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We introduce and study random bipartite networks with hidden variables. Nodes in these networks
are characterized by hidden variables which control the appearance of links between node pairs.
We derive analytic expressions for the degree distribution, degree correlations, the distribution of
the number of common neighbors, and the bipartite clustering coefficient in these networks. We
also establish the relationship between degrees of nodes in original bipartite networks and in their
unipartite projections. We further demonstrate how hidden variable formalism can be applied
to analyze topological properties of networks in certain bipartite network models, and verify our
analytical results in numerical simulations.
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FIG. 1. (Color Online) A toy bipartite network and its unipartite
projections. (a) Original bipartite network. We refer to the nodes
of one type as top nodes (labeled by letters) and to the nodes of
the other type as bottom nodes (labeled by numbers). Unipartite
projections of the original network onto (b) bottom and (c) top
domains. The top (bottom) nodes are connected in the projections
if they have at least one common neighbor in the original network.

I. INTRODUCTION

Bipartite networks are composed of two types of nodes
with no links connecting nodes of the same type, see
Fig. 1(a). Examples include recommendation systems [1],
networks of collaborations [2] and metabolic reactions [3],
gene regulatory networks [4], peer to peer networks [5],
pollination networks [6], and many others [7]. Compared
to traditional unipartite networks, less is known about
the organizing principles determining the structure and
evolution of bipartite networks, partly because only uni-
partite projections of bipartite networks are often consid-
ered. The unipartite projection accounts for connecting
two nodes of one type by a link if these nodes share at
least one neighbor of the other type, and then throwing
out all nodes of this other type, see Figs. 1(b) and 1(c).
Even though this procedure allows one to study bipar-

tite networks using powerful tools developed for unipar-
tite networks, the unipartite projections in most cases
lead to significant loss of information, and to artificial
inflation of the projected network with fully connected
subgraphs [7, 8].

Nodes in real bipartite networks can often be charac-
terized by a number of intrinsic attributes. For example,
in recommendation networks, composed of consumer and
product nodes, a consumer-product pair is connected if
the consumer has purchased the product. Consumers can
be characterized by their age, geographic location, in-
come, sex, lifestyle, etc., while products have their type,
price, quality, uniqueness, and other properties. Con-
sumers do not buy products at random. Making their
purchase decisions, consumers implicitly match their at-
tributes with those of products. For example, a person
with a higher income is more likely to purchase an expen-
sive item, books in Italian are mostly purchased by peo-
ple who speak Italian, consumers at a gas station tend to
own a car, etc. Similar considerations apply to the forma-
tion of links between researchers and scientific projects,
molecules and reactions in which they participate, and
so forth.

The concept of hidden variables formalizes these obser-
vations as follows. Every node of each type in a bipartite
network is assigned a number of hidden variables drawn
from some distributions, and then every node pair of dif-
ferent types is connected with some probability which
depends on the hidden variables of the two nodes. In
this work we build the hidden variable formalism for bi-
partite networks, based on the formalism developed ear-
lier for unipartite networks [9]. Specifically, in Section II
we overview basic topological characteristics of bipartite
networks. In Section III we define a general class of bi-
partite networks with hidden variables, and study an-
alytically the topological properties of networks in this
class. In Section IV we consider two specific examples
of bipartite networks with hidden variables, uncorrelated
and stratified bipartite networks, and confirm in simula-
tions our analytical results for these networks. Section V
summarizes the paper.
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II. TOPOLOGICAL CHARACTERISTICS OF
BIPARTITE NETWORKS

In this section we review some key relationships among
the basic topological characteristics of bipartite networks.

Let the nodes of two different types be called top and
bottom nodes, see Figs. 1(b) and 1(c). Similar to uni-
partite networks, the degree correlations in bipartite net-
works are defined by the number of links Ek` between top
and bottom nodes of degrees k and ` [10]. The correlation
matrix Ek` satisfies the following equations:∑

`

Ek` = kNk,
∑
k

Ek` = `M`,
∑
k,`

Ek` = E, (1)

where Nk and M` are the numbers of top and bottom
nodes of degree k and `, and E is the total number of
links in the network. The joint degree distribution P (k, `)
is the normalized correlation matrix, i.e., the probability
that a randomly chosen edge connects nodes of degrees
k and `:

P (k, `) =
Ek`
E
, (2)

which contains all information needed to construct a net-
work with a given degree distribution and correlations.

The top and bottom node degree distributions P (k)
and P (`) can be obtained from Eq. (1):

P (k) =
k

k

∑
`

P (k, `), P (`) =
`

`

∑
k

P (k, `). (3)

The conditional probabilities P (`|k) and P (k|`) that an
edge emanating from a k- or `-degree node is connected
to a node of degree ` or k are

P (`|k) =
Ek`
kNk

=
kP (k, `)

kP (k)
, (4)

P (k|`) =
Ek`
`N`

=
`P (k, `)

`P (`)
. (5)

To characterize degree correlations in unipartite net-
works, one often considers the average nearest neighbor
degree (ANND), which is the average degree of the neigh-
bors of all k-degree nodes [11]. The ANNDs for top and
bottom nodes in a bipartite network are

`nn(k) =
∑
`

`P (`|k), knn(`) =
∑
k

kP (k|`). (6)

In uncorrelated bipartite networks

Punc(k, `) =
kP (k)

k

`P (`)

`
. (7)

As a result, P (`|k) and P (k|`) do not depend on k and
`, respectively:

Punc(`|k) =
`

`
P (`), Punc(k|`) =

k

k
P (k), (8)

and neither do the ANNDs:

`
unc

nn (k) =
`2

`
, k

unc

nn (`) =
k2

k
. (9)

Networks with increasing or decreasing ANNDs are called
assortative or disassortative [12]. Some real bipartite
networks have non-trivial degree correlation profiles, and
therefore they can not be classified as either assortative
or disassortative [7].

