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Abstract

Ionic size effects are significant in many biological systems. Mean-field descrip-
tions of such effects can be efficient but also challenging. When ionic sizes are
different, explicit formulas in such descriptions are not available for the dependence
of the ionic concentrations on the electrostatic potential, i.e., there is no explicit,
Boltzmann type distributions. This work begins with a variational formulation of
the continuum electrostatics of an ionic solution with such non-uniform ionic sizes
as well as multiple ionic valences. An augmented Lagrange multiplier method is
then developed and implemented to numerically solve the underlying constrained
optimization problem. The method is shown to be accurate and efficient, and is
applied to ionic systems with non-uniform ionic sizes such as the sodium chloride
solution. Extensive numerical tests demonstrate that the mean-field model and
numerical method capture qualitatively some significant ionic size effects, particu-
larly those for multivalent ionic solutions, such as the stratification of multivalent
counterions near a charged surface. The ionic valence-to-volume ratio is found to
be the key physical parameter in the stratification of concentrations. All these are
not well described by the classical Poisson–Boltzmann theory, or the generalized
Poisson–Boltzmann theory that treats uniform ionic sizes. Finally, various issues
such as the close packing, limitation of the continuum model, and generalization of
this work to molecular solvation are discussed.
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1 Introduction

Electrostatic interactions between macromolecules and mobile ions in the surrounding
solvent play a key role in many important biological processes such as protein folding
[1, 2], membrane stabilization [3], gating in ion channels [4], hydrophobic interactions
[5], and protein association [6, 7]. In such interactions, ionic sizes or excluded volumes,
particular non-uniform ionic sizes of multiple ions, can affect many of the detailed chemical
and physical properties of an underlying biological system. For instance, the monovalence
cation size can influence the stability of RNA tertiary structures [8]. Differences in ionic
sizes can also affect how mobile ions bind to nucleic acids [9, 10, 11]. The ionic size effect
is more profound in the ion channel selectivity, see, e.g., [4, 12]. Detailed Monte Carlo
simulations and integral equations calculations also confirm some of these experimentally
observed properties due to the non-uniformity of ionic sizes [13, 14, 15].

The classical Poisson–Boltzmann (PB) equation is perhaps the most widely used mean-
field model of the electrostatics of ionic solutions [16, 17, 18, 19, 20, 21]. It has been suc-
cessful in many applications, particularly in the biomolecular modeling with an implicit
solvent [22, 23, 24, 25, 26]. The PB equation is Poisson’s equation for the electrostatic
potential with the charge density including that of mobile ions whose equilibrium con-
centrations are given by the Boltzmann distributions via the potential. In a variational
setting, such distributions are the conditions for equilibrium concentrations that mini-
mize a mean-field electrostatic free-energy functional of ionic concentrations where the
potential is determined by Poisson’s equation [27, 28, 29, 30, 31]. Despite its success in
many applications, the classical PB theory is known to fail in capturing well the ion-ion
correlations and ionic size effects [32, 33, 13, 14, 15].

Recently, there has been a growing interest in incorporating the ionic size effect in a
PB-like, simple and efficient, mean-field model [34, 35, 36, 37, 38, 39, 40, 30, 31, 41]. The
key idea has been to introduce the local concentration c0 = c0(x) of solvent molecules, in
addition to those c1(x), . . . , cM(x) of ions of multiple species (M of them assumed), and
their corresponding linear sizes a0, a1, . . . , aM in the electrostatic free energy

∫

[

1

2
ρψ + kBT

M
∑

i=0

ci log
(

a3i ci
)

]

dV. (1.1)

Here

ρ = f +
M
∑

i=1

zieci
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is the charge density with f a fixed charge density, zi the valence of an ion of the ith species,
and e the elementary charge, ψ is the electrostatic potential determined by Poisson’s
equation, kB is the Boltzmann constant, and T is the temperature. Notice that the
concentration of the solvent molecules is not an independent variable in this functional,
since it is defined by

a30c0(x) = 1−

M
∑

i=1

a3i ci(x).

