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Abstract 

Uncovering the causal relationship between spike train recordings from different 

neurons is a key issue for understanding the neural coding. This study presents a 

method, called as permutation conditional mutual information (PCMI), for 

characterizing the causality between a pair of neurons. The performance of this 

method is demonstrated with the spike trains generated by Poisson point process 

model and Izhikevich's neuronal model, including estimation of the directionality 

index and detection of the temporal dynamics of the causal link. Simulations show 

that the PCMI method is superior to the transfer entropy and causal entropy methods 

at identifying the coupling direction between the spike trains. The advantages of 

PCMI include twofold: it is able to estimate the directionality index under the weak 

coupling and against the missing and extra spikes. 
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I.  INTRODUCTION 

 

Over the past decades, most studies by means of spike trains have focused on the 

understanding of the neural coding [1-4]. It is of great interest to find out how neurons 

process and transmit information, which is a foundational issue for understanding the 

function of neuronal circuits and systems [5, 6]. To this end, simultaneously recording 

of multiple single neurons was employed, including multielectrode arrays [7, 8], 

multiple single electrodes [9] and optical imaging [10-12] et al.. By using the recorded 

spike trains, it is possible to study the interaction among neurons and their 

relationships within neural systems and then quantify the neural network’s structural 

information to investigate the neural coding. Analysis of spike trains can give 

functional information such as the coupling strength and direction [5, 6, 13, 14].  

 

Most analytical methods concentrate on the strength of pairwise connections, i.e. 

the degree of similarity or dissimilarity between two spike trains, including the 

cost-based metric [15, 16], the van Rossum distance [17], correlation based methods 

[18, 19], event synchronization method [20] and the ISI distance [21]. These methods 

have been successfully used to find the temporal similar pattern of the spike trains 

[22-24]. However, above methods are symmetric, and thus they can’t capture the 

causal relationship between spike trains. To obtain the causal relationship between the 

spike trains, Granger causality and information-theory based causality were proposed. 

Granger causality method evaluates the coupling directions by determining whether 

the information of a neuronal series is useful in forecasting [25-30]. In recent years, 

Granger causality has been used to estimate the coupling direction in spike trains [31, 

32]. But it has two disadvantages: requirement of stationarity and reliance on 

second-order statistics [31]. Another method for estimating the causality between 

neural series based on the information theory, such as conditional mutual information 

[33, 34], transfer entropy [35, 36], and permutation entropy [37, 38]. The details on 

these methods can be found in Ref. [39]. At present, to estimate the causality between 

two spike trains, two main methods: causal entropy [40] and transfer entropy [41], 

were applied. The causal entropy (CE) is a time-adaptive approach to detect the 

asymmetries in the relative inter-spike intervals between neuronal pairs. The transfer 

entropy (TE) quantifies the fraction of information in the past of a neuron flowed to 

the future of another neuron.  



 

In this study, we address an information-theory based approach, which is referred 

as permutation conditional mutual information (PCMI), to extract the causality 

between spike trains recorded from a pair of neurons. The permutation entropy and 

conditional mutual information have been used to analyze neural signals [42-46]. 

Recently, the two methods have been integrated together, named as PCMI, to evaluate 

the directionality index between two cardiorespiratory series [47] and to estimate the 

coupling direction between two neuronal populations [48]. In this study, we intend to 

estimate the coupling direction between the spike trains by means of PCMI. The 

performance of the approach is evaluated using a Poisson process model by 

comparing with the TE and CE method. 

 

II. METHODS 

 

A. Transfer entropy (TE) 

 

The transfer entropy can estimate the information transferred from one neuron to 

another neuron [41]. Let [ ]ft t τ+  and [ ]pt tτ−  denote the upcoming time interval 

and past time interval, respectively, and FX , PX  and FY , PY  are the number of 

spikes of XS  and YS  ( XS  and YS  denote two spike trains) falling in the two 

intervals, then the transfer entropy from XS  to YS  is defined as: 

 

( ) ( ) ( ); | | | ,F P P F P F P P
X Y I Y X Y H Y Y H Y X Yϕ → = = − .         (1) 

 

To reduce the bias caused by the surrogate data that generated by randomly shuffling 

the inter-spike intervals, the normalized transfer entropy (NTE) is defined as: 
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There is no causality between two spike trains, when the NTE is less than zero. To 

restrict the NTE in the interval [0 1], we set up: 0ψ =  if 0ψ < . The directionality 

index T
X YD →  ( TD : the directionality index of TE) is defined as: 
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The T
X YD →  is greater than 0 if the spike train XS  drive the spike train YS ; if the 

T
X YD →  is less than 0 that means the spike train XS  is driven by the spike train YS ; if 

the T
X YD →  is about 0, there is no causal relationship between the two spike trains.  