The standard clustering coefficient of node i quantifies
how close i’s neighbors are to forming a clique [13]:

c(i) =
2

ki(ki − 1)

∑
j>k

ejk, (10)

where the summation is over all i’s pairs of neighbors j
and k, and ejk is the adjacency matrix. Since in bipar-
tite networks there are no loops of size 3, this clustering
coefficient is zero for all nodes. Therefore, to assess the
density of connections in a vicinity of a particular node,
one has to analyze connections among its second nearest
neighbors. There have been several attempts to general-
ize the clustering coefficient for bipartite networks using
this idea [7, 14, 15]. Here we focus on the definition by
Zhang et al [14]:

cB(i) =

∑
m>n qimn∑

m>n (qimn + km + kn − 2ηimn)
, (11)

where
∑
m>n goes over all pairs of i’s neighbors, qimn is

the number of common neighbors between nodes m and
n excluding i, km and kn are the degrees of nodes m and
n, and ηimn = 1 + qimn + emn. The above definition may
look cumbersome, but it has a simple interpretation. Let
Am and An be the sets of neighbors of nodes m and n
excluding i. Then qimn is the intersection of Am and
An, qimn = Am

⋂
An, while qimn + (km − ηimn) + (kn −

ηimn) = Am
⋃
An is their union. Therefore, the bipartite

clustering coefficient is simply

cB(i) =

∑
m>nAm

⋂
An∑

m>nAm
⋃
An

. (12)

The ratio of the intersection and union of two sets is
known as the Jaccard similarity coefficient [16]. The bi-
partite clustering coefficient, on the other hand, is given
by the ratio of the sums of intersections and unions for
all pairs of i’s neighbors. Therefore, the bipartite cluster-
ing coefficient can be interpreted as a combined Jaccard
similarity of i’s neighbors. Regardless of the clustering
definition details, nodes in real bipartite networks tend
to be strongly clustered, as compared to nodes in their
randomized counterparts with preserved degree distribu-
tions [7].

III. HIDDEN VARIABLE FORMALISM FOR
BIPARTITE NETWORKS

We define the class of bipartite networks with hidden
variables as follows:
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(i) Each top and bottom nodes i and j are assigned
hidden variables κi and λj drawn from probability
distribution ρt(κ) and ρb(λ);

(ii) Each top-bottom node pair {i, j} is connected
with probability r(κi, λj), 0 ≤ r(κ, λ) ≤ 1.

The hidden variable formalism developed here is valid
for both discrete and continuous variables. In the lat-
ter case, all sums must be replaced by integrals. We are
primarily interested in the cases where the hidden vari-
able distributions ρt(κ) and ρb(λ) are independent of the
sizes of the top and bottom domains N and M . We also
assume that in the thermodynamic limit of large N,M ,
these sizes are proportional to each other, N ∝ M . For
the sake of clarity we consider only one hidden variable
per node. The generalization to several hidden variables
per node is straightforward. We also drop indices in the
top and bottom hidden variable distribution notations:
ρt(κ) ≡ ρ(κ) and ρb(λ) ≡ ρ(λ).

A. Degree distributions

We first compute the most basic topological properties
of the networks in the model—the degree distributions
and average degrees. Due to the stochastic nature of
connections between top and bottom nodes, we can not
compute the degree of a top node with hidden variable
κ deterministically. Instead, we can compute propagator
g(k|κ), which is the probability that a node with hidden
variable κ ends up connecting to k bottom nodes. Simi-
larly, propagator f(`|λ) is the probability that a bottom
node with hidden variable λ will be connected to ` top
nodes. Propagators g(k|κ) and f(`|λ) are the main build-
ing blocks of the hidden variable formalism. As soon as
we know g(k|κ), for example, the average degree k(κ) of a
top node with hidden variable κ, the degree distribution
P (k), and the average degree k in the top node domain
are given by:

k(κ) =
∑
k

kg(k|κ), (13)

P (k) =
∑
κ

g(k|κ)ρ(κ), (14)

k =
∑
k

kP (k) =
∑
κ

k(κ)ρ(κ), (15)

while the corresponding expressions for bottom nodes can
be obtained by an appropriate swap of notations.