If all a0, a1, . . . , aM are the same, this mean-field approximation of the free energy
can then be derived from a lattice gas model, cf. [34, 40]. Moreover, there are explicit
formulas, the generalized Boltzmann distributions, relating equilibrium concentrations
and the corresponding electrostatic potential. These distributions, together with Poisson’s
equation, lead to the generalized PB equation for the case of a uniform ionic size [34, 35,
40]. See [38, 39, 41] for some applications of this equation. When the ionic sizes are not
the same, the situation is quite different. For a system of three ionic species with two
different ionic sizes, Chu et al. [37] derived a different size-modified PB equation from a
similar lattice gas model and applied this equation to study the ionic size effect in the
binding of ions to DNA. For a general system, Tresset [40] derived an expression of the
free energy similar to (1.1) with an effective volume fraction of free space, under the
assumption that the ionic excluded volumes are dispersed from each other to a reasonable
extent. For a general system of multiple ions with different sizes modeled by (1.1), Li [31]
derived the equilibrium conditions

(

ai
a0

)3

log
(

a30c0
)

− log
(

a3i ci
)

=
1

kBT
(zieψ − µi) , i = 1, . . . ,M, (1.2)

where µi is the chemical potential of the ith ionic species, and proved that this system
of algebraic equations has a unique solution (c1, . . . , cM). However, an explicit formula of
this solution, and hence Boltzmann-like distributions for the equilibrium concentrations,
seem unavailable. Therefore, there is no PB-like equation of the electrostatic potential in
the general case.

To obtain the equilibrium ionic concentrations and the corresponding electrostatic po-
tential, we propose in this work to minimize numerically the free-energy functional (1.1),
using Poisson’s equation as a constraint. Following [42], we reformulate the electrostatic
free-energy functional using both the potential ψ and concentrations c = (c1, . . . , cM), the
(ψ, c)-formulation, or using both the electric field E and the concentrations, the (E, c)-
formulation, coupled with Poisson’s equation or Gauss’s law, respectively. To solve our
constrained optimization problems, we construct a Lagrange multiplier method for the
case without the size effect and an augmented Lagrange multiplier method for the general
case with the size effect. In order to compare the efficiency of our approaches, we also
generalize the local constrained optimization method developed in [43, 42] to the general
case including the ionic sizes. We perform extensive numerical tests to demonstrate the
efficiency and accuracy of our methods, and to study how surface charges, ionic size dif-
ferences, and ionic valences, affect the ionic concentration profiles near a charged surface.
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We recover many detailed properties of ionic concentrations, including the stratification
of concentrations, that have been predicted by other refined models. We also find that
the ionic valence-to-volume ratio is the key parameter in the stratification.

The rest of the paper is organized as follows: In Section 2, we describe in details
the general electrostatic free-energy functional with or without the ionic size effect, using
the (ψ, c) and (E, c)-formulations. In Section 3, we develop various kinds of global and
local constrained optimization methods for solving numerically our underlying variational
problems. In Section 4, we report our numerical results to demonstrate the accuracy and
efficiency of our method, and to describe various ionic size effects in an ionic solution.
Finally, in Section 5, we draw conclusions and discuss various issues such as the close
packing, limitation of the continuum model, and generalization of this work to molecular
solvation.

2 Electrostatic Free Energy

We consider an ionic solution that occupies a bounded region Ω in R
3.We assume there are

M ionic species in the solution, and denote by zi and Ni the valence and the total number,
respectively, of ions of the ith species. Let ci(x) denote the local ionic concentration at a
spatial point x ∈ Ω of the ith ionic species. Then

∫

Ω

ci dV = Ni, i = 1, . . . ,M. (2.1)

Moreover, the local density at x ∈ Ω of charges of ions is
∑M

i=1 zieci(x), where e the
elementary charge.

We assume that there are fixed volume charges and surface charges distributed in the
interior and on the boundary of the solution region Ω, respectively. We denote by f(x)
the local density of the fixed volume charges at an interior point x ∈ Ω. Similarly we
denote by σ(x) the local density of the fixed surface charges at a boundary point x ∈ Γ,
where Γ = ∂Ω denotes the boundary of Ω. The charge neutrality of the entire solution is
given by

M
∑

i=1

Nizie+

∫

Ω

f dV +

∫

Γ

σ dS = 0. (2.2)

In equilibrium, the electrostatic free energy of the solution can be expressed in terms
of the equilibrium ionic concentrations c = (c1, . . . , cM) as

F [c] = Fpot[c] + Fent[c]. (2.3)

Here the potential energy Fpot[c] is given by

Fpot[c] =

∫

Ω

1

2

(

f +

M
∑

i=1

zieci

)

ψ dV +

∫

Γ

1

2
σψ dS, (2.4)
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where ψ = ψ(x) is the electrostatic potential. It is determined by Poisson’s equation and
the boundary condition

∇ · εrε0∇ψ = −

(

f +
M
∑

i=1

zieci

)

in Ω, (2.5)

εrε0
∂ψ

∂n
= σ on Γ, (2.6)

where ε0 and εr are the vacuum permittivity and relative permittivity (dielectric coeffi-
cient), respectively, and ∂/∂n denotes the normal derivative along the unit exterior normal
n at Γ. Here and below we use the SI units. Notice that by Eqs. (2.5) and (2.6) and an
integration by parts

Fpot[c] =

∫

Ω

εrε0
2
|∇ψ|2dV.

