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Recent experiments suggest that lipid bilayer membranes may be viscoelastic. We present a generalized
“Saffman-Einstein” relation that may be used to determine the linear viscoelastic shear modulus from single-
bead microrheology experiments on membranes. We show that viscoelastic parameters can also be extracted
from membrane domain flicker spectroscopy experiments. Contributions from fluid inertia are expected to be
negligible in both microrheology and domain flicker spectroscopy experiments, but can create a “long-time tail”
in the membrane velocity autocorrelation function. In a viscous membrane, this tail crosses over from t−1 at
intermediate times, as in a two-dimensional fluid, to t−3/2 at long times, as in a three-dimensional fluid. If the
membrane is viscoelastic, the velocity autocorrelation function may be negative at intermediate times.

PACS numbers: 87.16.dm,83.60.Bc,83.10.Mj

Hydrodynamic theories of “quasi-two-dimensional” fluids,
i.e. two-dimensional fluids surrounded by a bulk, three-
dimensional fluid, have been remarkably successful in de-
scribing the dynamic behavior of membranes [1–6], interfaces
[7, 8], lipid monolayers [9] and liquid crystals [10]. Recent
microrheology experiments have indicated that membranes
may have viscoelastic properties with crossover between vis-
cous and elastic behavior at times in the range of 10-100
milliseconds [11]. Classical measurements of the membrane
surface viscosity [12] do not address the potential frequency-
dependence of viscosity. Other experiments suggest that the
crossover time scale should be approximately 50 microsec-
onds [13], or less than 100 milliseconds [14], if the membrane
is above its melting temperature.

Past analysis of the diffusion of lipid domains [3, 4], as
well as “domain flicker spectroscopy” [15, 16] and phase sep-
aration [6] have assumed that the membrane is purely vis-
cous. In this paper, we extend previously-developed results
for purely viscous quasi-two-dimensional fluids to viscoelas-
tic membranes, deriving formulas for both the mobility of em-
bedded objects and the relaxation of distorted domains. We
also extend this treatment to include the inertia of both the
membrane and the surrounding bulk fluid, allowing us to pre-
dict long-time tails in the membrane velocity autocorrelation
function.

Many theoretical tools have been developed to treat the
hydrodynamics of quasi-two-dimensional viscous membranes
[2, 5, 17] in the creeping-flow limit, and some work has been
done on expressly viscoelastic membranes [18]. The well-
known correspondence between viscous creeping flows and
linear viscoelastic flows [19] allows us to transform solutions
to the viscous problem into those for the viscoelastic one, sim-
ply by transforming into frequency space and replacing the
viscosity η with a complex, frequency-dependent viscosity
η(ω). One-particle microrheology uses this correspondence
to measure linear viscoelastic properties of a homogeneous
medium by using a generalized Stokes-Einstein formula [20].

We treat the membrane as a two-dimensional continuum
surrounded by a bulk fluid. This approach has been remark-
ably successful in describing the deformations of the mem-

FIG. 1: (Color online). A quasi-two-dimensional membrane: a two-
dimensional fluid with complex surface viscosity ηm(ω) surrounded
by a bulk fluid with viscosity ηf . All forces f applied are within the
plane of the membrane.

brane surface, both in terms of equilibrium shape [21, 22]
and fluctuations around it [23, 24] as well as the dynamics
of membrane height fluctuations [25–27]. We focus on fluid
motion within the bilayer, which is to linear order decoupled
from deformations of the bilayer [18]. We therefore describe
the membrane as a two-dimensional fluid embedded within
a three-dimensional bulk fluid (Fig. 1), a model most promi-
nently used by Saffman and Delbrück [1]. If the membrane
is purely viscous, we can solve the Stokes equations for the
coupled membrane-bulk fluid system with a force distribution
f(r, t) by using a Green’s function technique [5, 17, 28]; the
membrane velocity is given by

vim(k, ω) = T ij(k, ω)f j(k, ω) (1)

where the Einstein summation convention is assumed.
The force f and the membrane velocity vm vectors are
within the membrane plane; our convention is f(k, ω) =∫
d2rdte−i(k·r+ωt)f(r, t). We will refer to T ij(k, ω) as the

“membrane Oseen tensor,” in analogy with the similar tensor
for pure fluids [29]. T ij(k, ω) is well-known in the limit of a
purely viscous, incompressible membrane at small Reynolds
number (the “creeping flow” limit) [5, 17, 18],

T ij(k, ω) =
δij − kikj/k2

ηmk2 + 2ηfk
(creeping viscous flow) (2)
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where ηm is the surface viscosity of the membrane and ηf
the viscosity of the bulk fluid surrounding it. In Appendix
A, we derive a generalized form of the membrane Oseen ten-
sor that describes an incompressible, linear viscoelastic mem-
brane at small Reynolds number, including the membrane and
bulk fluid inertia. This result is

T ij(k, ω) =
δij − kikj/k2

iωρm + ηm(ω)k2 + 2ηfk
√

1 + iω/ωf (k)
(3)

where ηm(ω) is the complex surface viscosity, ρm is the two-
dimensional membrane mass density, ρf the bulk fluid den-
sity, and ωf (k) = ηfk

2/ρf . A similar membrane Oseen ten-
sor has also been derived for a purely viscous membrane [28].
Eq. 3 reduces to Eq. 2 in the limit of ω → 0.

We present three applications of the generalized membrane
Oseen tensor, Eq. 3, to physical problems: 1) determining vis-
coelastic modulii from single-particle mean-squared displace-
ments in a membrane, 2) determining viscoelastic parameters
from domain flickering in multicomponent membranes, and
3) calculating the long-time tails in membrane velocity auto-
correlation functions, which are due to membrane and bulk
fluid inertia.

I. SINGLE-PARTICLE MICRORHEOLOGY IN A
MEMBRANE

Single-particle microrheology relates the thermal fluctua-
tions of a tracer particle to the linear viscoelastic properties
of the material surrounding it through a generalized Stokes-
Einstein equation [20]. The Einstein relationship between the
particle mean-squared displacement and its mobility holds for
an isotropic membrane if the tracer particle is large enough
that the membrane can reasonably be approximated as a ho-
mogeneous continuum. With this assumption, the fluctuation-
dissipation theorem implies that [30]

ζ(ω) =
2NkBT

(iω)2Fu{〈∆r2(t)〉}(ω)
(4)

where N is the number of degrees of freedom tracked
in the mean-squared displacement and Fu{g(t)}(ω) ≡∫∞

0
g(t)e−iωt is the unilateral Fourier transform (or “Fourier-

Laplace” transform). ζ(ω) here is the hydrodynamic resis-
tance [20], i.e. if a particle has an oscillating velocity vp(ω),
the hydrodynamic drag on the particle is FD = −ζ(ω)vp(ω).
Equivalently, ζ(ω) is the inverse of the complex mobility,
µ(ω), vp(ω) = µ(ω)F(ω), where F(ω) is an external force
applied to the particle [20].

In bulk microrheology, the mean-squared displacements are
analyzed by assuming the Stokes formula for ζ, i.e. ζ(ω) =
6πη(ω)a where a is the particle radius. This is not the appro-
priate formula for membranes; instead, ζ is given by a more
complicated form derived initially by Saffman and Delbrück
[1] and extended by Hughes, Pailthorpe, and White [2]:

ζ = 4πηmZ(a/Lsd) (5)

where Z(x) → 1/(ln(2/x) − γE) for x � 1 and Z(x) →
2x/π for x � 1, where Lsd is the Saffman-Delbrück length,
Lsd = ηm/2ηf and γE = 0.5772 . . . is the Euler-Mascheroni
constant. Naively, we could write a “generalized Saffman-
Einstein relation” simply by choosing the relevant limit, and
replacing ηm in this formula with ηm(ω). However, even for
a small tracer particle, a � Lsd(ω = 0), both limits may
be relevant if ηm(ω) significantly decreases at any frequency.
An interpolation formula for f(x) has been derived [4], but
applying an analytical continuation like ηm → ηm(ω) to an
interpolation seems ill-founded; similar concerns apply to the
complex numerical scheme used in [2].