To compute propagator g(k|κ) we first compute par-

tial propagator gλii (ki|κ) defined as the probability that
a top node with hidden variable κ ends up having ki con-
nections to bottom nodes with hidden variable λi. Since
links between node pairs appear independently from one
pair to another, gλii (ki|κ) is given by the binomial distri-
bution:

gλii (ki|κ) = C
Mλi

ki
[r(κ, λi)]

ki [1− r(κ, λi)]Mλi
−ki , (16)

where Cab is the binomial coefficient, and Mλi ≡Mρ(λi)
is the total number of bottom nodes with hidden variable
λi. The full propagator g(k|κ) is then a convolution of
partial propagators:

g(k|κ) =
∑

∑
ki=k

∏
i

gλii (ki|κ), (17)

where the product is over the entire spectrum of hidden
variables λ, while the summation is over the ensemble of
all possible degrees ki whose sum is k.

Since the full propagator is a convolution, its generat-
ing function ĝ(z|κ) is a product of the generating func-
tions ĝλ(z|κ) for partial propagators:

ĝ(z|κ) =
∏
λ

ĝλ(z|κ), where (18)

ĝ(z|κ) ≡
∑
k

g(k|κ)zk, (19)

ĝλ(z|κ) ≡
∑
k

gλ(k|κ)zk. (20)

The generating function for binomial gλ(k|κ) is

ĝλ(z|κ) = (1− z(1− r(κ, λ)))Mλ , (21)

substituting which into Eq. (18) we obtain

ln ĝ(z|κ) = M
∑
λ

ρ(λ) ln [1− (1− z)r(κ, λ)] . (22)

The average degree of nodes with hidden variable κ is
given by the derivative of ĝ(z|κ) at z = 1 [18], to confirm
the obvious

k(κ) = M
∑
λ

ρ(λ)r(κ, λ), (23)

while higher moments of g(k|κ) can be computed by tak-
ing higher order derivatives of the generating function.
Eq. (23) yields the average degree in the entire top node
domain

k =
∑
k

k(κ)ρ(κ) = M
∑
κ,λ

ρ(κ)ρ(λ)r(κ, λ), (24)

and the expected total number of links in the network

E = Nk = M` = NM
∑
κ,λ

ρ(κ)ρ(λ)r(κ, λ). (25)

It is evident from the last equation that to end up with
a sparse bipartite network, E ∝ N ∝M , the connection
probability r(κ, λ) must be of the form

r(κ, λ) ∝ r̂(κ, λ)/M, (26)

where r̂(κ, λ) is independent of M . Therefore, for large
sparse networks we can expand the logarithm in Eq. (22)
in powers of r(κ, λ) to finally obtain, in the first order,

ln ĝ(z|κ) ≈ (z − 1)
∑
λ

ρ(λ)r̂(κ, λ), (27)

g(k|κ) = e−k(κ)
[
k(κ)

]k
/k!, (28)
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which we can use to compute the degree distribution in
Eq. (14). Propagator f(`|λ) and degree distribution P (`)
for bottom nodes can be obtained from Eqs. (28) and (14)
by swapping κ→ λ and k → `.

The Poisson form of the propagator g(k|κ), given by
Eq. (28), implies that

k2(κ) =
[
k(κ)

]2
+ k(κ). (29)

Furthermore, Eq. (14) allows us to obtain the second mo-
ment of the degree distribution:

k2 =
∑
k

k2P (k) =
∑
κ

[
k(κ)

]2
ρ(κ) +

∑
κ

k(κ)ρ(κ) (30)

B. Unipartite projection

Next we establish the connection between the degrees
of nodes in a bipartite network and in its unipartite pro-
jections, often considered in the literature. In the top
unipartite projection, two top nodes are connected if they
have at least one common bottom neighbor in the bipar-
tite network. Therefore, we first compute the probability
p0(κ1, κ2) that two top nodes with hidden variables κ1

and κ2 do not have any common bottom neighbors in
the bipartite network. This probability is

p0(κ1, κ2) =
∏
i

[1− r(κ1, λi)r(κ2, λi)] , (31)

where the product is over all the bottom nodes. Taking
the logarithm on both sides, we get

ln p0(κ1, κ2) = M
∑
λ

ρ(λ) ln [1− r(κ1, λ)r(κ2, λ)] , (32)

and the probability pu(κ1, κ2) = 1 − p0(κ1, κ2) that two
top nodes with hidden variables κ1 and κ2 are connected
in the unipartite projection is simply

pu(κ1, κ2) = 1−exp{M
∑
λ

ρ(λ) ln [1− r(κ1, λ)r(κ2, λ)]}.

(33)
In sparse networks we use Eq. (26) to approximate
pu(κ1, κ2) as

pu(κ1, κ2) ≈M
∑
λ

ρ(λ)r(κ1, λ)r(κ2, λ). (34)

Next we find propagator p(ku|κ), the conditional prob-
ability that a top node with hidden variable κ has ku
connections in the unipartite projection. The deriva-
tion is similar to the derivation of propagator g(k|κ) for
the bipartite network. We first define partial propagator

p
κ′
i
i (ni|κ), the probability that a top node with hidden

variable κ is connected in the unipartite projection to ni
nodes with hidden variable κ′i. Equation (34) indicates
that a node with hidden variable κ is equally likely to

be connected in the unipartite projection to any of Nκ′
i

nodes with hidden variable κ′i, where Nκ′
i

= Nρ(κ′i) is the

number of top nodes with hidden variable κ′i. If ni �M ,
we can assume that the links in the unipartite projection

are independent, leading to binomial p
κ′
i
i (ni|κ):

p
κ′
i
i (ni|κ) = C

Nκ′
i

ni [pu(κ, κ′i)]
ni [(1− pu(κ, κ′i))]

Nκ′
i
−ni .