Here the dependence on the equilibrium concentrations c = (c1, . . . , cM) is implicit through
the potential ψ. Notice also that Eqs. (2.5) and (2.6) determine the potential ψ uniquely
up to an additive constant but the potential energy Fpot[c] is unique.

The entropic part Fent[c] is given in the form

Fent[c] = kBT

∫

Ω

Q(c) dV. (2.7)

The integrand Q(c) is commonly defined for the case without the ionic size effect and that
with the ionic size effect as follows:

Q(c) =



























M
∑

i=1

ci
[

log
(

Λ3ci
)

− 1
]

without the size effect,

M
∑

i=0

ci
[

log
(

a3i ci
)

− 1
]

with the size effect.

(2.8)

For the case without the size effect, the parameter Λ is the de Broglie wavelength. For
the case with the size effect, the summation starts from i = 0 and c0(x) is the local
concentration of the solvent at the point x ∈ Ω. For each i with 1 ≤ i ≤M , the parameter
ai > 0 is the linear size, or more precisely, a3i is the volume, of an ion of the ith species.
The parameter a0 > 0 is the linear size of a solvent molecule. The local concentration of
solvent c0 = c0(x) is defined by the relation

a30c0(x) + a31c1(x) + · · ·+ a3McM(x) = 1 for all x ∈ Ω.

Thus c0(x) is not an independent field. See [34, 35, 44, 40, 31].
All the properties described above are for the equilibrium concentrations and the corre-

sponding potential. To find analytically and numerically such equilibrium concentrations
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and potential, and the minimum electrostatic free energy, we use a variational approach.
We define an electrostatic free-energy functional

F [ψ, c] =

∫

Ω

[εrε0
2
|∇ψ|2 + kBTQ(c)

]

dV

for all possible concentrations c = (c1, . . . , cM) and the electrostatic potential ψ that are
not necessary in equilibrium. We minimize this functional under the following constraints:
(a) Eq. (2.1) of mass conservation;
(b) Eq. (2.2) of charge neutrality;
(c) Poisson’s equation (2.5); and
(d) The boundary condition (2.6).

Notice that we do not need to assume that ci(x) ≥ 0 since the term Q(c) involves log ci(x).
Mathematically, one can prove by the direct method in the calculus of variations that

there exist a unique set of concentrations c = (c1, . . . , cM) and a potential ψ, unique up
to an additive constant, that minimize the function F [ψ, c] under all the constraints. See
[30, 31]. The minimum value of the functional is exactly that given by (2.3), supplemented
by (2.4) and (2.7).

Often the electric field E = E(x) is a useful quantity. If the potential ψ is known,
then E = −∇φ. In general, we define the electrostatic free-energy functional of all possible
pairs of concentrations c = (c1, . . . , cM) and electric field E

F [E, c] =

∫

Ω

[εrε0
2
|E|2 + kBTQ(c)

]

dV,

where we use the same letter F . Our underlying problem is then equivalent to finding the
minimizer of this functional under the following constraints:
(a’) Eq. (2.1) of mass conservation;
(b’) Eq. (2.2) of charge neutrality;
(c’) Gauss’s law

∇ · εrε0E = f +
M
∑

i=1

zieci in Ω;

(d’) The boundary condition
−εrε0E · n = σ in Γ;

(e’) The compatibility condition
∇×E = 0.

Introduce the Bjerrum length lB = e2/(4πεrε0kBT ). Define c′i = 4πlBci, N
′

i = 4πlBNi,
Λ′ = (4πlB)

−1/3Λ, a′i = (4πlB)
−1/3ai, f

′ = 4πlBf/e, and σ′ = 4πlBσ/e. Define also
ψ′ = eψ/(kBT ) and E′ = eE/(kBT ). Then for the (ψ, c)-formulation

F [ψ, c] =
εrε0k

2
BT

2

e2
F ′[ψ′, c′],
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where

F ′[ψ′, c′] =

∫

Ω

[

1

2
|∇ψ′|2 +Q′(c′)

]

dV,

with Q′(c′) defined same as that in (2.8) except all quantities ci, Λ, and ai are replaced
by their primed counterparts. The constraints and side conditions on (ψ, c) are rescaled
to



























































∫

Ω

c′i dV = N ′

i ,

N
∑

i=1

N ′

izi +

∫

Ω

f ′ dV +

∫

Γ

σ′ dS = 0,

∆ψ′ = −

(

f ′ +

M
∑

i=1

zic
′

i

)

in Ω,

∂ψ′

∂n
= σ′ on Γ.