Instead of directly solving the complicated boundary value
problem as in [2], we introduce an immersed-boundary (IB)
approximation [31, 32] for the particle-fluid coupling, which
yields

ζ−1(ω) =
1

4π

∫ ∞
0

dk
ke−β

2k2a2/2

iωρm + ηm(ω)k2 + 2ηfk
√

1 + iω/ωf (k)
(6)

where β = 0.79791 (see Appendix B for details). Similar
forms may be derived by using the methods of Levine, Mack-
intosh, and Lubensky [18, 33], e.g. the “shell localization”
scheme of [33]), and these provide qualitatively similar re-
sults (see Appendix C). Immersed boundary methods have
also been used to calculate mobilities [32, 34] and long-time
tails [32, 35] for particles in ordinary three-dimensional fluids.

Using this formula, mean-squared displacement data
〈∆r2(t)〉 can be analyzed by determining ζ(ω) from the Ein-
stein relation, Eq. 4, as in [30]. Then ηm(ω) may be deter-
mined by fitting the experimental ζ(ω) to the form Eq. 6. To-
gether, Eqs. 4 and 6 form a “generalized Saffman-Einstein”
relation which can be used to analyze single-particle mi-
crorheology experiments.

Our initial motivation for deriving Eq. 6 was to analyze the
data of [11]; we have applied this technique to extract the
surface viscosity ηm(ω) from the mean-squared displacement
data of [11] on the motion of membrane-anchored particles
on freestanding DMPC bilayers. However, it has come to our
attention that this experiment may be flawed [36]. To avoid
any possible confusion, we do not include the analysis here as
the extracted η(ω) is likely not physically meaningful. We do
stress that the analysis of the data, as outlined in the preced-
ing paragraph, was entirely straightforward and application of
our methods to reliable experimental data in the future should
pose no difficulties.

In [11], the authors extract the correct drag ζ(ω) from Eq. 4,
but interpret it with an effective three-dimensional complex
shear modulus G3D(ω) = iωζ(ω)/6πa, motivated by the
Stokes formula ζ = 6πηma for a spherical particle in a ho-
mogeneous medium. This does not distinguish between drag
caused by the membrane and drag from the bulk fluid, and
may be difficult to interpret [37].

We provide a simple example of the possible errors caused
by assuming the Stokes drag is appropriate to the membrane
geometry. We let the membrane be a simple Maxwell fluid,
ηm(ω) = ηm(0)/(1 + iωτc), and then calculate the drag ζ(ω)
from Eq. 6. We plot the effective G3D(ω) = iωζ(ω)/6πa ≡
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G′3D(ω) + iG′′3D(ω) in Fig. 2. The actual shear modulus of
the membrane, G2D(ω) = iωηm(ω) is plotted in the inset.
The effective G3D(ω) does not necessarily reflect the under-
lying properties of the membrane, quantitatively or qualita-
tively. Most strikingly, while we have assumed that the un-
derlying membrane is elastic at frequencies larger than τ−1

c ,
G3D(ω) describes a system with a primarily viscous response
at large frequencies (Fig. 2). This is a consequence of the bulk
fluid; at large ω, |ηm(ω)| decreases as 1/ω, and the membrane
surface viscosity becomes less relevant in comparison to the
bulk fluid’s viscosity. Thus, G3D(ω) is only probing the bulk
fluid at frequencies ω � τ−1

c . This regime is not currently
seen in the microrheology experiments of [11], which have a
maximum observed frequency of roughly 30 Hz.
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FIG. 2: (Color online). The effective three-dimensional shear mod-
ulus G3D does not accurately represent the membrane’s viscoelas-
tic properties. We choose the underlying membrane surface vis-
cosity ηm(ω) to have the Maxwell form, ηm(0)/(1 + iωτc), with
ηm(0) = 10−6 poise cm and τc = 0.1 s (G2D = iωηm(ω) is
plotted in the inset). ρm = 5 × 10−7 g/cm2, ρf = 1 g/cm3, and
a = 10−5 cm. The large-frequency behavior of G3D(ω) is anoma-
lously viscous, and the crossover time extracted fromG3D(ω) is also
incorrect, τc ≈ 0.043 s.

The competition between bulk and surface viscosity also
affects the location of the crossover point. Normally,G′(ω) =
G′′(ω) at ωc = 1/τc, the crossover frequency. However, in
Fig. 2, we see that G′3D and G′′3D never cross; the location
of closest approach is at ω ≈ 23 Hz, which corresponds to
τc ≈ 0.043 seconds, less than half of the correct τc = 0.1
seconds. This shows that usingG3D(ω) can induce systematic
errors in quantitative measurements, even in frequency ranges
where the qualitative picture is correct.

II. VISCOELASTICITY AND DOMAIN FLICKER
SPECTROSCOPY

In earlier work, the authors and co-workers calculated the
relaxation times of near-circular lipid domains in multicompo-
nent membranes, and used this to determine the surface vis-
cosity of model membranes [16]. This earlier analysis only
treated the case of a purely viscous membrane, but the exten-
sion to a viscoelastic membrane is fairly simple through ap-
plications of Eq. 3 and analogy the earlier viscous treatment.
We can directly extract the complex surface viscosity by fit-
ting experimentally measured autocorrelation functions. We
also present some exact results for Maxwell models.

r(θ,t)

FIG. 3: (Color online). Illustration of quasi-circular membrane
domain. We describe the domain boundary as r(θ, t) = R(1 +
1
2

∑
n 6=0 un(t)e

inθ). For this figure, r(θ) = R(1 + 0.1 cos 7θ), i.e.
u7 = u−7 = 0.1 (dashed line). The equilibrium shape is circular,
r(θ, t) = R (solid line).

As in [16], we describe the shape of a near-circular
membrane domain by the Fourier series r(θ, t) = R(1 +
1
2

∑
n 6=0 un(t)einθ) (Fig. 3). If the domain is driven toward a

circular shape by a line tension σ, and the membrane is purely
viscous, the equations of motion for the membrane deforma-
tions un are

d

dt
un = −un(t)/τn + ξn(t) (7)

where ξn(t) is a Langevin force and the relaxation time τn is

τn =
ηmR

σ

1

n2(n2 − 1)

[∫ ∞
0

dx
J2
n(x)

x2(x+ Λ)

]−1

(8)

where Λ = R/Lsd, Lsd = ηm/2ηf . When the membrane
is viscoelastic, the relaxation of the domain will be non-
exponential, and depends on the history:

d

dt
un(t) = −

∫ +∞

−∞
dt′γn(t− t′)un(t′) + ξn(t) (9)

For causality, γn(t) = 0 for t < 0. The generalized Langevin
equation of Eq. 9 is simpler in Fourier space:

un(ω) =
ξn(ω)

iω + γn(ω)
(10)
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The variance of the Langevin force ξn(ω) is set by the
fluctuation-dissipation theorem [38],

〈ξn(ω)ξ∗n(ω′)〉 = 4π〈|un|2〉Re{γn(ω)}δ(ω − ω′). (11)

In the limit of linear viscoelastic flows where Eq. 3 applies,
we can determine γn(ω) easily. In [16], we calculated τn by

using the viscous membrane Oseen tensor (Eq. 2) to determine
the velocity of the fluid at the boundary from the force caused
by the deformation of the boundary. This derivation applies
with minimal change to the generalized membrane Oseen ten-
sor, yielding

γn(ω) =
σn2(n2 − 1)

R

∫ ∞
0

dx
J2
n(x)

x
(
iωρmR2 + x2ηm(ω) + 2ηfRx

√
1 +

iωρfR2

ηfx2

) (12)

We ignore inertia for the remainder of this section. The pres-
ence of the inertial term could lead to a long-time power-law
tail in the correlation function (see Section III), but numerical
computation of the autocorrelation 〈un(t)u∗n(0)〉 using Eq. 12
suggests that it would become important only when the cor-
relation function reached ∼ 10−6 of its initial value; this is
effectively unobservable. Instead, we use the noninertial ap-
proximation,