(35)
Similar to Eq. (17), p(ku|κ) is then a convolution

p(ku|κ) =
∑

∑
ni=ku

∏
i

p
κ′
i
i (ni|κ), (36)

and its generating function p̂(z|κ) =
∑
ku
p(ku|κ)zku is

ln p̂(z|κ) = N
∑
κ′

ρ(κ′) ln [1− (1− z)pu(κ, κ′)] . (37)

Therefore if pu(κ, κ′) scales as

pu(κ, κ′) ∼ 1

Na
, (38)

with a ≥ 1, then similar to the bipartite case, propagator
p(ku|κ) is approximately the Poisson distribution:

p(ku|κ) ≈ e−ku(κ)
[
ku(κ)

]ku
/ku!. (39)

The average degree ku(κ) of nodes with hidden vari-
able κ in the unipartite projection is given by the first
derivative of the generating function p̂(z|κ) at z = 1 to
yield the obvious

ku(κ) = N
∑
κ′

ρ(κ′)pu(κ, κ′), (40)

which for sparse networks using Eq. (34) transforms to:

ku(κ) = NM
∑
λ,κ′

ρ(λ)ρ(κ′)r(κ, λ)r(κ′, λ) (41)

= M
∑
λ

`(λ)ρ(λ)r(κ, λ), (42)

where `(λ) is the average degree of bottom nodes with
hidden variable λ in the bipartite network. The average
degree in the entire top unipartite projection is then

ku =
∑
κ

ρ(κ)ku(κ) =
M

N

∑
λ

ρ(λ)
[
`(λ)

]2
. (43)

Finally, the degree distribution in the unipartite projec-
tion is

P (ku) =
∑
κ

p(ku|κ)ρ(κ). (44)
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C. Number of common neighbors

The common neighbor statistics is useful in many ap-
plications, such as node similarity estimation [17] and
link prediction [19]. We compute the probability that
two top nodes with hidden variables κ1 and κ2 have m
common bottom neighbors. This probability can be cal-
culated as

Pκ1,κ2(m) =
∑

∑
mi=m

∏
i

pκ1,κ2(mi|λi), (45)

where pκ1,κ2
(mi|λi) is the probability that two top nodes

with κ1 and κ2 have mi common bottom neighbors with
λi, and the product is over the entire range of λi, while
the summation is over all possible combinations of mi

adding up to m.

Consider two nodes with hidden variables κ1 and κ2.
Each common neighbor of the two nodes with κ1 and κ2

appears independently with probability

r̃λ(κ1, κ2) = r(κ1, λ)r(κ2, λ), (46)

where λ is the hidden variable of the common neighbor.
Therefore, pκ1,κ2

(m|λ) is also binomial:

pκ1,κ2
(m|λ) = CMλ

m [r̃λ(κ1, κ2))]
m

[1− r̃λ(κ1, κ2)]
Mλ−m ,

(47)
and the corresponding generating function is given by

p̂κ1,κ2(z|λ) = [1− (1− z)r̃λ(κ1, κ2)]
Mλ . (48)

Since Pκ1,κ2
(m) is given by a convolution, its generation

function is

P̂κ1,κ2(z) =
∏
i

p̂κ1,κ2(z|λi). (49)

Combining the last two equations, we get

ln P̂κ1,κ2
(z) = M

∑
λ

ρ(λ) ln [1− (1− z)r̃λ(κ1, κ2)] .

(50)

To compute the average number of common neighbors
between top nodes with κ1 and κ2 we evaluate the deriva-

tive of P̂κ1,κ2
(z) with respect to z at z = 1:

m(κ1, κ2) = M
∑
λ

ρ(λ)r̃λ(κ1, κ2). (51)

The generating function for the common neighbor distri-
bution has the same structure as ĝ(z|k). Therefore, the
closed form of Pκ1,κ2

(m) in the sparse network approxi-
mation is given by

Pκ1,κ2(m) ≈ e−m(κ1,κ2) [m(κ1, κ2)]
m
/m!. (52)

D. Degree correlations

The degree correlations in bipartite networks are fully
described by conditional probabilities P (`|k) and P (k|`)
in Eqs. (4,5). In order to calculate P (`|k) we need to
define the related conditional probability ρ(λ|κ) that an
edge outgoing from a top node with hidden variable κ
is connected to a bottom node with hidden variable λ.
Then, P (`|k) can be written as

P (`|k) =
∑
κ,λ

f(`− 1|λ)ρ(λ|κ)g∗(κ|k), (53)

where f(`−1|λ) is the conditional probability that a bot-
tom node with hidden variable λ ends up having degree
` (one connection is already taken into account by the
conditional edge), while the inverse propagator g∗(k|κ)
is the probability that a top node of degree k has hidden
variable κ. This inverse propagator is given by the Bayes’
formula [20]

