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Regulatory genes called small RNAs (sRNAs) are known to play critical roles in cellular responses
to changing environments. For several sRNAs, regulation is effected by coupled stoichiometric
degradation with messenger RNAs (mRNAs). The nonlinearity inherent in this regulatory scheme
indicates that exact analytical solutions for the corresponding stochastic models are intractable.
Here, we present a variational approach to analyze a well-studied stochastic model for regulation by
sRNAs via coupled degradation. The proposed approach is efficient and provides accurate estimates
of mean mRNA levels as well as higher order terms. Results from the variational ansatz are in
excellent agreement with data from stochastic simulations for a wide range of parameters, including
regions of parameter space where mean-field approaches break down. The proposed approach can
be applied for quantitative modeling of stochastic gene expression in complex regulatory networks.
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I. INTRODUCTION

A new paradigm for cellular regulation has emerged in
recent years with the discovery of novel non-coding genes
called small RNAs (sRNAs). In bacteria, sRNAs often
function as global regulators that mediate cellular adap-
tation to changing environments [1]. In higher organisms,
the corresponding genes (microRNAs) are known to play
key roles in the regulation of critical processes such as
development, stem cell pluripotency and cancer [2, 3]. It
has been proposed that one of the key functions of sR-
NAs in controlling cellular processes is to regulate the
variability (noise) in gene expression [3]. Recent experi-
mental developments have led to approaches for quantify-
ing such variability using single-molecule measurements
of mRNA levels [4]. These technological advances have
now made possible experimental studies that analyze the
roles of sRNAs in noise regulation during important cel-
lular processes. Correspondingly, there is a need for the-
oretical approaches that complement such experimental
efforts to enable a quantitative understanding of different
mechanisms of sRNA-based regulation.

While the molecular mechanisms of sRNA-mediated
regulation continue to be investigated, one established
mechanism, representative of several bacterial sRNAs,
corresponds to binding with mRNAs followed by cou-
pled stoichiometric degradation [5]. An important chal-
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lenge for current research is to analyze how this regula-
tory mechanism impacts the variability of gene expres-
sion across a population of cells. Several recent the-
oretical studies [6–12] have analyzed models based on
the corresponding reaction scheme (shown in Fig. 1A).
The nonlinearity inherent in this reaction scheme im-
plies that exact analytical solutions for the correspond-
ing stochastic model are intractable; thus approximate
analytical approaches are needed. Previous theoretical
studies have primarily focused on MF approaches and
on steady-state distributions using expansions around
MF solutions. However, MF approaches are not ac-
curate when we have a combination of nonlinear reac-
tion rates (due to interaction with small RNAs) and low
mRNA/sRNA levels, which points to the need for de-
velopment of alternative analytical approaches. Some
recent approaches that go beyond the MF approxima-
tion involve methods for estimating the moments from
the master equation [13, 14]. It should further be noted
that this model gives rise to a non-equilibrium stationary
state for which the well-known detailed balance criterion
is not valid. Therefore, as with many biological processes,
this model is representative of the broader class of non-
equilibrium processes for which it is desirable to develop
analytical approaches that go beyond MF approaches.

In this paper, we analyze stochastic models of sRNA-
based regulation via coupled degradation (as shown in
Fig. 1A). We first discuss the MF approximation, which
corresponds to neglecting mRNA-sRNA correlations, and
define dimensionless variables that are useful in quantify-
ing deviations between MF results and data from stochas-
tic simulations. To go beyond MF, we use a variational
approach which has been successfully applied to gene reg-
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FIG. 1: A) The kinetic scheme for regulation of mRNA by
small RNAs with coupled degradation rate γ. B) The ratio
X = 〈m〉/nm, obtained from simulation data, is plotted as
a function of nm and ns. Parameters are chosen such that
ǫm = ǫs = 1 and γ = 1. For nm, ns ≫ 1, X converges
towards the MF prediction (X ≃ 0.618).

ulatory networks in recent work [15–18]. Within this ap-
proach, we present a general ansatz for the steady-state
probability distribution which, at the simplest level, re-
duces to the MF approximation. At the next level, the
variational ansatz gives results that are in excellent agree-
ment with data from simulations for the mean and vari-
ance of the regulated mRNA distribution.