γn(ω) =
σn2(n2 − 1)

R

∫ ∞
0

dx
J2
n(x)

x2 (xηm(ω) + 2ηfR)
(13)

A. Extraction of the frequency-dependent surface viscosity

The fluctuation-dissipation relationship for our generalized
Langevin equation can be written [38]

1

iω + γn(ω)
=

1

〈|un|2〉

∫ ∞
0

dte−iωt〈u∗n(t0)un(t0 + t)〉

(14)
If we define Cn(ω) =

∫∞
0
dte−iωt〈u∗n(t0)un(t0 +

t)〉/〈|un|2〉, then we can determine γn(ω) = 1/Cn(ω) − iω.
In practice, using the Laplace transform version of this re-
lation is simpler, as the long-time behavior of the corre-
lation function is unreliable due to statistical fluctuations.
The Laplace transform of the correlation function, Ĉn(s) ≡∫∞

0
dte−st〈u∗n(t0)un(t0 + t)〉/〈|un|2〉, takes on the form

Ĉn(s) =
1

s+ γ̂n(s)
(15)

where

γ̂n(s) =
σn2(n2 − 1)

R

∫ ∞
0

dx
J2
n(x)

x2 (xηm(s) + 2ηfR)
(16)

To analyze a trace of a fluctuating domain, r(θ, t), we
first expand r(θ, t) into Fourier modes, r(θ, t) = R(1 +
1
2

∑
n 6=0 un(t)einθ). The line tension σ is determined from

〈|un|2〉 as in [16]. We then calculate the Laplace trans-
form of the autocorrelation of un, Ĉn(s). We fit γ̂exp

n (s) ≡
1/Ĉn(s) − s to Eq. 16. We do this by, for each frequency s,

determining the viscosity ηm(s) that makes Eq. 16 the best fit
to γ̂exp

n (s) for all observed modes n simultaneously. This is
a generalization of the analysis of [16], in which ηm(0) was
determined by fitting the relaxation times τn as a function of
n.

We apply this procedure to experimental data on domains
in DiPhyPC / Chol. / DPPC vesicles from [16]. Because of
the limited spatial resolution of domain flicker spectroscopy
experiments [15], we only fit over modes n = 2 − 5. Typ-
ical results for ηm(s) are shown in Fig. 4. The data show
a possible viscoelastic dependence of the surface viscosity
ηm on frequency, which can be roughly fitted by a Maxwell
model, ηm(s) = ηm(0)/(1+sτc). For a purely viscous mem-
brane, ηm(s) would be constant. The mean crossover time τc
measured is τc = 7.3 ± 2 milliseconds; this differs from the
crossover time of ≈ 100 ms reported in Harland et al. [11];
see however the note [36] and our earlier comments.

Because of the complicated analysis procedure, and the po-
tential relevance of statistical fluctuations, we also apply our
fitting procedure to a simulated trace r(θ, t) constructed as-
suming that the membrane is purely viscous, i.e. un(t) is an
Ornstein-Uhlenbeck process [39] simply given by Eq. 7. We
see that statistical fluctuations alone cannot explain the ob-
served dependence of ηm(s) on s; the simulated data does
not show any tendency toward a significant decrease in ηm(s)
with s (Fig. 4).

We note, however, that the range of frequencies covered
by this analysis is small, and that the relaxation time deter-
mined is near the shortest such time that could be observed
in this analysis. The frequency range displayed in Fig. 4 is
limited by the camera acquisition rate and the statistical fluc-
tuations in the autocorrelation function. Current experiments
[15, 16] only track domain flickering over a period of roughly
10− 100 correlation times. In Fig. 5, we show typical statisti-
cal fluctuations in the autocorrelation function, both from ex-
periment and assuming only simple exponential decay (un(t)
is an Ornstein-Uhlenbeck process as above). Clearly, the au-
tocorrelation function is only reliable over the first few cor-
relation times. This sets the lower bound for our frequency
range, at smin ≈ 1/τn. The upper bound is set by the Nyquist
frequency, smax = 1/2∆t, where ∆t is the acquisition time
(15 ms in [16]). For the experimental data from [16], the ac-
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FIG. 4: (Color online). Typical ηm(s) extracted from experimental
data (diamonds) and simulations assuming a purely viscous mem-
brane (circles). Fits to the Maxwell model are shown for experi-
mental data, with crossover times of 18, 8.2, and 5.0 milliseconds
(from top to bottom). Simulation points do not show significant
decreases at large s, which are present in the experimental points.
All simulation traces assume a domain in a purely viscous mem-
brane with ηm = 3 × 10−6 poise cm, σ = 0.15 pN, R = 4µm,
tracked for 6 seconds = 15τ2. This is comparable to the experimen-
tal domains shown, which have radii of roughly 4 µm, line tensions
σ = 0.1−0.25 pN, and ηm(0) ≈ 2−6×10−6 poise cm (determined
by fit), and are tracked for roughly 5 seconds. The bulk viscosity of
water, ηf = 0.01 poise is assumed in both cases.

cessible frequency range is roughly 10-30 Hz. An improved
range of frequencies may be reached if domains are observed
over a longer time, or with better temporal resolution.

Though the procedure we have outlined here is model-
independent, it is interesting to treat the special case of a mem-
brane described by a Maxwell model, which the data of [16]
and Harland et al. [11] generally support [36]. We can develop
some exact results for the autocorrelation function Cn(t) for
a Maxwell model (Appendix D). We see that the domain au-
tocorrelation function Cn(t) in Maxwell viscoelastic systems
is typically bi-exponential. The short-time behavior is set by
the bulk fluid, as the surface viscosity ηm(ω) is small at high
frequencies. At long times, an anomalously slow long-time
decay of large-n and high-σ modes is observed, with a decay
constant set by the viscoelastic crossover time τc. Therefore,
if the membrane is viscoelastic with a timescale τc on the or-
der of τn, we would observe systematic deviations from Eq. 8;
large-n modes would have slower decays than predicted by
the purely viscous theory. No such systematic deviations are
observed (see the supplementary material of [16]), suggesting
that τc is smaller than the shortest decay times measured there,
which are of order 10 ms. This is consistent with our above
analysis (Fig. 4), which found τc ≈ 7 ms.

III. LONG-TIME TAILS IN A MEMBRANE

Our generalized membrane Oseen tensor, Eq. 3, suggests
that inertial effects of the outside fluid should only become
appreciable for ω ∼ ωf (k), i.e. for flows when the unitless
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FIG. 5: (Color online). The autocorrelation function Cn(t) =
〈un(t)u∗n(0)〉/〈|un|2〉 calculated from a trajectory of finite time has
statistical fluctuations from its theoretical value (solid line). The gray
area indicates the one-standard deviation uncertainty in Cn(t), and
the dashed line is from a particular realization of Cn(t). To calculate
these, we have assumed that the purely viscous equation of motion
(Eq. 7) holds, and we have evaluated a trajectory of 100 correlation
times. Experimental data from [16] shows similar fluctuations for a
similar trajectory length; the domain trace shown is n = 5 for a do-
main with σ = 0.12 pN and R = 3.1µm, tracked for 4.8 seconds, or
72 correlation times for the n = 5 mode.

number ρfL2
c/ηfTc is non-negligible, where Lc is a charac-

teristic length scale and Tc a characteristic time. However,
even at long times, fluid inertia can have an effect on the dif-
fusion of particles within a fluid. A naive Langevin approach
predicts that the velocity autocorrelation correlation function
for a tagged particle Cvv(t) ≡ 〈vp(t0 + t) · vp(t0)〉 decays
exponentially at long times [40]. However, molecular dynam-
ics simulations [41] and experiments [42] observe power-law
autocorrelations at long times, with Cvv(t) ∼ t−1 in two di-
mensions and Cvv(t) ∼ t−3/2 in three dimensions. These
“long-time tails” have been shown theoretically to be a con-
sequence of the inertia of the fluid surrounding the particle
[43–45].