 

B. Causal entropy (CE) 

 

The causal entropy is an information-theory method to estimate the causal 

relationship between two spike trains [40, 49]. The method is based on the variations 

of the distribution of inter-spike intervals in XS  and YS . The detail of the algorithm 

can be found in Ref. [40]. Herein the X Yξ →  and Y Xξ →  are denoted as the causal 

entropies between XS  and YS . The normalized directionality index of CE is defined 

as: 
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where C

X YD → ( CD : the directionality index of CE) has the same meaning as the 
T
X YD → .  

 

C. Permutation conditional mutual information (PCMI) 

 

The spike trains are series of the occurrence of action potentials recorded from 

individual neurons, each spike train can then be represented as a series of impulse 

functions: 

 

( ) ( )
1

W

i
i

S t t tδ
=

= −∑                           (5) 

 

where 1 Wt t  are the spike times and W denotes the number of spikes. In order to 

analyze with PCMI, a temporal resolution Δ  (i.e. the bin size) is employed to 

discretize a spike train to a sequence of integers { }1 2, , , nN N N N=  [50, 51], where 

each integer iN ( 1,2, ,i n= ，n T= Δ  is the total number of time steps within the 



recorded time interval of length T ) denotes the number of spikes occurred in each bin. 

The scheme is illustrated in Fig. 1(a) and 1(b). Less spikes will fall into a bin with the 

decrease of bins. If Δ  is equal to the sampling period of the spike train, the sequence 

will become a binary one.  

 

Like EEG (electroencephalogram) and LFP (local filed potential), the discretized 

spike trains may generally present as a fluctuation over time. The motifs (i.e. ordinal 

patterns, defined in Ref. [38] and denoted as M in this study) embedded in the 

fluctuations may provide the causal information between two spike trains. According 

to the definition of permutation entropy [37], the number of total motifs is equal to the 

factorial of the order (i.e. the number of data points in each motif). For example, there 

are six different motifs when order 3m = , including ‘slopes’, ‘peaks’ and ‘troughs’, 

which are illustrated in Fig. 1(c). The order m is an important parameter in the PCMI 

algorithm, and how to choose its value will be discussed in the following section. It 

should be noted that there is a little difference in the sorting method in discretized 

spike trains compared with the method in EEG or LFP. The values in the fragment of 

continuous EEG or LFP signal have a continuous distribution, equal values are 

neglected and only unequal ones are considered for simplicity [37]. However, in the 

discretized spike trains, the equal values can’t be simply neglected. Otherwise the 

temporal patterns contained in spike trains will be destroyed severely by the removal 

of equal values. To solve this problem, the approach employed in this study contains 

the following step: two equal values for sorting i jN N= , i j< , are treated as 

i jN N< , i.e. a ascending pattern. As shown in Fig. 1(c), the ordinal pattern that is 

composed of three data points denoted as solid triangles is classified as 5M . 

 

Another important parameter is the lag τ  in PCMI. The lag is the number of 

sample points spanned by each section of the motif [38]. The motifs under 1τ =  and 

2τ =  are illustrated in Fig. 1(c). The motifs inside the ellipses are of lag 1τ =  and 

the motif indicated by the solid squares is of lag 2τ = . The effect of lag τ  on the 

result of PCMI in the discretized spike trains will be addressed in the following 

section. Now, the probability of occurrence of each motif can be calculated 

as ( ) ( ) ( )( )1i ip M f M n m τ= − − , where ( )if M , ( )1: !i m∈  denotes the frequency 

of iM  in the discretized spike trains, n is the length of the discretized spike trains.  

 



On the basis of the permutation analysis, the probability distribution functions, 

the joint probability functions and the conditional probability functions of two 

discretized spike trains can be obtained, and then the conditional mutual information 

can be calculated. Let XS  and YS  be two spike trains recorded from two neurons. 

Their corresponding discretized sequences are { }nX x=  and { }nY y= , respectively. 

The marginal probability distribution functions of X and Y are denoted as ( )p x  and 

( )p y , respectively; the joint probability function of X and Y is denoted as ( ),p x y . 