Similarly, for the (E, c)-formulation,

F [E, c] =
εrε0k

2
BT

2

e2
F ′[E′, c′],

where

F ′[E′, c′] =

∫

Ω

[

1

2
|E′|2 +Q′(c′)

]

dV. (2.9)

The constraints and side conditions on (E, c) are rescaled to






























































∫

Ω

c′i dV = N ′

i ,

N
∑

i=1

N ′

izi +

∫

Ω

f ′ dV +

∫

Γ

σ′ dS = 0,

∇ ·E′ = f ′ +

M
∑

i=1

zic
′

i in Ω,

−E′ · n = σ′ on Γ,

∇×E′ = 0 in Ω.

Since the integral of each c′i over Ω is a constant by the mass conservation, we can
replace Q′(c′) in the functionals F ′[ψ′, c′] and F ′[E′, c′] by a simpler one:

Q′(c′) =



























M
∑

i=1

c′i (log c
′

i − 1) without the size effect,

c′0
[

log
(

a′30 c
′

0

)

− 1
]

+

M
∑

i=1

c′i (log c
′

i − 1) with the size effect,
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where we keep a′30 for convenience in later calculations. Note that the sizes a′i (i =
1, . . . ,M) are hidden in c′0. Now the solutions to the free-energy minimization problems
are the same but the minimum values of the free-energy functional are changed by a
multiplicative and an additive constants that depend only on the input data εr, T , Λ, zi,
ai, and Ni. For simplicity, we will drop all the primes in the rest of this paper.

We remark that one can also use the Dirichlet boundary condition ψ = ψ0 on the
boundary Γ for some given function ψ0. In this case, we can derive similarly our varia-
tional formulation. Sometimes, the periodic boundary condition can be also used as an
approximation when the ionic solution is considered in a confined domain. In addition,
we can approximate the surface charge density by a function that is defined on the region
so that only the volume charge density appears in our formulation. These approximations
can simplify our numerical computations.

3 Numerical Methods

3.1 A Lagrange multiplier method for the case without the size

effect

We consider the problem of minimizing F (E, c) defined in (2.9), with Q(c) correspond-
ing to the case without the size effect, under all the constraints listed below Eq. (2.9).
The Lagrange multiplier method converts this problem into the following unconstrained
optimization problem:

min
(E,c)

max
(ψ,λ)

L(E, c, ψ, λ),

where λ = (λ1, . . . , λM) and

L(E, c, ψ, λ) = F (E, c)−

∫

Ω

ψK(E, c)dV +
M
∑

i=1

λiHi(ci),

K(E, c) = ∇ · E−

M
∑

i=1

zici − f, (3.1)

Hi(ci) =

∫

Ω

zici dV − ziNi, i = 1, . . . ,M. (3.2)

Here ψ = ψ(x) is a function on Ω and −ψ is the Lagrange multiplier for the (scaled)
Gauss’s law. Each λi (1 ≤ i ≤M) is a real number and is the Lagrange multiplier for the
mass conservation constraint for the ith ionic species.

The necessary conditions for (E, c, ψ, λ) to be a saddle point of L are

∂L

∂E
= E+∇ψ = 0, (3.3)

∂L

∂ψ
= −K(E, c) = 0, (3.4)
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∂L

∂ci
= log ci + ziψ + λizi = 0, (3.5)

∂L

∂λi
= Hi(ci) = 0, i = 1, . . . ,M, (3.6)

where the first three derivatives are the variational derivatives. By Eq. (3.3), E = −∇ψ
in Ω, i.e., the Lagrange multiplier ψ is an electrostatic potential. Moreover, the constraint
∇× E = 0 is satisfied automatically. By Eq. (3.5),

ci = e−λizie−ziψ in Ω.

By Eqs. (3.6) and (3.2),

Ni =

∫

Ω

ci dV = e−λizi
∫

Ω

e−ziψdV.

It then follows that

ci =
Nie

−ziψ

∫

Ω
eziψdV

in Ω, i = 1, . . . ,M.

The ultimate unknown variable is ψ. By Eqs. (3.3) and (3.4), ψ is determined by the
following nonlocal PB equation

−∆ψ =

M
∑

i=1

ziNie
−ziψ

∫

Ω
e−ziψdV

+ f,

together with some boundary conditions. We choose to use the periodic boundary condi-
tions for efficiency. We solve this boundary-value problem by the fixed-point iterations.

