF THE TERM-RANKING APPROACH TO SPEECH 

CODING AND SYNTHESIS  

Voice production is a highly nonlinear process [36-39]. Rich nonlinear phenomena 

[40-46], including diplophonia [40-41], period doubling bifurcations [42], chaos, and 

spatiotemporal chaos [43-46] have been observed in voice. A linear prediction of voice 

signal is unlikely to precisely code chaos-like voice data and would often miss nonlinear 

information in the speech signal [47]. Therefore, a nonlinear method could be a natural 

method for voice coding and synthesis. The aforementioned numerical examples have 
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shown that the term-ranking approach simultaneously increases the prediction time and 

reduces the model length, which, from an informatics viewpoint means that the global 

model obtained by the term-ranking approach can generalize a complex data series using 

less information. This advantage promises that the proposed term-ranking approach could 

be applied to coding and synthesizing complex data, such as the chaos-like voice data.  

Figures 8(a) and 9(a) illustrate the phase portrait and waveform of the voice signal. 

The voice data N
nnx 1)}({ =  is sampled at 8000 Hz and 16 bits data depth. A delay function  

[ ]
[ ] [ ])(),...,1(...)(),...,1(

)(),...,2(),1()(

11 knxnxcknxnxc
Knxnxnxfnx

mm −−++−−=
−−−=

φφ
  (11) 

is used to approach the global dynamics of voice data, where m = 1, 2, …, M and 

mφ ∈{ kdK
k kny )(1 −∏ = } with ∑ =

K

k kd
1

= 0, 1, …, D. K = 16 and D = 2 are used in this 

study. The voice is the result of the joint effects of the vocal fold vibration and the vocal 

tract filter. The vibration of the vocal folds produces the glottal wave, which excites the 

end of the vocal tract. A series of partial reflections and transmissions of the acoustic 

wave happen in different parts of the vocal tract. This filtering effect occurring in the 

vocal tract can be represented by the delay terms according to the source filter theory of 

voiced sounds [48]. Therefore, in order to find the optimal model of a voice signal, a 

large range of K is used. The total term number is M = (K + D)!/K!D!=153 and 500 voice 

data points are used to construct the global model. As shown in Fig. 8(b) with blue empty 

circles, the prediction time of the standard model gradually increases when the first 128 

terms are involved one by one. More terms do not increase the prediction time but rather 
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decrease it, and the maximum prediction time Tpred = 18 is obtained by the standard 

approach.  

Using the term-ranking approach, the ranked terms are involved in the global model 

one by one in the ranking sequence from high to low, and the calculated prediction time is 

given in Fig. 8(b),represented with red solid circles. Highly-ranking terms rapidly 

increase the prediction time of the model, and yet the remaining low ranking terms hardly 

improve the predictive ability of the global model. Only when including the first 51 

highest ranking terms, the term-ranking model surpasses the standard model in prediction 

time. In other words, the term-ranking approach can generalize the voice data using less 

information (i.e., model coefficients) than the standard one. Based on this factor, two 

kinds of voice coding and synthesis schemes are presented.  

The first is a lossless scheme. Initially, a global model [Eq. (11)] of voice data x(n) is 

created. The information, carried by the original voice series x(n), can be precisely 

recovered by the model’s coefficients cm and the one-step prediction error [i.e., residual 

error ξ(n) = x(n) – f[x(n–1),…, x(n–K)]: 

),()]('),...,1('[)(' nKnxnxfnx ξ+−−=     (12) 

with the initial condition x′(1) = x(1), …, x′(K) = x(K). Clearly, the synthesized voice data 

x′(n) is exactly equal to the original data x(n), as shown in Fig. 9(b), and therefore, this is 

a lossless method.  