Then, the entropy of X and Y can be defined as [52]: 

 
( ) ( ) ( )log

x X
H X p x p x

∈

= −∑ ,                      (6) 

  
and 
 

( ) ( ) ( )log
y Y

H Y p y p y
∈

= −∑ .                       (7) 

 
The joint entropy ( ),H X Y  of X and Y is given by 

 
( ) ( ) ( ), , log ,

x X y Y
H X Y p x y p x y

∈ ∈

= −∑∑ .                  (8) 

 

The conditional entropy ( )|H X Y  of X given Y is defined as 

 
( ) ( ) ( )| , log |

x X y Y
H X Y p x y p x y

∈ ∈

= −∑∑ .                  (9) 

 
Then, the common information contained in both X and Y can be evaluated by the 

mutual information: 

 

( ) ( ) ( ) ( ); ,I X Y H X H Y H X Y= + − .                 (10) 
 

To infer the causal relationship, i.e., the directionality of the coupling between X 

and Y, the conditional mutual information (CMI, i.e. the PCMI in this study) may be 

employed to estimate the “net” information about the future of one process contained 

within the other process. The PCMI between X and Y can be calculated by the 

following equations [33, 34, 48]:  

 



 ( ) ( ) ( ) ( ); | | | , |X YI I X Y Y H X Y H Y Y H X Y Yδ
δ δ δ→ = = + −          (11) 

 

and 

 

( ) ( ) ( ) ( ); | | | , |Y XI I Y X X H Y X H X X H Y X Xδ
δ δ δ→ = = + − ,        (12) 

 

where Xδ (Yδ ) is the future δ  steps ahead of the process X(Y). The main procedure 

of the algorithm to detect the coupling direction is as follows: 

(1) Find the maximum value in X YI δ
→  and Y XI δ

→ , then denoted as X YIη
→  and Y XIη

→ ; 

(2) Similarly to Refs. [53, 54], the directionality index between X and Y is defined as: 
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Since both X YIη
→  and Y XIη

→  are confined in the interval [0 1], the value of 
P
X YD →  ( PD : the directionality index of PCMI) ranges from -1 to 1. 0P

X YD → >  means 

that XS  drives YS  and 0P
X YD → <  means that YS  drives XS . The matlab codes 

for the algorithm are available online [55]. 

 

III. SIMULATION AND RESULTS  

 

A. Models for spike trains 

 

In this study, to evaluate the performance of the proposed method, Poisson point 

process model and Izhikevich's neuronal model are employed for the simulation 

analysis. The underlying idea of Poisson point process model is that the inter-spike 

intervals within a spike train follow a Poisson distribution, it was known that the 

Poisson-like spike trains are the fundamental unit of cortical communication[56, 57]. 

On the other hand, the Izhikevich's neuronal model combines the biological 

plausibility of Hodgkin-Huxley-type dynamics and the computational efficiency of 

integrate-and-fire neurons, this simple model can generate the rich behavior of 

biological neurons, including spiking, bursting, and mixed mode firing patters[58].  

 

(1) Poisson point process model 

 



Poisson point processes have been employed to generate spike trains for 

simulation studies [17, 59, 60]. The processing for generating a Poisson spike train is 

that each successive spike time is the previous spike time plus an inter-spike interval 

which is randomly picked up from an exponential distribution. In order to investigate 

the interaction between two spike trains, we set up a causality link for the two spike 

trains by the method proposed in Ref. [41], as shown in Fig. 2. The detail is below. 

Firstly, two independent Poisson processes are used to simulate two spike trains XS  
and YS  with firing rates of λ  ( 10λ = Hz is chosen in this study which means 10 

spikes/s); Secondly, a proportion [0 1]α ∈  of spikes in the YS  are removed, the 

number is denoted as L; Lastly, the spike trains of L are picked up randomly from the 

XS  and are inserted into the YS  with a delay time (denoted as ‘ Pd ’ in the following 

sections) to generate a new spike train. Through this transform, the YS  spike train 

will contain the causal information from the XS  spike trains. The causal information 

between the spike trains XS  and YS  is proportional to α .   

 
(2) Izhikevich's neuronal model 

 
The Izhikevich neuronal model contains two variables [58]: v and u, v is the 

membrane potential of the neuron and u is a membrane recovery variable, the model 

is below 

 
20.04 5 140 ,v v v u I′ = + + − +                        (13) 

 

( )u a bv u′ = − .                              (14) 
 

with the auxiliary after-spike resetting 
 

30 ,
.

v c
if v mv then

u u d
←⎧

≥ ⎨ ← +⎩
                      (15) 

 

where I is the synaptic current or injected DC current. The parameter a describes the 

time scale of u, b describes the sensitivity of u to subthreshold fluctuations in v, c 

describes the spike reset values of v and d describes the spike reset value of u. These 

parameters are set as: 0.02, 0.2, 65 , 2a b c mv d= = = − = .The injected current I is set 

as a normally distributed random Gaussian variable. The causality between two 

neurons is obtained in such a way: the output of the first neuron is fed into the second 



neuron with time delay (denoted as ‘ Id ’ in the following sections), as shown in Fig. 3. 