Viscous membranes are often referred to as “quasi-two-
dimensional fluids” in that their response function T ij(r)
(Eq. 2) changes from two-dimensional behavior T ∼ ln(r)
for r � Lsd to a three-dimensional one, T ∼ 1/r at r � Lsd,
where Lsd is the Saffman-Delbrück length [5]. Two- and
three-dimensional fluids also have different long-time tails. In
two dimensions, Cvv(t) ∼ t−1 and the diffusion coefficient
D = 1

d

∫∞
0
dtCvv(t) diverges logarithmically; this is related

to Stokes’ paradox, in which the diffusion constant of a circle
in a two-dimensional creeping flow diverges [46]. In mem-
branes, the divergence of the diffusion coefficient is regulated
by the presence of the bulk fluid [1], so Cvv(t) ∼ t−α with
α > 1. We can use the tools developed above to calculate α
through simple mode-coupling theory. We will first treat the
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case of a purely viscous membrane, ηm(ω) = ηm(0).
Applying mode-coupling theory lets us calculate the veloc-

ity autocorrelation function of a tagged lipid as in the pure
two- or three-dimensional case [43, 47]

Cvv(t) = C fast
vv (t)+

1

L4

∑
k

e−Dk
2t〈vm(k, t0+t)·v∗m(k, t0)〉

(17)
where D is the bare self-diffusion coefficient (lipid diffusion
coefficient in our case) and L the system’s linear size. We can
calculate the autocorrelation function of vm(k) from Eq. A19.
We move to Laplace transform space, f̂(s) ≡

∫∞
0
dte−stf(t),

finding (with no external forces)

v̂m(k, s) =
ρmvm(k, t = 0)

ρms+ k2ηm + 2kηf
√

1 + s/ωf (k)
(18)

which allows us to write, using the usual inverse Laplace
transform,

〈vm(k, t0 + t) · v∗m(k, t0)〉 =∫ δ+i∞

δ−i∞

ds

2πi
est

ρm〈|vm(k)|2〉
ρms+ k2ηm + 2kηf

√
1 + s/ωf (k)

(19)

The variance 〈|vm(k)|2〉 is set by equipartition, noting we
only have one independent component because of the incom-
pressibility constraint k · vm(k) = 0,

〈|vm(k)|2〉 = kBTL2/ρm. (20)

We can use the tools of complex analysis to reduce Eq. 19
to a more manageable form by deforming the contour so that
the integral is taken along the branch cut of the square root
function. (Up to a variable substitution, s → s + ωf (k), this
process follows a similar calculation for the three-dimensional
case given in [48]). The result is (t > 0)

〈vm(k, t0 + t) · v∗m(k, t0)〉 =∫ ∞
0

dx

π
e−(x+ωf )t 2kBTL2kηf

√
x/ωf

(ηmk2 − ρmωf − ρmx)2 + (2kηf )2x/ωf
(21)

We will eventually wish to evaluate this integral in the limit
t → ∞, and so this equation will be dominated by small x,
x � 1/t. The leading term in x as x → 0 in the integrand is
of order

√
x; however, large-k modes are also suppressed at

long times by the term e−ωf (k)t = e−ηfk
2t/ρf , and the naive

expansion in x fails. We expect x ∼ k2 ∼ 1/t, and so to the
leading order in 1/t,

〈vm(k, t0 + t) · v∗m(k, t0)〉

=
kBT

2π
L2e−ωf (k)t

∫ ∞
0

dx
e−xt
√
ρfηfx

(22)

=
kBT

2π
L2e−ωf (k)t

√
π

ρfηf t
(23)

Inserting this result into Eq. 17 and assuming a large system,
L−2

∑
k →

∫
d2k

(2π)2 , we find

Cslow
vv (t) ∼ kBT

4π

√
1

πρfηf t

∫ ∞
0

dk ke−(D+ηf/ρf )k2t

(24)

∼ kBT

8π

√
1

πρfηf

1

D + ηf/ρf
t−3/2

(25)

Thus, self-diffusion in membranes should show the usual
three-dimensional long-time tails of t−3/2. Note that in tak-
ing the small-k, long-length limit, we have eliminated all de-
pendence of the velocity autocorrelation function on the mem-
brane parameters, as would be expected. For comparison, in a
pure d-dimensional fluid [43],

Cslow
vv (t) ∼ (d− 1)

kBT

ρ
[4π(D + η/ρ)t]

−d/2 (pure fluid)

(26)
Our asymptotic result for the long-time tail in a membrane,

Eq. 25, has the time-dependence of a three-dimensional sys-
tem, but depends on the combination (D + η/ρ) as in a two-
dimensional fluid. (In the limit of ηf/ρf � D, our result
reduces exactly to the three-dimensional fluid result).

In the asymptotic limit t → ∞, the velocity correlation
function is independent of the membrane viscosity and den-
sity. Can we observe the presence of the membrane at shorter
times? Numerically evaluating Cslow

vv (t) using Eq. 17 with
Eq. 21 (assuming L−2

∑
k → (2π)−2

∫
d2k) shows that

Cslow
vv (t) crosses over between pure two-dimensional behavior,

Eq. 26, and the quasi-2D tail Eq. 25 (Fig. 6). We can under-
stand the crossover simply in terms of a simple heuristic argu-
ment [47]. The linearized Navier-Stokes equations describe
diffusion of vorticity, with diffusion coefficient ν = η/ρ; if a
tagged particle has an initial velocity Vp(0), after a time t, this
velocity will be spread out over a region of space of volume
Vt = (νt)d/2, and shared among nVt particles, where n is
the number density. Thus we expect Cvv(t) ∼ 1/nVt, which
reproduces the classical t−d/2 tail (Eq. 26). In the case of
a membrane, momentum is transported both directly through
the membrane, with kinematic viscosity νm = ηm/ρm, and
through the fluid, with kinematic viscosity νf = ηf/ρf . Thus
we expect Cmem

vv (t) ∼ 1/ρmνmt and Cbulk
vv ∼ 1/ρf (νf t)

3/2.
Comparing these two results, we see that the crossover be-
tween membrane-dominated long time tails and bulk fluid-
dominated long time tails should occur at t ∼ t∗ ≡ ρfη2

m/η
3
f .

This predicts a crossover at ∼ 10−6 s for the parameters of
Fig. 6, consistent with our results. Changing the parameters
ηm, ηf , and ρf , and then numerically evaluating the mode-
coupling result confirms this result. Most notably, chang-
ing the bulk fluid viscosity by a factor of 10 will change the
crossover time by three orders of magnitude.

These long-time tails may be observable in hydrodynamic
simulations in the membrane geometry, e.g. [49], though there
are well-known difficulties in the simulation of long-time tails
[50]. An additional concern is that the crossover between
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FIG. 6: (Color online). Velocity autocorrelation function Cslow
vv (t),

evaluated numerically from the mode-coupling theory for a purely
viscous membrane, Eq. 17 and Eq. 21 (solid line). Crossover be-
tween the two-dimensional behavior, Eq. 26 (d = 2) and the full
quasi-2D limit, Eq. 25 is observed. Parameters chosen here are
ηm = 10−6 poise cm, ηf = 0.01 poise, ρm = 5 × 10−7 g/cm2,
ρf = 1 g/cm3, D = 10−9 cm2/s, and T = 21◦ C.

two- and three-dimensional tails may be difficult to observe;
in some dissipative particle dynamics simulations of mem-
branes, such as [49], the membrane viscosity is of the order
of the fluid viscosity, which would significantly decrease the
crossover time to roughly 10−10 sec.

The t−3/2 tail is not only present in the diffusion of a point
particle; it also applies to the diffusion of an extended embed-
ded object in a membrane, at least if the immersed-boundary
approximation is assumed (see Appendix B). This raises the
possibility of observing these tails in the velocity autocorrela-
tion functions of colloids at interfaces, as in the experiments
of Prasad, Koehler, and Weeks [7].