P (k)g∗(κ|k) = ρ(κ)g(k|κ), (54)

using which we write

P (`|k) =
1

P (k)

∑
κ,λ

ρ(κ)ρ(λ|κ)f(`− 1|λ)g(k|κ). (55)

To determine ρ(λ|κ) we note that the conditional prob-
ability that an edge is connected to a bottom node with
λ, given that this edge is connected to a top node with κ,
is proportional to the density of bottom nodes ρ(λ) and
the connection probability r(κ, λ),

ρ(λ|κ) ∝ ρ(λ)r(κ, λ). (56)

Taking into account the normalization condition∑
λ ρ(λ|κ) = 1, we get

ρ(λ|κ) =
ρ(λ)r(κ, λ)∑
λ′ ρ(λ′)r(κ, λ′)

. (57)

Using Eqs. (55-57) we obtain the final expression for the
top ANND statistics:

`nn(k) =
∑
`

`P (`|k) = 1 +
1

P (k)

∑
κ

`nn(κ)ρ(κ)g(k|κ),

(58)
where `nn(κ) is the average nearest neighbor degree of
top nodes with hidden variable κ:

`nn(κ) =
∑
λ

`(λ)ρ(λ|κ). (59)

E. Bipartite clustering coefficient

Finally we derive the bipartite clustering coefficient as
defined by P. Zhang et al [14]. Other variations of the bi-
partite clustering coefficient can be computed in a similar
manner.
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The bipartite clustering coefficient of top node i, given
by Eq. (11), can be written as

cB(i) =

∑
j>l(mjl − 1)∑

j>l(kj + kl −mjl − 1)
, (60)

where mjl is the number of common neighbors between
bottom nodes j and l, while kj and kl are their degrees.
Since the summations in the numerator and denomina-
tor are performed independently, we can estimate the
average bipartite clustering coefficient of top nodes with
hidden variable κ by calculating the ensemble averages of
the numerator and denominator. The details are in the
Appendix, while the answer is

cB(κ) =

∑
λ1,λ2

ρ(λ1|κ)ρ(λ2|κ)m(λ1, λ2)

2`nn(κ)−
∑
λ1,λ2

ρ(λ1|κ)ρ(λ2|κ)m(λ1, λ2)
,

(61)
where ρ(λ|κ) is the conditional probability that an edge
connected to a top node with hidden variable κ is also
connected to a bottom node with hidden variable λ,
m(λ1, λ2) is the average number of common neighbors
between two bottom nodes with hidden variables λ1 and
λ2, and `nn(κ) is the average nearest neighbor degree of
top nodes with hidden variable κ. The average bipartite
clustering coefficient of top nodes with degrees k ≥ 2 can
be expressed in terms of cB(κ) as

cB(k) =
1

P (k)

∑
κ

ρ(κ)g(k|κ)cB(κ), (62)

while the average bipartite clustering coefficient in the
top node domain is simply

cB =
∑
κ

ρ(κ)cB(κ) =
∑
k

P (k)cB(k). (63)

IV. EXAMPLES OF BIPARTITE NETWORKS
WITH HIDDEN VARIABLES

Having the general formalism in place, we next con-
sider a couple of examples of bipartite networks with hid-
den variables. The first example of uncorrelated networks
is fairly standard. The second one, stratified networks,
is more unusual.

A. Uncorrelated Bipartite Networks

Consider a random bipartite network composed of
nodes with degrees {ki} and {`j} drawn from distribu-
tions P (k) and P (`). If nodes in the network are con-
nected at random, then two randomly chosen nodes with
degrees k and ` are connected with probability p = k`/E,
where E is the total number of links in the network.

Similar random uncorrelated networks can be con-
structed in the hidden variable formalism. Consider a

network with hidden variables drawn from distributions
ρ(κ) and ρ(λ), in which node pairs are connected with
probability proportional to the product of nodes’ hidden
variables:

r(κ, λ) =
κλ

C
, (64)

where C is some normalization constant. The above form
of r(κ, λ) implies that the hidden variable of a node can
be regarded as its target or expected degree. Indeed, if
we choose C = λM , then a top node with hidden variable
κ gets κ connections on average

k(κ) = M
∑
λ

ρ(λ)r(κ, λ) = κ. (65)

Since the assumption of a sparse network, given by
Eq. (26) holds here, propagator g(k|κ) is given by the
Poisson distribution:

g(k|κ) = e−κκk/k!, (66)

and using Eqs. (14) and (29) one can obtain

k2 = κ2 + κ. (67)

One type of nodes in real bipartite networks is often
characterized by scale-free degree distributions, while de-
gree of nodes of the other type can follow either fat-tailed
or poissonian distributions [8]. Our uncorrelated formal-
ism can account for both options. The former case is
actually simpler, and the properties of top and bottom
nodes can be obtained from each other via a simple swap
of notations. Therefore below we consider the latter case,
which is more typical for real networks.