The coupling strength is determined by a proportion R which means how many 

percents of the output of neuron 1 are injected into neuron 2. The larger is the 

proportion, the stronger coupling between the two neurons.  

 

B. Parameter choices in PCMI 

 

In the PCMI algorithm, four different parameters (i.e. Δ , τ , order and δ ) 

should be firstly considered before its application. The effect of these parameters 

selections on the performance of the PCMI is discussed by the Poisson point process 

model, the similar results can be found from the Izhikevich neuronal model. Given 

0.5α = , 25msPd = , and the spike train length 50s, two spike trains are generated.  

 

(1) The temporal resolution Δ . The Δ  is the bin size that is used to discretize 

spike trains. The Δ  ranges from 1ms to 30ms with a step of 1ms. Fig. 4 plots the 

directionality index estimated by the PCMI with order 2m =  and 3m = , 

respectively. For 2m = , it can estimate the coupling direction when 15msΔ < ; 

while 3m = , when Δ  is larger than 10ms, the coupling direction cannot be found. 

The underlying reason is that the larger Δ  destroy the inherent permutation patterns 

contained in the two spike trains, however the smaller the Δ , the more accurate 

permutation information can be obtained. In this study, it is recommended that the Δ  

is set as the sample period of the spike train, namely 1msΔ = .  

 

(2) The lag τ . The lag is the number of data points between the adjacent two 

points in the motifs. Fig. 5 shows the directionality index at the different lags with 

2m =  and 3m = , it is found that the different lags can give similar results for the 

two orders. In [61], an autocorrelation function (ACF) of a signal can be employed to 

determine the lag τ . In this study, we found the lag τ  determined by the ACF is 

always one, so the 1τ =  is selected in this simulation analysis. 

 

(3) The order m. The order denotes the number of data points included in the 

motif. The length of data is at least greater than ! ! !m m m∗ ∗  points to obtain a 

reliable result of PCMI, for example 4m =  means we need 13824 data points [48]. 

In this study, there are only 0s and 1s in the binary sequences, when 2m =  



(ascending and descending ordinal patterns), the permutation patterns of the series can 

be fully described. As can be seen in Fig. 4 and Fig. 5, 2m =  is an appropriate 

selection for the calculation of PCMI.  

 

(4) The δ . It is noted that the δ  cannot be less than the order m in PCMI [47]. 

And the δ  is associated with the delay time, which will be discussed in the 

following section. Thus, the δ  should be larger than the maximal delay between two 

spike trains for investigating the causality at all delay times. 

 

C. Simulation results 

 

Firstly, the capability of PCMI for charactering the causal relationship is 

demonstrated by the mentioned two models. In the Poisson point process model, 

model P1 and model P2 are constructed and shown in Fig. 6(a) and 6(b), respectively. 

In model P1, 0.5α =  and 15msPd = , two spike trains XS  and YS  of 10s are 

generated with the causality from XS  to YS . In model P2, the coupling direction is 

the same as model P1 but the strength is composed of three fractions: 1 0.15α =  with 
1 10msPd = , 2 0.2α =  with 2 20msPd =  and 3 0.15α =  with 3 30msPd = . The 

reason for the usage of the model P2 is that the coupling between neurons may involve 

multiple pathways that vary in their conduction delays [62]. For both models, we use 

1msΔ =  to discretize the two spike trains and 2m = , 1τ = , 2 : 50δ =  to calculate 

the PCMI. Fig. 6(c) and 6(d) plot the PCMI values between XS  and YS  ( X YI →  and 

Y XI → ) with different δ  values for model P1 and model P2, respectively. Obviously, 

there is a peak of X YI →  corresponding to every delay time in the two models, which 

is indicated by the product of δ  and Δ  (e.g. 15δ =  and 1msΔ =  for 15ms 

delay). In fact, Δ  identifies the resolution of the delay times. Moreover, the value of 

X YI →  is proportional to the coupling strength, as can be observed in Fig. 6(d). On the 

other hand, the Y XI →  stays closely to 0 due to the absence of causality from YS  to 

XS . The estimated directionality indexes for the two models, 0.98 and 0.96 

respectively, reflect the coupling direction exactly.  