Algorithm.

Step 0. Initialize ψ0. Set l = 0. Choose ω ∈ (0, 1). Choose an error tolerance tol > 0.
Step 1. Find the solution ψ∗ by solving

−∆ψ∗ =
M
∑

i=1

ziNie
−ziψl

∫

Ω
e−ziψldV

+ f

with the periodic boundary condition.
Step 2. If |ψ∗ − ψl| < tol in Ω, then stop. Otherwise, set ψl+1 = ωψl+ (1 − ω)ψ∗ and

l ← l + 1, and go to Step 1.

3.2 An augmented Lagrange multiplier method for the case with

the size effect

We again consider the problem of minimizing F (E, c) defined in (2.9), with Q(c) now cor-
responding to the case with the size effect, under all the constraints listed below Eq. (2.9).

9



Our augmented Lagrange multiplier method is to solve the following unconstrained opti-
mization problem [45, 46]:

min
(E,c)

max
(ψ,λ)

L̂(E, c, ψ, λ, r),

where r = (r1, . . . , rM) and

L̂(E, c, ψ, λ, r) = F (E, c)−

∫

Ω

ψK(E, c)dV +
M
∑

i=1

λiHi(ci) +
M
∑

i=1

ri
2
[Hi(ci)]

2 .

Here K and Hi are defined in (3.1) and (3.2), respectively, and all ri ≥ 0 in the last term
of summation are the penalty parameters. We add all the penalty terms (1/2)ri[Hi(ci)]

2

to stabilize and accelerate our numerical iterations.
The necessary conditions for (E, c, ψ, λ, r) to be a saddle point of L̂ are

∂L̂

∂E
= E+∇ψ = 0, (3.7)

∂L̂

∂ψ
= −K(E, c) = 0, (3.8)

∂L̂

∂ci
= −

a3i
a30

log

(

1−
M
∑

j=1

a3jcj

)

+ log ci + (λi + ψ)zi + riziHi(ci)

= 0, i = 1, . . . ,M, (3.9)

∂L̂

∂λi
= Hi(ci) = 0, i = 1, . . . ,M. (3.10)

As in the previous case we have by (3.7) that E = −∇ψ and ∇×E = 0. Also, Eqs. (3.7)
and (3.8) imply that

−∆ψ =
M
∑

i=1

zici + f. (3.11)

Since the linear sizes a0, a1, . . . , aM can be all different, it does not seem to be possible to
solve (3.9) analytically to get Boltzmann-like distributions for the dependence of all the
concentrations ci on the potential ψ and parameters λ [40, 31]. Therefore we design an
iteration algorithm to solve the coupled system (3.9), (3.10), and (3.11), with, e.g., the
periodic boundary condition.

Algorithm.

Step 0. Initialize c(0), ψ(0), λ(0) = (λ
(0)
1 , . . . , λ

(0)
M ), and r(0) = (r

(0)
1 , . . . , r

(0)
M ). Fix a param-

eter β > 1. Set l = 0.
Step 1. Solve by the fast Fourier transform Eq. (3.11) with ci replaced by c

(l)
i , with the

periodic boundary condition, to obtain the solution ψ(l+1). Set

E(l+1) = −∇ψ(l+1).
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Step 2. Use Newton’s method to solve Eq. (3.9) with ψ, λ, and r replaced by ψ(l+1), λ(l),
and r(l), respectively, to obtain the solution c(l+1).

Step 3. Update the Lagrange multipliers

λ
(l+1)
i = λ

(l)
i + r

(l)
i Hi(c

(l+1)
i ), i = 1, . . . ,M.

Update the penalty parameters

r
(l+1)
i = βr

(l)
i , i = 1, . . . ,M.

Step 4. Test convergence. If not, set l ← l + 1 and go to Step 1.

We now detail Newton’s method in Step 2 of our algorithm for solving Eq. (3.9) with
a fixed i (1 ≤ i ≤ M). Let us discretize our computational box with a uniform grid of
N grid points. We denote by ∆V the volume of each grid cell. Let us also denote by
c1i , . . . , c

N
i and ψ1, . . . , ψN the approximate values at these grid points of the concentration

ci and those of the potential ψ, respectively. Denote

θmi = −
a3i
a30

log

(

1−
M
∑

j=1

a3jc
m
j

)

+ log cmi

+ (λi + ψm)zi + riz
2
i

(

∆V
N
∑

k=1

cki −Ni

)

, m = 1, . . . , N.