II. MASTER EQUATION AND MEAN FIELD
APPROACH

We begin by considering the kinetic scheme presented
in Fig. 1A. The probability distribution of mRNA and
sRNA levels per cell, Pm,s(t), obeys the master equation:

∂tPm,s = kmPm−1,s + ksPm,s−1 (1)

+ µm(m+ 1)Pm+1,s + µs(s+ 1)Pm,s+1

+ γ(m+ 1)(s+ 1)Pm+1,s+1

− (km + ks + µmm+ µss+ γms)Pm,s,

where kj , µj (j = m, s) and γ are the parameters defined
in Fig. 1A. We will focus on the stationary distribution,
denoted by P ∗

m,s. It is convenient to define the following
set of independent dimensionless parameters:

ǫm =
ksγ

µmµs

, ǫs =
kmγ

µmµs

, nm =
km
µm

, ns =
ks
µs

. (2)

From the master equation (1), we derive the following
exact equations

∂t〈m〉 = km − µm〈m〉 − γ〈ms〉, (3)

∂t〈s〉 = ks − µs〈s〉 − γ〈ms〉. (4)

In the stationary state, we can explicitly relate the av-
erage mRNA and sRNA levels to the correlation term
〈ms〉∗ [19, 20] via:

1

ǫm

(

1−
〈m〉∗

nm

)

=
1

ǫs

(

1−
〈s〉∗

ns

)

=
〈ms〉∗

nmns

, (5)

where 〈.〉∗ denotes the stationary average. More gener-
ally, moments at one level are coupled to higher-order
moments due to the nonlinear interaction term. This hi-
erarchy makes the exact solution of the master equation
intractable. Defining

X =
〈m〉∗

nm

, Y =
〈s〉∗

ns

, and C =
〈ms〉∗

〈m〉∗〈s〉∗
, (6)

equation (5) leads to

1−X

ǫm
=

1− Y

ǫs
= C XY. (7)

The traditional MF approximation consists of ne-
glecting correlations through the substitution 〈ms〉∗ →
〈m〉∗〈s〉∗. This assumption thus corresponds to C = 1
and leads to

ǫmXY +X − 1 = 0, ǫsXY + Y − 1 = 0. (8)

Comparing Eqns. (5) and (7), we see that the exact

means (i.e. solutions of Eqn. (5)) are generated by the
MF solutions considered with the rescaled interaction
parameter γ′ = Cγ. Determination of C can therefore
provide accurate estimates of the mean mRNA and
sRNA levels. The ratio C is also an indicator of the
accuracy of MF results: MF is a good approximation
when C ≃ 1, whereas deviations from unity indicate
that better approximations are needed. Furthermore,
note that X and Y are, in general, functions of the
four parameters ǫm, ǫs, nm and ns; however the MF
approximation (7) predicts that both quantities depend
only on ǫm and ǫs. It follows that MF theory breaks
down in regions of parameter space where X and Y
depend on the parameters nm and ns (for fixed ǫm and
ǫs). These regions are indicated by significant deviations
between the exact ratio X (Y ) and the solution λ+ (λ−)
of Eq. (8).

We now anlayze deviations of the MF results from
stochastic simulations data obtained using the Gillespie
algorithm [21]. The ratios X and C are plotted in figures
1B and 2A respectively. These data are presented as
a function of nm and ns, keeping ǫm and ǫs constant.
The figures indicate that both quantities converge
towards the MF predictions in the limit ns, nm ≫ 1
(X → 0.618 and C → 1). From equation (7), it can
be seen that deviations of the exact value of X from
the mean-field predictions are driven by the deviations
of C from the MF predictions. We see that as C → 1
one has X → λ+ i.e. the mean-field prediction becomes
exact. In other words, C and X behave the same
way. More significantly, the data shows that MF is
not a good approximation for small nm and ns. This
is important to note since, in several cellular systems,
mRNA abundances can be low (i.e. nm is small) [22].
This indicates that more accurate approximations are
needed in such cases.
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Furthermore, in the uncorrelated approximation, the
stationary probability distribution can be written as the
product of Poisson distributions

P ∗
m,s ≈ Πλ+

(m)×Πλ−
(s), (9)

where Πx(n) = e−xxn/n!. Defining the marginal distri-
butions P ∗

m =
∑

s P
∗
m,s and P ∗

s =
∑

m P ∗
m,s, the ratios

dm =
〈m〉∗

〈m2〉∗ − (〈m〉∗)2
, ds =

〈s〉

〈s2〉∗ − (〈s〉∗)2
, (10)

measure deviations between the marginals (P ∗
j , j = m, s)

and the simple Poisson distribution. Again, deviations
of D = ds × dm from unity reveal that both marginal
probability distributions cannot be approximated by the
Poisson distribution. In Fig. 2B, stochastic simulations
data indicate that D deviates significantly from one for
large nm and ns. This observation implies that higher-
order terms, such as 〈m2〉 and 〈s2〉 cannot be obtained
using the MF prediction 〈j2〉−〈j〉2 = 〈j〉 (j = m, s), even
in regions of parameter space for which the mean values
are given accurately by the MF approximation. From the
master equation, in the stationary state, one can derive
the following exact equation

〈m2〉∗ =
km
µm

(〈m〉∗ + 1)−
γ

µm

〈m2s〉∗, (11)

which indicates that it is only in regions of parame-
ter space where 〈m2s〉∗ ≃ 〈m2〉∗〈s〉∗ that the uncorre-
lated (MF) approximation can give accurate estimate of
the variance (even assuming that the MF result for the
mean is accurate). In regions of parameter space such
that X and C match the MF solution, the condition
〈m2s〉 ≃ 〈m2〉〈s〉 is not necessarily a good approxima-
tion, hence the discrepancy for D. Interestingly, it is for
small parameter values nj (j = m, s), for which the MF
approximation does not give accurate values, that D ap-
proaches 1. This indicates that the Poisson distribution
is in some way embedded in the structure of P ∗

m,s.