In the Izhikevich's neuronal model, model I1 and model I2 are constructed and 

shown in Fig. 7(a) and 7(b). As can be seen in Fig. 7(c) and 7(d), the causal 

relationship between neurons can be revealed by the simulation results. The details on 

the simulation are similar to ones of the Poisson point process model. Thus, the PCMI 



method can give not only the coupling strength, but also the causality between two 

neurons. 

 

Secondly, to compare with the PCMI, the TE and CE methods are carried out 

with the same simulations. As mentioned in the previous section, the PCMI, TE, and 

CE are all parameter-dependent methods. We set the parameters of the three methods 

as follows: 2 : 50δ =  for PCMI; 1: 50msfτ =  and 1: 50mspτ =  for TE; 10 bins 

of size 5ms for CE. The comparison is carried out in three aspects. 

 

(1) Variation of directionality index with the coupling strength 
 

In Poisson point process model, the coupling strength between two spike trains is 

determined by the proportion α . Given 15msPd = , two spike trains XS  and YS  
of 10s are generated. Spike train XS  drives spike train YS . The coupling strength 

α  ranges from 0 to 1 with a step of 0.05. In Izhikevich's neuronal model, the 

parameter R which reflects the coupling strength ranges from 0 to 100% with a step of 

5%. Spike trains for neuron 1 and neuron 2 are simulated with the causality from 

neuron 1 to neuron 2 and a delay time of 15ms. These spike trains are also of 10s 

length. As can be seen in Fig. 8(a) and 8(c), it is clear that the PCMI and TE are 

superior to the CE at identifying the coupling direction. As far as PCMI and TE are 

concerned, the advantage of the PCMI is that it can determine the coupling direction 

with more reliability and robustness for the weak coupling. Fig. 8(b) and 8(d) plot the 

PCMI values for different coupling strengths in each model. In the direction from XS  
to YS  (from neuron 1 to neuron 2), the PCMI estimate is proportional to α (R). On 

the other hand, the PCMI estimate is always close to 0 because there is no causality 

between two spike trains in the opposite direction. 

 

(2) The effect of spike train duration on the directionality index estimation 

 

Since the three methods for comparison in this study all depend on the statistical 

calculation, it is necessary to investigate the effect of the duration of spike trains on 

the directionality index estimation. In Poisson point process model, Given 15msPd = , 

two spike trains XS  and YS  are generated with the driving direction from XS  to 

YS . Fig. 9(a) and 9(b) plot the directionality index estimated by the PCMI, TE and CE 

for two different coupling strength: 0.1α =  and 0.3α = . In Fig. 9(a), with the 



increase of duration, the directionality index of PCMI increases with small 

fluctuations and then becomes stationary. In comparison, the directionality index of 

TE is not suitable for estimating the directionality index because of the large 

fluctuations and the small directionality index. As can be seen in Fig. 9(b), the 

behavior of PCMI and TE are similar, but the PCMI is still superior to the TE, 

especially when the spike trains duration is less than 10s. In both of the cases, 

compared with PCMI and TE, the directionality index of the CE does not change 

obviously with the spike train duration but it is not very efficient to evaluate the 

coupling detection. The effect of spike train duration on the PCMI values for the two 

coupling strengths are described in Fig. 9(c) and 9(d). It was found that that there is a 

significant decrease for 0.1α =  ( X YI →  decreases form 0.003 to 0.001 and Y XI →  

decreases from 0.001 to 0 for short durations), for other coupling strengths, the PCMI 

value almost does not vary with the spike train durations. The simulation results for 

Izhikevich's neuronal model are shown in Fig. 10. Neuron 1 drives neuron 2 with a 

delay time of 15ms. Two different coupling strength are selected as R = 10% and R = 

30%. It can be observed similar results to the Poisson point process model. 

 

(3) The robustness of directionality index  

 

Three types of noise are considered in this study: the jitter noise corresponding to 

a shift in time of the spikes in spike trains; the missing spikes corresponding to the 

random deletion of spikes in spike trains; the extra spikes corresponding to the 

random insertion of independent spikes in spike trains. The jitter noise may appear in 

stochastic biological processes such as synaptic transmission and spike propagation in 

a neural network. The missing and extra spikes arise as spurious points in the spike 

trains, primarily caused by spikes which are not fired by the recorded neuron, but by 

other external processes involving the discharges of other neurons, errors in the spike 

sorting procedure, electrical artifacts, etc. [19, 63].  