Fig. 6 shows the long-time tails for a purely viscous mem-
brane. In three-dimensional fluids, the long-time tails may
be strongly affected by the viscoelastic properties of the fluid
[51]. For membranes, however, the asymptotic long-time tail
reflects the properties of the bulk fluid surrounding the mem-
brane, and so as long as the membrane is viscous at long
times (ηm(0) is finite), viscoelastic membranes will also have
a t−3/2 tail. However, the intermediate region may be quite
different from that shown in Fig. 6. Zwanzig and Bixon [43]
note that a simple Maxwell model of viscoelasticity in a three-
dimensional fluid leads to anticorrelations in the velocity au-
tocorrelation function. This behavior is also seen in mem-
branes, though the presence of the outside fluid presents an
added complication. Consider a membrane-embedded ob-
ject with radius a oscillating at a frequency ω: we expect if
a� |ηm(ω)|/2ηf = Lsd(ω), the primary source of drag will
be the outside fluid, which is purely viscous. This effect is not
well-captured by the mode-coupling theory, which only treats
a point particle. To determine the behavior of the velocity au-
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FIG. 7: (Color online). Velocity autocorrelation function
Cvv(t)/Cvv(0), evaluated numerically from Eq. 27. Parameters
chosen here are ηf = 0.01 poise, ρm = 5 × 10−7 g/cm2, ρf = 1
g/cm3, a = 10−5 cm and M = 10−14 grams. The surface viscos-
ity is ηm(ω) = ηm(0)/(1 + iωτc) with ηm(0) = 10−6 poise cm
and τc = 10−5 seconds. The solid portion indicates where Cvv is
negative; this region is replotted in the inset.

tocorrelation function, we evaluate

Cvv(t) = kBT

∫ ∞
−∞

dω

π
eiωtRe

1

iωM + ζ(ω)
(27)

where ζ(ω) is given by the immersed-boundary approxima-
tion, Eq. 6.

We assume a Maxwell model, ηm(ω) = ηm(0)/(1+ iωτc),
and numerically evaluate Eq. 27 using the fast Fourier trans-
form. Cvv(t)/Cvv(0) is plotted for two systems in Fig. 7 and
Fig. 8. We notice several basic features of these curves. Ini-
tial exponential decay is observed, as we would expect from
the high-frequency asymptotic limit of Eq. 27, and a crossover
into anticorrelation is seen. If a or τc is large, this anticorre-
lation may not be immediately evident (Fig. 7). The autocor-
relation function becomes positive again for t � τc, and the
asymptotic long-time tail is once again t−3/2.

For smaller objects and shorter τc, a dip in the autocorrela-
tion function may be immediately apparent (Fig. 8). Wohlert
and Edholm observe velocity anticorrelations in atomistic
simulations of dimyristoyl phosphatidylcholine (DMPC) up to
times of 10 picoseconds [52], suggesting that τc for this sys-
tem is at least 10 picoseconds. This is not terribly surprising,
given measurements of τc that are no smaller than microsec-
onds [13]. The crossover to positive autocorrelation function
is not observed in [52], making it difficult to determine a real-
istic estimate for the crossover time τc.

We also note that Cvv(0), as determined by Eq. 27, is not
necessarily equal to 〈|Vp|2〉bare = kBT/M . If ζ(ω) → iωm
at large ω, the mass M will be renormalized, and Cvv(0) =
kBT/(M + m). This is well-known for the simple three-
dimensional pure fluid case [48], where the additional mass
m is roughly the mass of fluid displaced by the particle.

The long-time tails in a membrane were previously calcu-
lated by Seki and Komura [53], who found exponential decay,
and Serra and Rubı́ [28], who found a t−1 tail. Seki and Ko-
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FIG. 8: Velocity autocorrelation function Cvv(t)/Cvv(0), evaluated
numerically from Eq. 27 for a smaller, lipid-scale immersed particle.
Parameters chosen here are the same as Fig. 7, except with a = 10−9

cm, M = 10−21 grams, and the crossover time τc = 10−9 seconds.
A clear anticorrelation is observed for times smaller than τc.

mura assume a phenomenological momentum loss in place of
the outside fluid; this assumption leads to the loss of the long
time tails. The simple linear drag used is, however, appropri-
ate for the case of supported membranes in certain limits [54].
Serra and Rubı́ use the correct hydrodynamics for a free mem-
brane surrounded by an external fluid, but only evaluate the
long time tails in the limit of weak coupling with the outside
membrane. Our results show that this is not the asymptotic
result, but may be observed for times t < t∗ = ρfη

2
m/η

3
f .

IV. DISCUSSION

We have developed a generalization of the usual membrane
Oseen tensor to include the inertia of both the membrane fluid
and the bulk fluid surrounding it, as well as the viscoelas-
ticity of the membrane. We applied this membrane Oseen
tensor to three problems of dynamics in a membrane. First,
we wrote down a simple mobility that allows us to analyze
single-particle microrheology experiments in a membrane us-
ing a “Saffman-Einstein” relationship. We demonstrated that
naively applying the 3D Stokes-Einstein formula will cause
both qualitative and quantitative errors in determining the vis-
coelastic properties of a membrane. Second, we showed how
domain flicker spectroscopy can be used to extract linear vis-
coelastic properties of the membrane; we observed viscoelas-
tic behavior with time constants τc < 10 ms. We also de-
rived some exact results for membranes with simple Maxwell
viscoelastic behavior, showing that relaxation is typically bi-
exponential, with a long-time behavior that is anomalously
slow compared to the simple viscous theory. Third, we ana-
lyzed the behavior of velocity autocorrelation functions within
a membrane, and demonstrated that quasi-two-dimensional
fluids have t−3/2 tails asymptotically, but for times small com-
pared with the 2D-3D crossover time t∗ ∼ ρfη

2
m/η

3
f , the

two-dimensional t−1 tail may be observed for a purely vis-
cous membrane. For a viscoelastic membrane, anticorrela-

tions may be present at short times.
The viscoelastic crossover time measured here, τc ≈ 7 ms,

bears some discussion. This disagrees with earlier measure-
ments on pure lipid bilayers that found crossover times of
37µs [13]. However, those measurements were performed on
membranes of glycerol monooleate rather than multicompo-
nent mixtures with cholesterol. Because the membranes we
study are not homogeneous, the membrane will be viscoelas-
tic on length scales much larger than the membrane domain
size, with relaxation times comparable to domain relaxation
times, i.e. 0.1 − 1 seconds; this is in direct analogy to the
viscoelasticity of an emulsion composed of Newtonian fluids
[55]. We are probing the dynamics on scales of Rdomain/n,
where n is the mode studied, and so we do not believe we
are observing this long-scale effective-medium response. The
multicomponent membranes analyzed here and in [16] ex-
hibit coexistence between liquid disordered and liquid ordered
phases [56]; the ordered phase is known to have smaller lipid
diffusion coefficients than the disordered phase [57], and has a
higher bending modulus [58]. It is plausible that the liquid or-
dered phase has an elastic response, as the gel phase does [14],
though a recent experiment did not observe this response in
liquid-ordered monolayers [59]. Our analysis assumes that the
domain and the surrounding membrane have the same com-
plex surface viscosity ηm(ω). The authors and co-workers
have suggested that domain flicker spectroscopy can be in-
terpreted in terms of a single “effective viscosity,” which is
the average of the domain and surrounding membrane viscos-
ity [16], and this may also be the case for viscoelastic mem-
branes. The effective viscosity picture will clearly be true in
the limit Rdomain/n � Lsd, where the dissipation from the
membrane is more relevant than that from the bulk fluid, as
can be seen from applying the viscous-viscoelastic correspon-
dence to the result of Mann et al. [60].