For each m, θmi is an approximation at themth grid point of the left-hand side of Eq. (3.9).
We need to solve the system of N nonlinear equations

θmi = 0, m = 1, . . . , N, (3.12)

to obtain c1i , . . . , c
N
i , provided that all a0, . . . , aM , λi, ri, zi, ψ

1, . . . , ψN , and ∆V are
known. Denote the vectors Θ = (θ1i , θ

2
i , · · · , θ

N
i )

T and c = (c1i , c
2
i , · · · , c

N
i )

T , where T
denotes the matrix transpose. In a vector form, the system of nonlinear equations (3.12)
is simply Θ(c) = 0.

The gradient of Θ with respect to c, denoted ∂Θ/∂c, is a matrix with its (m,n)-entry
given by ∂θmi /∂c

n
i . Simple calculations lead to

∂Θ

∂c
= diag

(

1

ξ1
, . . . ,

1

ξN

)

+ riz
2
i∆V e⊗ e,

where e is the N -component column vector with all its components equal to 1 and

ξm =

(

1

cmi
+

a6i

a30 − a
3
0

∑M
j=1 a

3
jc
m
j

)−1

, m = 1, . . . , N.

Therefore

det
∂Θ

∂c
=

1 + riz
2
i∆V

∑N
m=1 ξ

m

∏N
m=1 ξ

m
> 0.
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Hence the matrix ∂Θ/∂c is invertible. By the Sherman–Morrison formula [47],

(

∂Θ

∂c

)−1

= diag
(

ξ1, . . . , ξN
)

−
riz

2
i∆V

1 + riz2i∆V
∑N

m=1 ξ
m
ξ ⊗ ξ,

where ξ = (ξ1, . . . , ξN)T .
Our Newton’s iteration scheme is now

c← c− γ

(

∂Θ

∂c

)−1

Θ(c),

where γ > 0 is a numerical parameter. Component-wise, this iteration is

cmi ←= cmi − γξ
m

(

θmi −
riz

2
i∆V

∑N
k=1 θ

k
i ξ

k

1 + riz
2
i∆V

∑N
k=1 ξ

k

)

, m = 1, . . . , N, i = 1, . . . ,M.

We choose γ by using a trial-and-error method to avoid the concentrations cmi going outside
the range (0, a−3

i ) for i = 1, . . . ,M . It should be noted that matrix-vector multiplications
are avoided in this Newton’s iteration scheme and the complexity of each iteration is
O(N).

3.3 A local constrained optimization method

In this subsection, we extend a local optimization method developed in [43, 42] to treat
the case with the size effect. We assume that our computational domain is a rectangular
parallelepiped (0, L1)×(0, L2)×(0, L3) and discretize it using a uniform grid with the grid
spacing h1, h2, and h3 in the three coordinate directions. We denote by ∆V = h1h2h3 the
volume of each grid cell. A typical grid associated with n = (n1, n2, n3) is

r0(n) = (n1h1, n2h2, n3h3).

For such a grid we also denote

r1,±(n) = ((n1 ± 1/2)h1, n2h2, n3h3),

r2,±(n) = (n1h1, (n2 ± 1/2)h2, n3h3),

r3,±(n) = (n1h1, n2h2, (n3 ± 1/2)h3).

We discretize each of the concentrations ci on all the grid points r0(n) and the three
components E1, E2, and E3 of the electric field E at rj,+(n) (j = 1, 2, 3). The functional
F (E, c) defined in (2.9) with the size effect is now approximated by

F

∆V
=

1

2

∑

n

3
∑

j=1

[Ej(rj,+(n))]
2 +

∑

n

c0 (r0(n))
[

log
(

a30c0 (r0(n))
)

− 1
]

12



+
∑

n

M
∑

i=i

ci (r0(n)) [log (ci (r0(n)))− 1] . (3.13)

Gauss’s law is approximated as

3
∑

j=1

Ej(rj,+(n))−Ej(rj,−(n))

hj
=

M
∑

i=1

zici(r0(n)) + f(r0(n)).

The mass conservation is approximated by

∑

n

ci(r0(n)) =
Ni

∆V
, i = 1, . . . ,M.

The local method developed in [42] (cf. also [43]) is based on local moves or updates
of the electric field and ionic concentrations. Let us first consider the update of electric
field. Fix a grid cell and one of its two faces perpendicular to the x3-axis. Let E

′

1, E2, E1

and E ′

2 be the four electric field components on the face. We update these values by

E ′

1 ← E ′

1 + δE ′

1,

E2 ← E2 + δE2,

E1 ← E1 + δE1,

E ′

2 ← E ′

2 + δE ′

2.