 

For the Poisson point process model, given 15msPd = , two spike trains XS  and 

YS  of 10s duration are generated. Spike train XS  drives spike train YS . We 

investigate the effect of noise on the directionality index estimation in two cases: 

0.1α =  and 0.3α = . For the Izhikevich's neuronal model, neuron 1 drives neuron 2 

with a delay time of 15ms. The simulated spike trains are of 10s length. The effect of 



noise on the directionality index estimation is evaluated by the models of two 

different coupling strengths: R = 10% and R = 30%. 

 

(1) Jitter noise. The jitter noise is added to the spike trains via shifting every spike 

in each spike train by a time normally distributed in an interval. For the Poisson point 

process model, the performance of the three methods to estimate the coupling 

direction dramatically decreased with the increasing of the magnitude of the jitter 

noise, as illustrated in Fig. 11(a) and 11(b). For the coupling strength 0.1α = , the 

PCMI and TE can resist the jitter noise only when the jitter is smaller than 10ms and 

the PCMI is prior to TE. But the CE cannot against the jitter noise. For the coupling 

strength 0.3α = , the TE is a little more immune than the PCMI but only for the small 

jitter noise (< 20ms). The CE still can’t overcome the effect of the jitter noise. In Fig. 

11(c) and 11(d), the PCMI estimate from XS  to YS  ( X YI → ) is greatly influenced by 

the jitter noise which leads to the poor ability of identifying the coupling direction. 

From the simulation results for the Izhikevich's neuronal model which are shown in 

Fig. 12, it can be observed that the performance of PCMI and TE to resist jitter noise 

are very close to each other. However, they can only resist small jitter noise. The 

capability of CE method is almost similar to the Poisson point process model. 

 

(2) Missing spikes. The amount of missing spikes is quantified by the percentage 

of randomly deleted spikes in each spike train. For the Poisson point process model, 

the simulation results for the directionality index are shown in Fig. 13(a) and 13(b). 

For the coupling strength 0.1α = , the directionality index estimated by the PCMI 

decreases with the increasing number of missing spikes. The directionality index of 

TE fluctuates dramatically and the directionality index of CE stays around zero. For 

the coupling strength 0.3α = , the effect of the missing spikes on the PCMI and CE 

are not significant, but the directionality index of TE decreases significantly. Fig. 13(c) 

and 13(d) plot the variation of PCMI values with the missing spikes. With the 

increasing of missing spikes, X YI →  decreases significantly and Y XI →  increases very 

slightly. But X YI →  is always lager than Y XI →  which ensures a correct estimation of 

the coupling direction. The simulation results for the Izhikevich's neuronal model are 

shown in Fig. 14. Clearly, the PCMI is still superior to the TE and CE. Although the 

performance of PCMI is deteriorated due to the missing spikes, it can tell the correct 

coupling direction between two neurons either for R = 10% or R = 30%.  



 

(3) Extra spikes. The amount of extra spikes is quantified by the percentage of 

randomly inserted independent spikes in each spike train. With regard to the Poisson 

point process model, Fig. 15(a) and 15(b) show the estimation of directionality index 

by the PCMI, the TE and CE as a function of extra spikes. For the coupling strength 

0.1α = , the extra spikes make the directionality index of PCMI decrease to about 0.4 

when the number of the extra noisy spikes is equal to the original spikes number. But 

the PCMI is still capable of estimating the coupling direction. On the other hand, the 

TE is not suitable for estimating the coupling direction due to its uncertain results and 

the CE is not appropriate because of its approximate zero values. For the coupling 

strength 0.3α = , the directionality index of the TE and CE are both influenced 

severally by the extra spike noise. However, there is only a small decrease for the 

PCMI with the increasing of the noisy spikes. As can be seen in Fig. 15(c) and 15(d), 

there is variation of the PCMI values because of the extra spikes, but this does not 

alter the result about the coupling direction, which is similar to the case of missing 

spikes. In Fig. 16, the simulation results of the Izhikevich's neuronal model are 

illustrated. The decrease of PCMI value from neuron 1 to neuron 2 ( 1 2I → ) and the 

increase of the value on the opposite direction ( 2 1I → ) lead to the decrease of the 

directionality index, especially for the case of R = 10%. However, the PCMI is still 

superior to TE and CE at identifying the coupling direction between neurons. 