We also expect that the generalized membrane Oseen tensor
we present here will be useful in a variety of applications be-
yond what we have developed in this paper. In the phase sep-
aration of two-dimensional binary fluids, dynamical scaling
occurs when the force from line tension is balanced against
fluid inertia [61–63]; the presence of dynamical scaling in
membranes is controversial, and has recently been discussed
by our group and others [6, 64] using the membrane Oseen
tensor. Our result may also be useful for analyzing molecu-
lar dynamics simulations of membranes that explicitly include
inertia [49]. The full frequency-dependent Oseen tensor may
also be relevant in calculations of the renormalization of vis-
cosities near the critical point [65].

Throughout this paper, we have assumed the basic Saffman-
Delbrück quasi-two-dimensional fluid model is valid. In par-
ticular, we assume Eq. 6 is appropriate for microrheologi-
cal measurements on membranes. Proteins [66] as well as
micron-scale lipid domains [3, 4] have been observed to have
diffusion coefficients consistent with the Saffman-Delbrück
model, though there is some controversy on this point for
membrane proteins [67]. Coupling between embedded objects
and the deformation of the membrane can also in principle al-
ter the diffusive behavior of the embedded particle [68, 69].
Experimental applications of Eq. 6 should be paired with con-
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firmation that the Saffman-Delbrück model is appropriate, ei-
ther by variation of the probe size, a, or by studying the two-
particle microrheological response as in [7]. As in the three-
dimensional case, two-dimensional microrheological experi-
ments should be less sensitive to local changes in the material
induced by the probe particles [70].

We have also assumed that the membrane is surrounded by
a purely viscous fluid; if the bulk fluid is also viscoelastic, our
generalized Oseen tensor, Eq. 3, holds with a complex ηf (ω),
as noted by Granek [71].

We would like to thank Tobias Baumgart and Cinzia Espos-
ito for the use of their data on domain flickering. This work
was supported in part by the NSF (grant nos. CHE-0848809,
CHE-032168) and the BSF (grant no. 2006285). B.A.C. ac-
knowledges the support of the Fannie and John Hertz Founda-
tion. F.L.H.B. is a Camille Dreyfus Teacher-Scholar.

Appendix A: Response function of a viscoelastic membrane
including inertia

We briefly review the application of the viscous-
viscoelastic correspondence to a membrane below; our devel-
opment follows that of [19].

The usual linearized Navier-Stokes equation (“unsteady
Stokes equation”) for an incompressible fluid can be written

ρ
∂v(r, t)

∂t
= ∇· ↔τ −∇P + f (A1)

∇ · v = 0 (A2)

where f is an applied force, and for a Newtonian fluid, the
tensor

↔
τ is given by

↔
τ = 2η

↔
D, where η is the fluid viscosity

and

↔
D=

1

2
(∇v + (∇v)T ) (A3)

is the rate-of-strain tensor. This gives us the usual form of the
unsteady Stokes equation,

ρ
∂v(r, t)

∂t
= η∇2v −∇P + f (A4)

The constitutive relationship between
↔
τ and

↔
D is more com-

plicated for a viscoelastic fluid, as the stress can depend on
the strain rate history. We only treat linear viscoelastic fluids
[19, 20, 72], where the stress varies linearly with strain rate as

↔
τ (t) = 2

∫ ∞
−∞

dt′ η(t− t′)′
↔
D (t′) (A5)

where, for causality, η(t) = 0 for t < 0. In Fourier space, the
convolution Eq. A5 becomes a simple product,

↔
τ (ω) = 2η(ω)

↔
D (ω) (A6)

where η(ω) =
∫∞
−∞ dt η(t)e−iωt. We note that in this frame-

work, a purely viscous fluid corresponds to η(ω) = η(0) =

constant, or η(t) = η(0)δ(t). Substituting in this result to the
Fourier transform of the Navier-Stokes equation gives us the
viscoelastic unsteady Stokes equations

iωρv(r, ω) = η(ω)∇2v(r, ω)−∇P (r, ω) (A7)

This is precisely the Fourier transform of the usual linearized
Navier-Stokes equation, Eq. A4, but with a complex viscos-
ity η(ω). This shows that solutions to the unsteady Stokes
problem for a viscous fluid can be directly transformed into
solutions for the viscoelastic problem by changing the viscos-
ity to a complex, frequency-dependent viscosity η(ω). This
includes the response function to a point force (commonly re-
ferred to as the Oseen tensor).

If we describe a membrane as a two-dimensional incom-
pressible viscoelastic fluid, coupled to a viscous bulk fluid
[1, 5, 17, 18], we have the equations of motion for the mem-
brane velocity vm

iωρmvm(r, ω) =

ηm(ω)∇2vm −∇Pm + 2ηf∂zvf |z=0 + f
(A8)

∇ · vm = 0 (A9)

where ρm is the membrane mass density and ηm is its surface
viscosity. Note that these are two-dimensional quantities; the
units of ρm are grams per square centimeter, and ηm is mea-
sured in poise-cm (surface poise, or g/s). f is an applied force,
r = (x, y) is the planar separation. We will indicate functions
that have z-dependence explicitly. vf is the velocity of the
three-dimensional fluid, which has equations of motion:

iωρfvf (r, z, ω) = ηf∇2vf −∇Pf (A10)
∇ · vf = 0 (A11)

The boundary conditions require that the velocity is continu-
ous at the membrane at all times, vf (r, z = 0, t) = vm(r, t),
and that the bulk fluid is at rest far from the membrane,
vf (r, z)→ 0 as |z| → ∞.

In the limit of creeping flow, where the inertial term in
Eq. A10 is discarded, the bulk fluid velocity vf can be simply
expressed in terms of the membrane velocity vm, allowing
the dependence on vf to be eliminated from Eq. A8 [17]. If
we retain the inertial term, then vf is a true dynamic variable,
and eliminating it will cause the Markovian system of Eqs.
A8-A11 to become history-dependent, even in the limit of a
purely viscous fluid.

We can use linearity to determine the membrane’s response
function by treating single modes, as in [18]. Suppose that the
membrane velocity is a simple transverse shear mode,

vm(r, t) = Voŷ e
i(kx+ωt) (A12)

We have chosen the shear mode to travel in the x direction
without loss of generality, and the mode must be transverse in
order to satisfy∇·vm = 0. We then make the Ansatz that the
bulk fluid velocity is simply proportional to the fluid veloc-
ity; this guess is motivated by exact solutions to the coupled
equations of motion (e.g. [2, 9]). Then for z > 0, vf is given
by

vf (r, z, t) = Voŷ f(z)ei(kx+ωt) (A13)
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The boundary conditions on vf require that f(0) = 1 and
f(z) → 0 as z → ∞. Taking the curl of Eq. A10 yields the
equation

iωρff(z) = ηf

(
d2f

dz2
− k2f

)
(A14)

The only solution to this equation that satisfies the boundary
conditions is

f(z) = exp

(
−kz

√
1 + iω/ωf (k)

)
(A15)

where ωf (k) = ηfk
2/ρf , and we choose the branch cut of

the square root function to lie along the negative real axis. An
analogous solution is found for z < 0. This demonstrates that
the (in-plane) Fourier transforms of the bulk and membrane
velocities are simply related,

vf (k, z, ω) = exp

(
−kz

√
1 + iω/ωf (k)

)
vm(k, ω)

(A16)
where our Fourier transform convention is f(k, ω) =∫
d2rdte−i(k·r+ωt)f(r, t). We can then apply this to elimi-

nate the fluid velocity from Eq. A8,

∂vf (k, z, ω)

∂z

∣∣∣∣
z=0

= −k
√

1− iω/ωf (k)vm(k, ω) (A17)

which corresponds with the well-known limit of the body
force from the bulk membrane [17, 18] in the limit ω → 0.
Fourier transforming Eq. A8 in space, we get

iωρmvm(k, ω) =(
−ηm(ω)k2 − 2ηfk

√
1 + iω/ωf (k)

)
vm+ikPm+f(k, ω)

(A18)

We apply the transverse projection operator, P⊥(k) =(↔
I −kk

k2

)
as a simple way to eliminate the pressure, not-

ing P⊥(k)vm(k, ω) = vm(k, ω) by the incompressibility re-
quirement. Then,

iωρmvm(k, ω) =(
−ηm(ω)k2 − 2ηfk

√
1 + iω/ωf (k)

)
vm+P⊥(k)f(k, ω)

(A19)

This determines the membrane Oseen tensor, as defined in
Eq. 1:

vim(k, ω) = T ij(k, ω)f j(k, ω) (A20)

where the Einstein summation convention is assumed and

T ij(k, ω) =
δij − kikj/k2

iωρm + ηm(ω)k2 + 2ηfk
√

1 + iω/ωf (k)
(A21)

Eq. 3 reduces to the standard membrane Oseen tensor for a
quasi-2D membrane [5, 17] in the limit of ω → 0.