Corresponding changes in fluxes are

δφ′

1 = h2h3δE
′

1,

δφ2 = h3h1δE2,

δφ1 = h2h3δE1,

δφ′

2 = h3h1δE
′

2.

In order for Gauss’s law to be satisfied, the flux changes should be the same, i.e.

δφ′

1 = δφ2 = δφ1 = δφ′

2 = δφ.

The resulting change in the functional is

δF∆V = (δφ)2
(

h21 + h22
)

+∆V h1 (E1 − E
′

1) δφ+∆V h2 (E2 − E
′

2) δφ.

This change is minimized if

δφ =
∆V

2 (h21 + h22)
[h1 (E

′

1 −E1) + h2(E
′

2 − E2)] .

We now consider the update of the concentrations. Let rA0 and rB0 be two adjacent
grid points linked by an edge of length ∆l. We denote by cAj and cBj the approximations
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of the concentration cj at these two grid points, respectively, for all j = 1, . . . ,M. Fix i
(1 ≤ i ≤M). We update the values cAi and cBi by

cAi ← cAi − δc and cBi ← cBi + δc.

By Gauss’s law, the flux related to the link between two nodes should be correspondingly
changed with the amount δE = −∆lziδc. Hence the associated change in the functional
is

∆F

∆V
=

1

2
(∆lziδc)

2 − E∆lziδc+ cAi log

(

1−
δc

cAi

)

+ cBi log

(

1 +
δc

cBi

)

− δclog
cAi − δc

cBi + δc

+
1−

∑M
j=0 a

3
jc
A
j

a30
log

(

1 +
a3i δc

1−
∑M

j=0 a
3
jc
A
j

)

+
1−

∑M
j=0 a

3
jc
B
j

a30
log

(

1−
a3i δc

1−
∑M

j=0 a
3
jc
B
j

)

+
a3i δc

a30
log

(

1−
∑M

j=0 a
3
jc
A
j + a3i δc

1−
∑M

j=0 a
3
jc
B
j − a

3
i δc

)

.

Notice that this change is different from that for the case without the size effect [42]. The
optimal value δc that minimizes this expression is the solution to the following equation:

−E∆lzi + (∆l)2z2i δc− log

(

cAi − δc

cBi + δc

)

+
a3i
a30

log

(

1−
∑M

j=0 a
3
jc
A
j + a3i δc

1−
∑M

j=0 a
3
jc
B
j − a

3
i δc

)

= 0. (3.14)

Notice from the logarithmic terms in (3.13) that the perturbation δc should be in the
interval (Il, Ir), where

Il = max

{

−
1−

∑M
j=0 a

3
jc
A
j

a3i
,−cBi

}

and Ir = min

{

1−
∑M

j=0 a
3
jc
B
j

a3i
, cAi

}

.

We solve Eq. (3.14) by Newton’s iteration with the initial guess (Il + Ir)/2.

4 Numerical Results

We now report results of our numerical calculations. We set the Bjerrum length to be
lB = 7Å. We choose our computational domain to be a cube Ω = (0, L)× (0, L)× (0, L)
for some L > 0. We assume that this cube contains a spherical colloidal particle, denoted
by Bc, of radius R with its center the same as that of the cube. We also assume that a
total Z e of fixed surface charges are uniformly distributed over the spherical surface. As
in [42], we interpolate the surface charges into their nearest grids. Since the mobile ions
cannot penetrate the interface between the solution region and the colloidal particle, all
the ionic concentrations are assumed to vanish inside the sphere. This means that the
region of the ionic solution is Ω \Bc, the cube Ω minus the sphere Bc.
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4.1 Example 1

In this example, we demonstrate that our method captures qualitatively the essential
features of ionic solution. Moreover we show that our method is accurate and is more
efficient than some previously proposed local methods.

We consider an ionic solution of sodium chloride occupying the region Ω \ Bc. The
number of ionic species M , their valences z1 and z2, their linear sizes a1 and a2, and the
linear size of the solvent molecule a0 are given by

M = 2, z1 = −1, z2 = +1, a1 = 3.34 Å, a2 = 2.32 Å, a0 = 2.75 Å.

The total number of sodium ions N1, the total number of chloride ions N2, the total
amount of surface charges Ze, the radius R of the sphere Bc, and the linear size of the
computational box L are

N1 = 120, N2 = 60, Z e = 60 e, R = 8Å, L = 80Å.