 

IV. CONCLUSIONS 

 

Characterizing the connections between individual neurons is essential for the 

better understanding of neural coding. In this study, the PCMI method is proposed to 

identify the causal relationships (information flow) between two spike trains. To 

assess the performance of the measure, a series of simulations were performed by 

means of the Poisson point process model and Izhikevich's neuronal model. The 

simulation results shows that the PCMI method can be applied for the analysis of 

causality between neurons by spike trains. In comparison with the TE and CE 

methods, the advantages of the PCMI can be summarized in the following. (1) The 

PCMI can detect the interaction delays between two spike trains, even if there is a 

wide distribution of the delay times due to the multiple pathways that connect two 

neurons. The interaction delays are indicated by the product of δ  and Δ  and the 



resolution is determined by Δ . (2) The PCMI method is able to estimate the 

directionality index reliably for the weak coupling strength (e.g. 0.1α =  for Poisson 

point process model and R = 10% for Izhikevich's neuronal model) between spike 

trains, but the TE and CE methods are not suitable in this case because of the 

dramatically fluctuations and small values of the directionality index, respectively. 

For the stronger coupling strength (e.g. 0.3α =  for Poisson point process model and 

R = 30% for Izhikevich's neuronal model), the three methods are able to identify the 

directionality index, but the PCMI is better than the TE and CE at identifying the 

coupling direction for short spike trains. (3) The PCMI is more robust to the noise in 

spike trains than the TE and CE, particularly for the missing and extra spikes. The 

underlying reason is that the PCMI is based on the ordinal patterns contained in the 

spike trains, thus the missing or extra spikes cannot severely destroy the inherent 

ordinal patterns, particularly when there is a stronger coupling strength between two 

spike trains. On the other hand, because the TE is calculated in terms of the number of 

spikes in time intervals and the CE is computed by means of the relative inter-spike 

intervals between a pair of spike trains, therefore they are influenced greatly by the 

missing and extra spikes. In summary, the PCMI method can give the quantification 

of the directionality index and the detection of temporal dynamics between two 

interacting spike trains. 

 

However, there are two points should be noted in the application of the PCMI 

method. The first one is the robustness of the PCMI against the jitter noises. Another 

is whether the PCMI method can be used to estimate the information flow in multiple 

spike trains. These two issues will be investigated in future studies. 
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FIG. 1. Extraction of motifs from a simulated spike train. (a) A simulated spike train. (b) 

Discretize the spike train by adding spikes in each bin. (c) Motifs contained in the discretized 

sequence (order: m=3, so 3!=6 different motifs), including ‘slopes’ ( 1M  and 5M ), ‘peaks’ ( 2M  

and 4M ) and ‘troughs’ ( 3M  and 6M ). The numbers indicate six different motifs which are 

defined identical to Li and Ouyang [48]. 
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FIG.2. (Color online) Approach to construct causality between spike trains for Poisson point 

process model. (a) and (b) Two independent spike trains XS  and YS . The forks denote the 

randomly removed spikes from YS . The triangles denote the randomly selected spikes from XS . 

(c) The spikes selected from XS  are delayed by Pd . (d) The remain spikes of YS . (e) The new 

spike train which contains the causal information of XS .  
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Fig. 3. Two coupled neurons for Izhikevich's neuronal model. Neuron 1 drives neuron 2 with a 

time delay which is denoted by Id . The coupling strength is qualified by R which means the 

proportion of the output of neuron 1 injected into neuron 2. 
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FIG. 4. (Color online) Directionality indexes for different bins which are given in mean ± SD (20 

realizations for each order). 
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FIG. 5. (Color online) Directionality indexes for different lags which are given in mean ± SD (20 

realizations for each order). 
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FIG. 6. (Color online) The PCMI estimate for Poisson point process models. (a) Model P1: one 

delay of 15ms between XS  and YS , 0.5 of spikes in YS  are borrowed from XS . (b) Model P2: 

three different delays of 10ms, 20ms and 30ms between XS  and YS , 0.15, 0.2 and 0.15 of spikes 

associated with each delay in YS  are borrowed from XS . (c) and (d) The PCMI estimate 

between XS  and YS  ( X YI →  and Y XI → ) with different δ  values for model P1 and model P2.  
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FIG. 7. (Color online) The PCMI estimate for Izhikevich's neuronal models. (a) Model I1: one 

delay of 15ms between neuron 1 and neuron 2, 50% of the output of neuron 1 is injected into 

neuron 2. (b) Model I2: three different delays of 10ms, 20ms and 30ms between neuron 1 and 

neuron 2, 15%, 20% and 15% of the output of neuron 1 associated each delay is injected into 

neuron 2. (c) and (d) The PCMI estimate between neuron 1 and neuron 2 ( 1 2I →  and 2 1I → ) with 

different δ  values for model I1 and model I2.  
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FIG. 8. (Color online) Directionality index and PCMI values for different coupling strength. (a) 

and (c) Directionality index estimated by PCMI, TE and CE for Poisson point process model 

( P
X YD → , T

X YD →  and C
X YD → ) and Izhikevich's neuronal model ( 1 2

PD → , 1 2
TD →  and 1 2

CD → ), respectively. 