Specifically, let κ be power-law distributed:

ρ(κ) = (γ − 1)kγ−1
0 κ−γ , (68)

where power-law exponent γ and minimum expected de-
gree κ0 are parameters of the distribution. The resulting
degree distribution of the top node domain is given by
Eqs. (14) and (28), which yield

P (k) = (γ − 1)κγ−1
0

Γ[k − γ + 1, κ0]

Γ[k + 1]
, (69)

where Γ[x, s] is the incomplete gamma function. In the
large k limit we can approximate P (k) by

P (k) ≈ (γ − 1)κγ−1
0 k−γ . (70)

We note that the distribution P (k) of top node degrees
does not depend on a specific form of the hidden variable
distribution ρ(λ) in the bottom node domain. Let the
latter be a delta function ρ(λ) = δ(λ−λ0), meaning that
all bottom nodes have the same value of their hidden
variable equal to λ0. Then using the same Eqs. (14,28)
swapped for the bottom nodes, we immediately conclude
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that the distribution of bottom node degrees is poisso-
nian:

P (`) = e−λ0λ`0/`!. (71)

We now turn our attention to the unipartite projec-
tions. We first consider the top node projection. We use
Eq. (42) to compute the average degree of κ-nodes:

ku(κ) = κλ0. (72)

Therefore the average degree in the top unipartite pro-
jection is

ku = κλ0. (73)

The degree distribution in the projection are given by
Eqs. (44) and (39):

P (ku) = (γ − 1)[κ0λ0]γ−1 Γ[ku − γ + 1, κ0λ0]

Γ[ku + 1]
, (74)

that is, this distribution is also a power law,

P (ku) ∼ (γ − 1)[κ0λ0]γ−1k−γu , (75)

and the exponent of this power law is equal to the ex-
ponent of the top power-law degree distribution in the
original bipartite network.

In the bottom unipartite projection, the average node
degrees are obtained in a similar manner to yield

`u = `u(λ) = λ0
κ2

κ
. (76)

For γ ≤ 3, κ2 depends on N , and diverges in the
thermodynamic limit. Therefore connection probability
p(λ1, λ2) does not satisfy the condition of Eq. (38), and
we can not approximate the degree distribution in the
bottom domain by Eq. (44) with poissonian p(ku|κ) in

Eq. (39). However, if γ > 3, then κ2 is finite in the ther-
modynamic limit, and the degree distribution is given
by

P (`u) = e−`u [`u]`/`!. (77)

As far as correlations are concerned, the conditional
hidden variable distributions are

ρ(λ|κ) = δ(λ− λ0), (78)

ρ(κ|λ) =
κ

κ
ρ(κ), (79)

leading to the following expression for the top and bot-
tom ANNDs given by Eq. (58):

`nn(k) = 1 + λ0, (80)

knn(`) = 1 +
κ2

κ
=
k2

k
. (81)

The average number of common neighbors is given by
Eq. (51) yielding, for top and bottom nodes,

m(κ1, κ2) =
κ1κ2

M
, (82)

m(λ0, λ0) =
λ2

0

N

κ2

κ2 . (83)

Finally, to compute clustering, we insert the expres-
sions for the average number of common neighbors
(82,83), ANNDs (80,81), and conditional distributions
(78,79) into Eq. (61), and obtain the average bipartite
clustering coefficient for top and bottom nodes:

cB(κ) =
(λ2

0κ
2)/(Nκ2)

2λ0 − (λ2
0κ

2)/(Nκ2)
≈ λ0

2N

κ2

κ2 , (84)

cB(λ) =
(κ2)2/(Mκ2)

2κ2/κ− (κ2)2/(Mκ2)
≈ κ2

2Mκ
. (85)

We observe that the clustering coefficient of a node does
not depend on its hidden variable in either case, i.e., that
it is constant. This constant decreases as the network
sizes N,M increase, and vanishes in the thermodynamic
limit.

To test our analytical results we perform simulations,
setting N = 2M , N = 2 × 105, γ = 2.5, κ0 = 1, and
λ0 = 6 to satisfy Nk = M`. The degree distributions in
the top and bottom domains as well as in their unipartite
projections are shown in Fig. (2). The degree distribution
of top nodes in the original bipartite network, and in its
top unipartite projection both follow a power law with
the same exponent γ = 2.5, see Fig. 2(a). As seen in
Fig. 2(b), the degree distribution in the bottom node
domain is well approximated by a Poisson distribution.
On the other hand, due to the divergent behavior of the
second moment of the top degree distribution κ2, the
degree distribution in the bottom unipartite projection
seems to follow a truncated power-law. The measured
values of ku = 20.0 and `u ≈ 119 are in good agreement
with Eqs. (73,76) since κ = 2.85 and κ2 = 62 for the
selected parameters.

In Fig. 3(a) we plot the ANNDs, and confirm that they
are independent of node degrees as Eqs. (80,81) predict
for uncorrelated networks.

To test the dependence of the average bipartite cluster-
ing coefficient on the network size, we generate a num-
ber of uncorrelated bipartite network of different sizes
and values of γ. While sampling hidden variables κ
for top nodes, we impose the cutoff of κmax ∼ N1/2

to avoid structural degree correlations [21]. Therefore,

κ2 ∼ N (3−γ)/2, and the average bipartite clustering co-
efficient scales as cB ∼ N−δ with δ = (γ − 1)/2 for
2 < γ < 3. In Fig. 3(b) we confirm this scaling. The fig-
ure shows the measured bipartite clustering coefficients
as a function of N for different values of γ.
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FIG. 2. (Color Online) Degree distributions in a random uncorre-
lated bipartite network. (a) Degree distributions in the top domain
(green circles) and top unipartite projection (red squares). The
solid lines are the analytical predictions from Eqs. (69,74). (b) De-
gree distributions in the bottom domain (green circles) and bottom
unipartite projection (red squares). Both plots correspond to the
model with N = 2 × 105, M = 105, γ = 2.5, κ0 = 1, and λ0 = 6.