III. VARIATIONAL APPROACH

A. Method

Based on the preceding analysis, it seems natural to
approximate P ∗

m,s as a superposition of Poisson distri-
butions. This approximation can be implemented using
the variational method introduced by Eyink [23], com-
bined with the quantum Hamiltonian formalism of the
master equation [15, 16]. Following the mapping out-
lined by Doi [24], we first define the state vector |m, s〉
of m and s mRNA and sRNA macromolecules respec-
tively. For each macromolecules the operators a† and a,
respectively b† and b, associated with the creation and
annihilation of mRNA and sRNA are introduced :

a†|m, s〉 = |m+ 1, s〉, (12)

(A)

(B)

FIG. 2: Stationary value of C = 〈ms〉/〈m〉〈s〉 (A) and
D = dm × ds (B), obtained from simulation data, plotted
as a function of nm and ns. We keep ǫm = ǫs = 1 and γ = 1.

b†|m, s〉 = |m, s+ 1〉, (13)

a|m+ 1, s〉 = (m+ 1)|m, s〉, (14)

b|m, s+ 1〉 = (s+ 1)|m, s〉. (15)

They obey the commutation relation [a, a†] = [b, b†] = 1.
From the normalized vacuum state |0, 0〉, any state |m, s〉
is generated via

|m, s〉 = (a†)m(b†)s|0, 0〉, (16)

with 〈m, s|m′, s′〉 = δm,m′δs,s′m!s!. Let us now define
|ψ〉(t) by

|ψ〉(t) =
∑

m,s

Pm,s(t)|m, s〉, (17)

and rewrite the master equation (1) under the compact
form ∂t|ψ(t)〉 = −L|ψ(t)〉 with

L = km + ks + µma
†a+ µsb

†b+ γa†ab†b

−
(

kma
† + ksb

† + µma+ µsb+ γab
)

. (18)

Focusing on the stationary state, we denote by 〈ψL| and
|ψR〉 the left and right eigenstates with vanishing eigen-
value. They obey 〈ψL|n,m〉 = 〈ψL|ψR〉 = 1. The map-
ping to the original problem is given by

P ∗
m,s =

〈m, s|ψR〉

m!s!
. (19)

To initiate the variational ansatz, we define the left
and right trial vectors (〈φL(ΛL)| and |φR(ΛR)〉), con-
structed using a set of independent parameters, ΛL and
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ΛR. Defining the functionalH(ΛL,ΛR) = 〈φL|L|φR〉, the
eigenstates are determined using the variational principle
δH = 0. A detailed explanation of the variational scheme
is provided in [23].
We now generalize the uncorrelated approximation to

propose a specific ansatz for the trial vectors as the su-
perposition of Poisson distributions. A similar ansatz has
also been proposed in a recent study of reaction systems
including different chemical species [18]. We define

〈φL(ΛL)| = 〈0, 0|ea+b

d
∏

i,j=0

eθi,ja
ibj , (20)

|φR(ΛR)〉 =

d
∑

i,j=1

Θi,je
αi(a

†−1)eβj(b
†−1)|0, 0〉, (21)

with ΛR = {αp, βq,Θp,q} and ΛL = {θp,q} (θd,d = 0).
In each vector, the total number of parameters N is
given by N = d(d + 2). The parameters of 〈φL| are
imposed by the condition 〈φL|m,n〉 = 1 which leads
to θp,q = 0, ∀p, q. It follows that the set ΛR is so-
lution of 〈δφL|L|φR〉|ΛL={0} = 0. In other words,
ΛR is solution of the set of equations generated by
∂θi,j 〈φL|L|φR〉|ΛL={0} = 0 for i, j = 0, 1, 2, ..., d with the
pair (i = d, j = d) excluded. Using the relation

∂θi,j 〈φL|ΛL={0} = 〈0, 0|ea+baibj =
∑

m,s

〈m+ i, s+ j|

m!s!
,

(22)

our calculation leads to the system of equations:

∑d
p,q=1 Θp,qα

i
pβ

j
q × [ǫsǫm(ij + iβq + jαp) (23)

+insǫs(1− nm/αp) + jnmǫm(1− ns/βq)] = 0,

generated for i, j = 0, 1, 2, ..., d with the pair (i = d, j =
d) excluded. The first equation (for i = j = 0), corre-
sponds to the probabilistic interpretation: 〈φL|φR〉 = 1
and leads to the normalization constraint

∑

p,q Θp,q = 1.