The number of the global model coefficients are much fewer than the voice data and 

the residual error )(nξ  is much smaller than the original data (||ξ(n)|| << ||x(n)||). For a 
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given resolution, fewer bits are needed to encode the residual error and the model 

coefficients than the original voice data. The model obtained by the term-ranking 

approach has fewer coefficients and smaller residual error than the standard model, thus it 

can encode voice data with fewer bits than the standard one. This point can be 

quantitatively measured by Bayesian information criterion (BIC) [21],  

NNmCBIC /)ln()ln( 2 += ε ,     (13) 

where ε2 is the error power, N is the data length, and m is the number of free coefficients 

in global model. A lower CBIC value implies either fewer explanatory variables, better fit, 

or both. As shown in Fig. 8(c), the CBIC value of the term-ranking model (the red solid 

circles) is smaller than that of the standard model (the blue empty circles). That is, the 

term-ranking approach could provide a more efficient lossless compression method of 

voice data than the standard approach.  

The second is a lossy scheme. The term-ranking approach not only significantly 

decreases the one-step prediction error (residual error), but also increases the prediction 

time, and the lossy coding scheme is based on the short-term prediction capability of the 

global model.  

In this scheme, a global model of the voice is built and the output of that model is 

used directly as the synthesized voice. However, because the initial sensitive properties of 

the chaos-like voice signal, the short-term prediction of the global model is soon 

divergent from the original data. Therefore, the original voice data is used to correct the 

prediction of the model every Δn step, that is,  
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( ) [ ] ),()mod()('),...,1(')mod(1)(' nxnnknxnxfnnnx Δ+−−Δ−= δδ   (14) 

where 1)( =nδ  if n = 0 and 0)( =nδ if n ≠ 0.  The term-ranking model involving the 

first 46 terms with the highest ranking is used to reproduce the voice data. The result is 

given in Fig. 9(c), where Δn = 3. It is apparent that the synthesized waveform is quite 

close to the original one. For the sake of comparison, the standard model involving 46 

terms is also used to synthesize the voice data, but because of its poor predictive ability, 

the synthesized waveform is significantly different from the original data and is finally 

divergent, as shown in Fig. 9(d).  

The above examples indicate that the term-ranking approach is robust enough for 

application with experimental data. Voice coding and synthesis could be one potential 

application of the term-ranking global modeling approach.  

 

V. CONCLUSION 

In this study, a term-ranking principle is proposed to improve the global model and 

its predictability of complex time series. Our basic idea of global modeling is to rank the 

candidate bases before they are involved in the model. The ranked bases are then 

included in the global model one by one, in a high to low ranking sequence until the best 

model is found. Simulations show that the model obtained by the term-ranking approach 

has a much longer prediction time and much fewer coefficients than the widely used 

standard model. These numerical simulations display the advantages of the term-ranking 

approach in globally modeling the underlying dynamics of the complex data series.  
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The proposed method is also applied to real voice data, where the sampling error, 

measurement noise, and stochastic component are inevitable. The successful synthesis of 

the real voice signal promises that the term-ranking approach is robust enough for 

application to noisy experimental data. Therefore, it can be expected that the 

term-ranking approach could be widely used for the analysis and processing of chaos-like 

natural data, such as modeling, coding, compression, prediction, and so on.  

Finally, the power function is used as the candidate bases in this study. However, it is 

found that the polynomial is sometimes not powerful enough to model some time series, 

such as the z variable of the Rössler system. Letellier and Aguirre et al. show that the 

main reason for this is due to the nature of the map between the original phase space and 

the embedding space induced by the observable signal [49]. They introduce 

“observability coefficients” to understand the difference between the system variables. 

(e.g., the y and z variables of the Rössler system) [49-52]. In order to model such a 

variable, the rational functions have to be used in the global model [53]. In addition, 

Ménard, Letellier et al have shown that a rational function can significantly improve the 

quality of global models for maps, because the models take advantage of the ability of 

rational functions to capture complicated structures that may be generated by maps [34]. 

Their method is also applied to experimental data from copper electrodissolution. 