B. Stratified Bipartite Networks

The original stratified unipartite network model was
considered by Leicht et al [17]. In this model, N nodes
are assigned random integer ages ti = 1, . . . , tmax with
uniform probability, and then links are created between
node pairs with probability

P (∆t) = p0e
−a|∆t|, (86)

where p0 and a are model parameters. The motivation for
this model in [17] was to have a simplified social model in
which individuals preferably connect to other individuals
of similar age. The stratified model was used in [17] to
test the ability of different node similarity measures to
infer relative node ages.

Here we generalize the stratified network model as fol-
lows. The networks in the model consist of N top and M
bottom nodes. All nodes are assigned hidden variables
κ and λ drawn from the continuous uniform distribution

1 0 0 1 0 1 1 0 2 1 0 30

1 0

2 0

3 0

k nn(k)

 T o p  n o d e s
 B o t t o m  n o d e s

k

( a )
 

1 0 4 1 0 5 1 0 61 0 - 5

1 0 - 4

1 0 - 3

N

 �= 2 . 1
 �= 2 . 5
 �= 3 . 0

Bc

( b )
 

FIG. 3. (Color Online) (a) The average nearest neighbor degrees
of top (blue triangles) and bottom (magenta hexagons) nodes in
an uncorrelated bipartite network with N = 2 × 105, M = 105,
γ = 2.5, κ0 = 1, and λ0 = 6.0. The solid lines are the analytical
predictions in Eqs. (80,81). (b) The average bipartite clustering
coefficient for top nodes in uncorrelated bipartite networks as a
function of network size N for γ = 2.1, γ = 2.5 and γ = 3.0.
The solid lines are the theoretical predictions of cB ∼ N−δ with
δ = (γ − 1)/2.

on interval [0, T ], ρ(κ) = ρ(λ) = 1/T . To eliminate finite
size effects we impose the periodic boundary condition,
meaning that nodes are uniformly scattered along a cir-
cle, and their hidden variables are their angular coordi-
nates if we set T = 2π. To simplify the calculations we
use the squared distances in the connection probability
function:

r(κ, λ) = r0e
−a‖λ−κ‖2 , (87)

where ‖λ− κ‖ is the angular distance between λ and κ:

‖λ− κ‖ = π − |π − |λ− κ||. (88)

We first calculate the degree distributions for the top
nodes. Due to the uniform distribution of hidden vari-
ables, the expected degree of a node is independent of its
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hidden variable κ. Using Eqs. (23) and (24) we obtain

k = k(κ) =
Mr0

2
√
πa

Erf(π
√
a), (89)

where Erf(x) is the error function. For k to be indepen-
dent of network size, we must set r0/

√
a ∼ 1/M . An-

other natural choice would be to constraint r0 = M−1,
but this choice would lead to bipartite clustering coeffi-
cients dependent on the network size. Constant bipartite
clustering can be instrumented by setting

r0 = 1, and a = ãM2, (90)

where ã is a parameter controlling the average degree
in the network. With the above choice of parameters
Eq. (89) simplifies to

k = k(κ) ≈ 1

2
√
πã
. (91)

Similarly, the average degree in the bottom node domain
is given by

` = `(λ) =
N

M
k. (92)

Since connection probability r(κ, λ) does not scale as
M−1, propagator g(k|κ) is not given by Eq. (28). Instead
we have to use Eq. (22) to compute the propagator, yield-
ing

ĝ(z|κ) = e−kLi3/2(1−z), (93)

where Lin(x) is the polylogarithm. Equation (93) can be
used to calculate higher moments of the degree distribu-
tion. For example, the second moment is

k2 = k
2

+ k(1− 1√
2

). (94)

That is, similar to the Poisson distribution, the standard
deviation of g(k|κ) is

σ =

√
k2 − k2 ∝

√
k. (95)

According to Eq. (59), the average nearest neighbor
degree is independent of the node’s hidden variable:

`nn(κ) = `, (96)

because node degrees are not correlated with their hidden
variables, see Eq. (91). Therefore, despite strong correla-
tion between hidden variables of connected nodes, there
are no degree correlations. The ANND can be obtained
by inserting `nn(κ) from Eq. (96) into Eq. (58) to yield

`nn(k) = 1 + `. (97)

The average number of common neighbors between
bottom nodes with hidden variables λ1 and λ2 is given
by Eq. (51), which now becomes

m(λ1, λ2) =
Np2

0

2π

∫ π

−π
e−a‖λ1−κ‖2e−a‖λ2−κ‖2dκ. (98)
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FIG. 4. (Color Online) Stratified bipartite networks. (a) De-
gree distributions of top (green circles) and bottom (red rectangles)
nodes. (b) Average nearest neighbor degrees for top and bottom
nodes as a function of node degree. (c) Average bipartite clustering
coefficients of top and bottom nodes as a function of node degree.
All the plots are for stratified bipartite networks with N = 105,
M = 2 × 105, and k = 20.