The results are given in the form of mean±SD (20 realizations for each method). (b) and (d) 

PCMI values for different coupling strength. X YI →  and Y XI →  for Poisson point process model, 

1 2I →  and 2 1I →  for Izhikevich's neuronal model. 
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FIG. 9. (Color online) Effect of spike train duration on the directionality index and PCMI values 

for Poisson point process model. (a) and (b) Directionality index estimated by the PCMI, TE and 

CE ( P
X YD → , T

X YD →  and C
X YD → ) for 0.1α =  and 0.3α = . (c) and (d) PCMI values ( X YI → and 

Y XI → ) with different durations for 0.1α =  and 0.3α = . 
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FIG. 10. (Color online) Effect of spike train duration on the directionality index and PCMI values 

for Izhikevich's neuronal model. (a) and (b) Directionality index estimated by the PCMI, TE and 

CE ( 1 2
PD → , 1 2

TD →  and 1 2
CD → ) for R = 10% and R = 30%. (c) and (d) PCMI values ( 1 2I →  and 2 1I → ) 

with different durations for R = 10% and R = 30%. 
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FIG. 11. (Color online) Effect of jitter noise on the directionality index and PCMI values for 

Poisson point process model. (a) and (b) The robustness of directionality index estimated by the 

PCMI, TE and CE ( P
X YD → , T

X YD →  and C
X YD → ) against jitter noise for 0.1α =  and 0.3α = . (c) 

and (d) The variation of PCMI values ( X YI → and Y XI → ) with different jitters for 0.1α =  and 

0.3α = . 
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FIG. 12. (Color online) Effect of jitter noise on the directionality index and PCMI values for 

Izhikevich's neuronal model. (a) and (b) The robustness of directionality index estimated by the 

PCMI, TE and CE ( 1 2
PD → , 1 2

TD →  and 1 2
CD → ) against jitter noise for R = 10% and R = 30%. (c) and 

(d) The variation of PCMI values ( 1 2I →  and 2 1I → ) with different jitters for R = 10% and R = 30%. 
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FIG. 13. (Color online) Effect of missing spikes on the directionality index and PCMI values for 

Poisson point process model. (a) and (b) The robustness of directionality index estimated by the 

PCMI, TE and CE ( P
X YD → , T

X YD →  and C
X YD → ) against missing spikes for 0.1α =  and 0.3α = . 

(c) and (d) The variation of PCMI values ( X YI → and Y XI → ) with different percentage of missing 

spikes for 0.1α =  and 0.3α = . 
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FIG. 14. (Color online) Effect of missing spikes on the directionality index and PCMI values for 

Izhikevich's neuronal model. (a) and (b) The robustness of directionality index estimated by the 

PCMI, TE and CE ( 1 2
PD → , 1 2

TD →  and 1 2
CD → ) against jitter noise for R = 10% and R = 30%. (c) and 

(d) The variation of PCMI values ( 1 2I →  and 2 1I → ) with different jitters for R = 10% and R = 30%. 
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FIG. 15. (Color online) Effect of extra spikes on the directionality index and PCMI values for 

Poisson point process model. (a) and (b) The robustness of directionality index estimated by the 

PCMI, TE and CE ( P
X YD → , T

X YD →  and C
X YD → ) against extra spikes for 0.1α =  and 0.3α = . (c) 

and (d) The variation of PCMI values ( X YI → and Y XI → ) with different percentage of extra spikes 

for 0.1α =  and 0.3α = . 
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FIG. 16. (Color online) Effect of extra spikes on the directionality index and PCMI values for 

Izhikevich's neuronal model. (a) and (b) The robustness of directionality index estimated by the 

PCMI, TE and CE ( 1 2
PD → , 1 2

TD →  and 1 2
CD → ) against jitter noise for R = 10% and R = 30%. (c) and 

(d) The variation of PCMI values ( 1 2I →  and 2 1I → ) with different jitters for R = 10% and R = 30%. 
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