Appendix B: Immersed-boundary calculation of drag

In the immersed boundary scheme, forces applied to parti-
cles are distributed over the particle’s size using a “finite delta
function,” δa(r), and the velocity of the particle related to the
fluid velocity using that same delta function [31, 32]. This
technique has been used to calculate a wide variety of mo-
bilities and related features, such as long-time tails, in three-
dimensional fluids [32, 34, 35]. If we have a particle at po-
sition Rp, in the immersed boundary scheme, its velocity is
given by

Vp =

∫
d2r′ vm(r′)δa(Rp − r′). (B1)

To account for a force F applied to an IB particle, we apply a
force to the fluid:

fv(r, t) = F(t)δa(Rp − r′). (B2)

This allows us to compute ζ simply in the immersed-boundary
approximation. If we apply a force F(t) =

∫
dω
2π e

iωtF(ω),
then we can calculate the fluid velocity using Eq. 1 and Eq. 3.
We assume for convenience that the force is sufficiently small
that the particle does not travel far from the origin, and so we
can take Rp ≈ 0, and thus

vm(k, ω) =
↔
T (k, ω)fv(k, ω) =

↔
T (k, ω)δa(k)F(ω) (B3)

and the particle velocity is, similarly,

Vp(ω) ≈
∫
d2r′ vm(r′, ω)δa(r′) (B4)

=

∫
d2k

(2π)2
vm(k, ω)δa(−k) (B5)

=

∫
d2k

(2π)2
|δa(k)|2

↔
T (k, ω)F(ω) (B6)

If we choose F to be in the x direction, we can simply perform
the angular integration, allowing us to determine the mobility
µ(ω), where Vp(ω) = µ(ω)F(ω), and ζ(ω) = 1/µ(ω).

µ(ω) =
1

4π

∫ ∞
0

dk
k|δa(k)|2

iωρm + ηmk2 + ηfk
√

1 + iω/ωf (k)
(B7)

δa(r) is usually chosen to have compact support, as well as
other advantageous numerical properties [31], but as we are
not using it for a simulation, we choose a Gaussian for analyt-
ical simplicity.

δa(r) =
1

πb2
e−(r/b)2 . (B8)

Because of the inexactness of our immersed-boundary ap-
proximation, the Gaussian size b is not necessarily equal to
the object radius a. We choose b = βa, which yields Eq. 6.
β is fit such that the immersed-boundary mobility Eq. 6 best
agrees with the Saffman-Delbrück-Hughes-Pailthorpe-White
result [1, 2, 4] in the limit of a purely viscous membrane
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FIG. 9: (Color online). Comparison of Saffman-Delbrück-Hughes-
Pailthorpe-White result with numerical evaluation of Eq. 6 with
β = 0.79791. The immersed-boundary approximation is an ex-
cellent approximation over ten decades of a/Lsd, with a maximum
deviation of 8%.

(ω = 0). This yields β = 0.79791. A comparison between the
immersed-boundary approximation and the complete result is
provided in Fig. 9.

The long-time-tail can also be extracted from the
immersed-boundary approximation by using Eq. 6. We can
write the equation of motion for an embedded particle with

drag ζ(ω):

iωMVp(ω) = −ζ(ω)Vp(ω) (B9)

where M is the particle mass. This represents the motion of
a particle with a time-dependent drag, as becomes obvious if
we invert the Fourier transform:

M
d

dt
Vp(t) = −

∫ t

−∞
ζ(t− t′)Vp(t

′) (B10)

Moving to Laplace transform space, we can calculate the cor-
relation function as in Section III above,

〈Vp(t0 + t) ·Vp(t0)〉 =

∫ δ+i∞

δ−i∞

ds

2πi
est

M

Ms+ ζ̂(s)
〈|Vp|2〉

(B11)
We will see later that the long-time limit is controlled by the
integrand’s asymptotic behavior as s → 0, and that ζ̂(s) ∼
s1/2, so we drop the mass term. We then obtain

〈Vp(t0+t)·Vp(t0)〉 ≈ 2kBT

∫ δ+i∞

δ−i∞

ds

2πi
estζ̂−1(s) (B12)

where

ζ−1(s) =
1

4π

∫ ∞
0

dk
ke−β

2k2a2/2

sρm + ηmk2 + 2ηfk
√

1 + s/ωf
(B13)

We can then exchange integrals and integrate along the branch
cut, exactly as in Section III:

〈Vp(t0 + t) ·Vp(t0)〉 =
kBT

π2

∫ ∞
0

dx

∫ ∞
0

dk e−(x+ωf (k))te−β
2k2a2/2 k2ηf

√
x/ωf

(ηmk2 − ρmωf − ρmx)2 + (2kηf )2x/ωf
(B14)

Integrating, we find for the long-time limit,

〈Vp(t0 + t) ·Vp(t0)〉 =
kBT

8πηf

√
ρf
πηf

t−3/2 (B15)

So the t−3/2 long time tail is also present for the diffusion
of an embedded particle, at least in the immersed-boundary
approximation.

Appendix C: Other mobility approximations

We have chosen to describe the approximate the mobil-
ity of a particle embedded within a membrane by using the
immersed-boundary approximation. To ensure that this ap-
proximation does not create unphysical new behavior, we
compare it with other schemes for approximating the mobility.

Levine and Lubensky applied both “shell localization” and
“volume localization” to determine drag coefficients from re-
sponse functions in [33], and show that these schemes repro-
duce the correct low-frequency limit of the drag coefficient in
three-dimensional fluids. The localization approximations are
similar in spirit to the immersed boundary approach. Instead
of averaging over the fluid flow near the particle, as in the IB
scheme (Eq. B1), the localization schemes assume the particle
follows the fluid precisely, i.e. δa(r)→ δ(r):

Vp = vm(Rp) (C1)

The localization schemes then assume that a force F(t) ap-
plied to the particle results in a force on the fluid fv(k, ω),

fv(k, ω) = F(ω)F(k) (C2)

Assuming the particle’s deviations from the origin are small,
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then

Vp(ω) =

∫
d2k

(2π)2
vm(k, ω) (C3)

The membrane velocity can then be determined by Eq. 1 and
Eq. C2. Performing the angular integral, we find Vp(ω) =
µ(ω)F(ω), where

µ(ω) =
1

4π

∫ ∞
0

dk
kF(k)

iωρm + ηmk2 + ηfk
√

1 + iω/ωf (k)
(C4)

The “shell” and “volume” localization schemes are simply
physically-motivated assumptions for the form F(k). Vol-
ume localization would set a simple cutoff at kmax = π/2a;
however, this choice makes Eq. C4 diverge at ω = 0. Shell
localization assumes that the force is localized at the disk sur-
face, i.e. fv(r, t) = F(t)δ(r − a)/(2πa) or F(k) = J0(ka),
where J0 is a Bessel function of the first kind.

For a purely viscous membrane at zero frequency, the
shell localization provides a reasonable approximation to the
Saffman-Delbrück-Hughes-Pailthorpe-White result (Fig. 10).
The quality of this approximation could potentially be im-
proved by including an effective shell size, as in the immersed
boundary approximation. We prefer the IB scheme as it treats
the coarse-graining of the force applied to the particle and the
force applied by the particle on the fluid in a symmetric man-
ner. The quasi-2D IB scheme is also amenable to stochastic
numerical solution [6, 73] as in [32].
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FIG. 10: (Color online). Comparison of Saffman-Delbrück-Hughes-
Pailthorpe-White result with numerical evaluation of Eq. C4. The
shell localization approximation is an excellent approximation for
a� Lsd, but is systematically low at a > Lsd; these deviations are
∼ 30%; there are also oscillations at large a/Lsd.