From equation (23) one can then generates the N inde-
pendent conditions required to determine the right eigen-
vector parameters. It follows that an approximation of
the stationary distribution is given by

P∗
m,s =

〈m, s|φR(Λ∗
R)〉

m!s!
, (24)

where Λ∗
R = {α∗

p, β
∗
q ,Θ

∗
p,q} is solution of (23). The latter

distribution can be explicitly written as a superposition
of Poisson distributions:

P∗
m,s =

∑

p,q

Θ∗
p,qΠα∗

p
(m)Πβ∗

q
(s). (25)

We note that the MF results are recovered by considering
the ansatz with d = 1. In this case, P∗

m,s is simply a
product of two Poisson distributions with means α and
β respectively. The variational equations give ns(nm −
α) − ǫmαβ = 0 and nm(ns − β) − ǫmαβ = 0, leading to
C = D = 1.
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FIG. 3: Comparisons of the quantities X = 〈m〉/nm, C =
〈ms〉/〈m〉〈s〉 and D = ds × dm extracted from simulation
data (symbols) with the ansatz predictions (lines) and MF
results(dashed line). (A) The data are plotted as a function of
µ = µm = µs on a logarithmic scale, for γ = 1 (circles), γ = 5
(squares), and γ = 10 (diamonds). We keep ǫm = ǫs = 1 with
km = ks = k. (B) The data are plotted as a function of µm

on a logarithmic scale, for ǫm = 4 (top), ǫm = 1 (middle) and
ǫm = 1/4 (bottom). We keep µs = 2, γ = 1 and ǫs = 1.

B. Comparison with Stochastic Simulations

Going one step beyond the MF approximation, we con-
sider the ansatz (21) with d = 2. We first consider the
symmetric case km = ks = k and µm = µs = µ. This
choice imposes αj = βj (j = 1, 2) and Θ1,2 = Θ2,1. The
set Λ∗

R, solution of the equations generated by (23), is
obtained numerically using standard routines. From a
practical point of view, the numerical calculation is sig-
nificantly faster than stochastic simulations, especially if
we need to explore large regions of parameter space.

Figure 3A presents a comparison of our results with
data from stochastic simulations. Keeping the ratios ǫm
and ǫs constant, the quantities X , C and D are plotted
as a function of µ for γ = 1, 5 and γ = 10. Clearly,
deviations from MF results appear more pronounced as
γ increases. However, for a range of parameter values µ
and even for large mRNA-sRNA coupling, the variational
scheme gives accurate values of the mean mRNA level per
cell (〈m〉∗ = X ×nm). Additionally, we checked that the
predictions for 〈s〉∗ also presents an excellent agreement
with simulation data. Importantly, the agreement of our
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predictions with simulation data, for the quantities C and
D, shows that the variational method also gives accurate
values of higher order terms such as the correlation 〈ms〉∗

(= C×〈m〉∗〈s〉∗) and variance 〈j2〉∗−(〈j〉2)∗ (= 〈j〉∗/dj).
To compare our results in the non-symmetric case, we

consider variations in µm, keeping µs = 2 and γ = 1
fixed. The set of parameters is computed numerically,
solving 8 coupled equations generated from equation
(23). The ratio ǫs is kept equal to unity while ǫm = 4,
1 and 1/4. As shown in Fig. 3B, the ansatz predictions
are, once again, in excellent agreement with simulation
data.

IV. CONCLUSION

The variational approach presented can be general-
ized to more complex networks and nonequlilibrium
steady-states involving multiple interacting species.
As in the current work, the initial step is to obtain
the marginal distributions for the different interacting
species using a MF approximation. Since mean-field
effectively reduces the problem to one of non-interacting
species in effective fields, it should, in general, be
straightforward to obtain these marginal distributions.
The Ansatz proposed involves weighted combinations

of the products of these marginal distributions, where
the weight of each term and the scale parameters of
each marginal are the variational parameters. These
parameters are obtained by solving the set of coupled
equations generated with the variational method. At
the lowest order, the approach will recover the MF
results for the mean values, whereas going to higher
orders will yield systematic improvements over the MF
results and accurate estimates for the higher moments.
In particular, at second order, the approach results in
a simple set of algebraic equations which can be solved
to get accurate estimates of the means and variances
for the interacting species. The results derived will
aid approaches for inference of model parameters from
experimental measurements of mean and variance. It is
hoped that future work coupling such approaches with
experiments will lead to quantitative understanding of
gene expression in complex networks.
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