Therefore, it would be worth extending the term-ranking approach to more general bases 

in the future.  
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Figure. 1 (color online): Reconstruction of the Rössler attractor. (a) Delay 

representation of the original Rössler attractor with the lag 12Δt and the embedding 

dimension K = 3. (b) Attractor generated by the standard model with K = 3 and D = 7, 

where 120 coefficients are involved in the model. (c) Attractor generated by the global 

model obtained by the term-ranking approach with K = 3 and D = 7, where 90 terms 

are involved in the model. 
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Figure 2 (color online): Global modeling of the Rössler attractor. (a) The V(m) value 

of each candidate basis. (b) The V(m) value of the left candidate bases, after the first 

61 high ranking bases have been found. (c) The prediction time Tpred as a function of 

the number m of terms in the model with K = 3 and D = 7, where the empty (blue) 

scatters and the dark (red) scatters represent the results obtained by the standard 

approach and the term-ranking approach, respectively.  
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Figure 3 (color online):  Revealing the dynamic characteristics of the Rössler system 

with 0.32 ≤ a ≤ 0.52, b = 2 and c = 4. For 0.43295 < a < 0.556, b = 2 and c = 4, the 

Rössler system corresponds to phase non-coherent attractor. (a) Bifurcation diagram of 

the Rössler system. (b) Bifurcation diagram of the global model reconstructed using the 

term-ranking method. (c) The prediction time as a function of the parameter a, where 

Tpred = 104 represents that the prediction time approach infinite.  
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Figure 4 (color online): Reconstruction of global model from the unstable periodic orbit 

of the Rössler attractor with a = 0.398, b = 2, and c = 4, where there are 24 unstable 

periodic orbits up to period-11. The abscissa P1, …, P11 represents the unstable periodic 

orbits from period-1 to period-11.   
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Figure 5 (color online): Comparison of the standard approach (empty blue circles) 

and the term-ranking approach (red solid circles) with K = 3 and D = 1, 2, …, 8. (a) 

The number of terms (i.e. the number of coefficients) in the global model. (b) The 

prediction time Tpred as a function of degree D. 
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Figure 6 (color online): Global modeling of a discrete ecological system. (a) The 

attractor of the ecological system. (b) The prediction time Tpred as a function of the 

number of terms in the model with K = 2 and D = 11, where the empty (blue) circles 

and the solid (red) circles represent the results obtained by the standard approach and 

the term-ranking approach, respectively. 
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Figure 7 (color online): Comparison of the standard approach (empty blue circles) 

and the term-ranking approach (solid red circles) with K = 2 and D = 1, 2, …, 14. (a) 

The prediction time Tpred as a function of degree D. The green solid line follows the 

relationship Τpred=a×bD with a = 0.86166 and b = 1.44711. (b) The number of terms 

(i.e. the number of coefficients) in the global model. 
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Figure 8 (color online): Global modeling of voice data series. (a) Delay representation of the attractor 

of the voice series. (b) The prediction time Tpred as a function of the number of terms in the model with 

K = 16 and D = 2, where the threshold value σth = 0.2 is used for the calculation of the prediction time. 

(b) Bayesian information criterion CBIC as a function of the number of terms in the model. In (b) and (c), 

the empty (blue) scatters and the dark (red) scatters represent the results obtained by the standard 

approach and the term-ranking approach, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 36

 
 
 
 
 
 

0 50 100 150
-1

0

1

0 50 100 150
-1

0

1

st
an

da
rd

lo
ss

y
lo

ss
le

ss
vo

ic
e

(d)

x

time n 

0 50 100 150
-1

0

1 (c)

x

0 50 100 150
-1

0

1
x

(a)
x

(b)

 

Figure 9 (color online): Synthesis of voice signal. (a) Original voice data. (b) The 

lossless synthesis of voice using the term ranking model. (c) The lossy synthesis of 

voice using the term ranking model. (d) The lossy synthesis of voice using the 

standard model.  
 

 