There is also a known exact result for the mobility of a fluid
domain of surface viscosity ηm in a membrane of equal vis-
cosity [74]

ζDeKoker = π

[∫ ∞
0

dx
J1(x)2

x2(ηmx+ 2ηfa)

]−1

(C5)

If we apply the viscous-viscoelastic correspondence to this
result, we can extend it to a complex, frequency-dependent
surface viscosity ηm(ω).

No matter if we use the immersed boundary drag (Eq. 6),
the shell-localization scheme (Eq. C4) or the fluid domain
exact result (Eq. C5), we still see the same qualitative pic-
ture of the effective 3D shear modulus G3D(ω). The vari-
ous schemes are plotted in Fig. 11 for the Maxwell model as
above. All show the Maxwell behavior at low frequencies, but
a crossover to viscous behavior dominated by the outside fluid
at large frequencies. In most cases, there is reasonable quanti-
tative agreement, except for the known problem with the shell
localization scheme at high frequencies.
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FIG. 11: (Color online). Other approximation schemes are consistent
with the immersed-boundary approximation

Appendix D: Domain flickering in a Maxwell model membrane

We can calculate many interesting features of domain flick-
ering exactly if we assume that the membrane’s viscoelastic
parameters are set by a simple Maxwell model, which as-
sumes a single relaxation time, τc, for the stress, i.e.

ηm(ω) =
η0

1 + iωτc
(D1)

where τ−1
c is the crossover frequency. One clear consequence

of this form is that |ηm(ω)| decreases significantly for fre-
quencies ω � τ−1

c . This means at large frequencies, the re-
laxation rate will be controlled by the bulk fluid viscosity, ηf ,
and not the membrane surface viscosity ηm(ω). For param-
eters typical to [16], the integrand in Eq. 13 is large only up
to xc ∼ 10; therefore if |ηm(ω)|xc � 2ηfR, the function
γn(ω) is dominated by the bulk fluid contribution, and the de-
cay rate is just given by the Stone-McConnell [9] result, which
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neglects membrane response altogether,

γ−1
n (ω)→ τ bulk

n =
2πR2ηf

σ

n2 − 1/4

n2(n2 − 1)
(D2)

This is independent of membrane viscosity, and hence
frequency-independent. We will see that this high-frequency
behavior sets the short-time correlation function,

〈un(t)u∗n(t′)〉 = 〈|un|2〉e−|t−t
′|/τ bulk

n for t� 2ηfR

η0
τcxc

(D3)
We can also look at the long-time behavior of the correla-

tion function. We can extract the correlation function of un
from Eq. 10 and Eq. 11 via the Wiener-Khinchin theorem:

〈un(t)u∗n(t′)〉 =
〈|un|2〉
π

∫
dω

Re{γn(ω)}
|iω + γn(ω)|2

eiω(t−t′).

(D4)
If the function γn(ω) is frequency-independent, e.g.

γn(ω) = τ−1
n for a purely viscous membrane, we ob-

tain the usual fluctuation-dissipation result from Eq. D4,
〈un(t)u∗n(t′)〉 = 〈|un|2〉 exp(−|t− t′|/τn).

Using causality, we find that Eq. D4 reduces to (t > 0) [38]

〈un(t)u∗n(0)〉 =
〈|un|2〉
π

∫ ∞−iε
−∞−iε

dω
1

iω + γn(ω)
eiωt. (D5)

where ε is a positive infinitesimal. This equation can be evalu-
ated using the residue theorem, extending the contour into the
upper half plane,

〈un(t)u∗n(0)〉 = 〈|un|2〉2i
∑
k

Res
(

1

iω + γn(ω)
eiωt;ωk

)
.

(D6)
where the sum is over the poles ωk with iωk + γn(ωk) = 0
in the upper half plane. The long-time behavior of this cor-
relation function is set by the slowest decay, i.e. the pole
ωk with the smallest (positive) imaginary part. This is a dif-
ficult problem to solve, but it can be treated in the limit of
2ηfR/ηm(0)� 1.

In the limit of a purely two-dimensional membrane, ηf = 0,
we can evaluate the integral in Eq. 13, finding

γ2D
n (ω) =

nσ

4Rηm(ω)
(D7)

There is then only one pole in Eq. D6, at ωk = iγ2D
n (0)/(1 +

τcγ
2D
n (0)), corresponding to long-time exponential decay

with decay time τ2D
ve = τc + 1/γ2D

n (0). This implies that at
large mode numbers n, the viscoelastic relaxation time does
not decay to zero, but rather to a saturation value given by the
crossover time scale τc; this feature is preserved in the full
quasi-2D limit.

The 2D decay rate above corresponds to the Λ = 0 term
in the expansion of Eq. 13, where Λ = 2ηfR/ηm(0); at first

order,

γn(ω) ≈ nσ

4Rηm(ω)
− 4n2(n2 − 1)ηfσ

3πηm(ω)2

Γ(n− 3/2)

Γ(n+ 5/2)
(D8)

≡ An(1 + iωτc)−Bn(1 + iωτc)
2 (D9)
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FIG. 12: (Color online). Effective viscoelastic relaxation times τve

for domain relaxation in a Maxwell-model membrane (Eq. D10). τve

goes to a constant value for large n (τn � τc). For this figure,R = 1
micron, ηm = 5 × 10−6 poise cm, and σ = 0.2 pN. Open circles
are extracted from numerical evaluation of the correlation function,
as in Fig. 13. Deviations at n = 2 indicate the breakdown of the
approximation Eq. D8.

where An = γ2D
n (0) and Bn =

4n2(n2−1)ηfσ
3πηm(0)2

Γ(n−3/2)
Γ(n+5/2) . This

is an asymptotic approximation in small Λ/n, and is correct
in the limit of small domains, large membrane viscosities, and
large n. Thus, for Eq. D8 to approximate 13 well, we must
have Bn � An; this allows us to identify the root of the
quadratic equation that lies in the upper half plane, leading to

τve ≈
2Bnτ

2
c√

(1 +Anτc)2 − 4Bnτc − (1 +Anτc − 2Bnτc)
(D10)

Once again, we can see that if the zero-frequency relaxation
time is small compared with τc, the viscoelastic domain will
relax with a time scale τve → τc (Fig. 12).

To confirm our analysis, we numerically evaluate the cor-
relation function 〈un(t)u∗n(t′)〉 by using Eq. 13, Eq. D4,
and Eq. D1. The small-time behavior is most easily seen
in systems with large τc compared to the short-time decay
τ bulk
n ; this is illustrated in Fig. 13. The numerical solution

is well-fit to a double-exponential form, Cn(t) ≡ 〈un(t′ +
t)u∗n(t′)〉/〈|un|2〉 = 1

1+β (e−t/τ1 + βe−t/τ2). We find, as ex-
pected, that at short times we get exponential decay with time
constant τ bulk

n , and at long times there is exponential decay
with time constant τn (from Eq. 8) if τn � τc, and with a
time constant τve ∼ τc if τc � τn (Figs. 12,13).
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FIG. 13: (Color online). Autocorrelation function Cn(t) ≡
〈un(t)u∗n(0)〉/〈|un|2〉 for domain fluctuations in a Maxwell-model
membrane; parameters chosen are ηm = 5 × 10−6 poise cm,
ηf = 0.01 poise, σ = 0.8 pN, R = 1 microns, τc = 0.05 s, n
= 2. The data are well-described by a short-time exponential decay
of τ bulk = 2.5 ms (set by Eq. D2) and a long-time asymptote given
by τve = 0.063 s (set by Eq. D10). The exact solution is found by
numerically evaluating Eq. D4 with γn(ω) given by Eq. 13.
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