To compute m(λ1, λ2) we first change the integration
variable to x =

√
aκ, so that the new integration lim-

its are ±
√
aπ. Since

√
a ∼ M , in the thermodynamic

limit the integration interval becomes (−∞,∞), leading
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to

m(λ1, λ2) =
Np2

0√
8πa

e−a‖λ1−λ2‖2/2. (99)

Inserting the expression for m(λ1, λ2) and `nn(κ) into
Eqs. (61) and (62) yields the average bipartite clustering
coefficient:

cB(k) = cB(κ) =
1

3
. (100)

To validate the obtained analytical expressions we per-
form numerical simulations, generating networks with
N = 105 and M = 2× 105. To generate a network with
a target value of k we set ã according to Eq. (91). Fig-
ure 4(a) shows the degree distributions for the top and
bottom nodes in the model. The degree distributions are
well approximated by the Poisson distributions with the
averages at k = 20 and ` = kN/M . Figure 4(b) confirms
that there are no correlations: `nn(k) and knn(`) do not
depend on node degree, and match Eq. (96). Figure 4(c)
shows that clustering is strong, does not depend on either
node degree or sizes N,M , and matches the prediction
in Eq. (100). The appearance of high bipartite clustering
in the stratified model is due to preferential linking of
nodes with similar hidden variables.

V. SUMMARY

We have constructed and analyzed a general class of
bipartite networks with hidden variables. In this class of

bipartite networks, nodes of both type reside in hidden
variable spaces, and the connection probability between a
pair of nodes is a function of their hidden variables. The
independent character of link appearance in the model
allows one to calculate analytical expressions for many
important topological properties of modeled networks.

The formalism developed here builds up on the hid-
den variable formalism for unipartite networks [9]. Some
basic structural properties of bipartite networks, such as
the degree distributions and correlations, are straight-
forward generalizations of those in unipartite networks.
Some other characteristics, such as unipartite projections
and bipartite clustering, are unique to bipartite networks.

The hidden variable formalism has proven to be a pow-
erful tool in studying the structure and function of com-
plex networks [22–25]. One particular application of in-
terest for us are network geometry and navigability [26–
29]. The formalism developed here can also be useful in
inferring individual characteristics, attributes, and anno-
tations of nodes in real bipartite networks.
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Appendix A: Derivation of the bipartite clustering coefficient

Here we provide the detailed derivation of the bipartite clustering coefficient defined in Eq. (60). We estimate the
average bipartite clustering coefficient of a node with hidden variable κ by calculating the ensemble averages of the
numerator and the denominator in Eq. (60):

cB(κ) =
〈
∑
j>l(mjl − 1)〉

〈
∑
j>l(kj + kl −mjl − 1)〉

. (A1)

We first focus on the numerator in Eq. (A1):

〈
∑
j>l

(mjl − 1)〉 =
1

2

∑
k

g(k|κ)k(k − 1)
∑
λ1,λ2

ρ(λ1|κ)ρ(λ2|κ)
∑
m

(m− 1)Pλ1,λ2
(m− 1), (A2)

where g(k|κ) is the κ-to-k propagator, ρ(λ1|κ) is the conditional probability that a bottom node has hidden variable
λ1 provided it is connected to a top node with κ, and Pλ1,λ2

(m − 1) is the probability that two bottom nodes with
λ1 and λ2 have exactly m− 1 common neighbors besides i. Equation (A2) simplifies to

〈
∑
j>l

(mjl − 1)〉 =
1

2
〈k(k − 1)〉κ

∑
λ1,λ2

P (λ1|κ)P (λ2|κ)m(λ1, λ2). (A3)

Next we compute the denominator of Eq. (A1):

〈
∑
j>l

(kj + kl −mjl − 1)〉 = 〈
∑
j>l

(kj − 1 + kl − 1)〉 − 〈
∑
j>l

(mjl − 1)〉. (A4)

Sum 〈
∑
j>l(mjl − 1)〉 is the same as in the numerator, so that we only need to compute 〈

∑
j>l(kj − 1 + kl − 1)〉:

∑
j>l

(kj − 1 + kl − 1) = (ki − 1)

ki∑
j=1

(kj − 1) = (ki − 1)ki(kj − 1), (A5)

where ki is degree of node i. Therefore,

〈
∑
j>l

(kj − 1 + kl − 1)〉 =
∑
k

g(k|κ)(k − 1)k
∑
λ

ρ(λ|κ)
∑
`

(`− 1)f(`− 1|λ) = 〈k(k − 1)〉κ`nn(κ). (A6)

Using Eqs. (A3) and (A6) we finally obtain

cB(κ) =

∑
λ1,λ2

ρ(λ1|κ)ρ(λ2|κ)m(λ1, λ2)

2`nn(κ)−
∑
λ1,λ2

ρ(λ1|κ)ρ(λ2|κ)m(λ1, λ2)
. (A7)