Our numerical grid consists of a total of 256× 256× 256 grid points.
We use our augmented Lagrange multiplier method to numerically minimize the elec-

trostatic free-energy functional (2.9) with the size effect, together with all the correspond-
ing constraints listed below (2.9). Figure 1 shows a two-dimensional cross section of our
computed equilibrium concentration of counterions (a) and that of coions (b) in the plane
z = 40Å, which is in the middle of the computational box. Due to the presence of surface
charges, the counterions—chloride ions—accumulate around the colloidal sphere. In con-
trast, the coions—sodium ions—are repelled away from the colloidal sphere. Note that
the concentration of counterions reaches a saturation value, rather than becoming too
high and unphysical as often predicted by the classical PB theory that does not include
the ionic size effect.

(a) Concentration of counterions. (b) Concentration of coions.

Figure 1: (Color online) Ionic concentrations in the mid-plane z = 40Å.
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Figure 2 shows the convergence of our numerical iterations of the total number of
counterions (a), that of coions (b), and the total charge in the system (c) to their respective
values N1 = 120, N2 = 60, and 0. This demonstrates that our augmented Lagrange
multiplier method preserves very well the constraints of mass conservation (2.1) and charge
neutrality (2.2).
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(c) The total charge in iteration converges to 0 and
the system reaches the charge neutrality.

Figure 2: (Color online) Convergence histories.

To compare the efficiency of various methods that we described in Section 3, we also
performed the following computations:
(a) minimize numerically the free-energy functional (2.9) without the size effect, to-

gether with the corresponding constraints, using the local constrained optimization
method developed in [42]. This method will be abbreviated as “PBmove”;

(b) minimize numerically the free-energy functional (2.9) without the size effect, to-
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gether with the corresponding constraints, using the Lagrange multiplier method
described in Subsection 3.1. This method will be abbreviated as “LagMulti”;

(c) minimize numerically the free-energy functional (2.9) with the size effect, together
with the corresponding constraints, using the local constrained optimization method
described in Subsection 3.3. This method will be abbreviated as “SMPBmove”.
(SMPB means Size Modified Poisson–Boltzmann.)

We shall abbreviate our augmented Lagrange multiplier method as “AugLagMulti”.
We run our “PBmove” and “LagMulti” codes and stop at a point at which the two

numerical solutions of the concentrations and those of the electric field are close enough.
Similarly, we run our “SMPBmove” and “AugLagMulti” codes and stop when the two
numerical solutions of the concentrations and those of the electric field are close enough.
Table 4.1 shows the maximum and relative maximum differences of these solutions with
a grid of size 128 × 128 × 128. With the same solution accuracy, we compare the com-
putational time of these methods in Table 4.2. It is clear that the Lagrange multiplier
method and augmented Lagrange multiplier method are much more efficient than the
corresponding local constrained optimization methods.

Table 4.1: Solution differences with the grid size 128×128×128

Algorithms
Max. difference Relative max. difference
c E c E

PBmove vs. LagMulti 1.547e-5 7.223e-5 1.405e-5 8.327e-6
SMPBmove vs. AugLagMulti 1.974e-6 4.073e-5 7.364e-5 4.650e-6

Table 4.2: Computational time (in seconds)

Grid
Without size effect With size effect
PBmove LagMulti SMPBmove AugLagMulti

16×16×16 3.13 0.44 15.64 3.12
32×32×32 71.34 3.27 81.11 25.43
64×64×64 1884.11 51.02 2554.79 213.00

128×128×128 54347.59 534.67 72298.27 1738.23

In Figure 3, we plot in the log-log scale the CPU time in seconds vs. the total number
of grids N for both “SMPBmove” and “AugLagMulti” applied to the case with the size
effect. We see that the latter has the O(N logN) complexity. This is because we use
the fast Fourier transform in solving our equations. Clearly, our augmented Lagrange
multiplier method is much faster than the local method.

4.2 Example 2

We now investigate the influence of ionic sizes and surface charges on the concentration
of counterions in the vicinity of the charged spherical surface which carries uniformly a
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Figure 3: (Color online) Log-log plot of the CPU time vs. the number of grids for both
“SMPBmove” and “AugLagMulti”.

total of Ze charges with Z > 0. We recall that the spherical colloid of radius R is located
in the center of our computational box Ω = (0, L)× (0, L)× (0, L). We use the following
parameters:

M = 2, z1 = −1, z2 = +1, N1 = 2Z, N2 = Z, R = 14Å, L = 160Å.

We also use the numerical grid size 256×256×256. The parameter Z and the linear sizes
a0 of the solvent molecules, a1 of the counterions, and a2 of the coions are given for two
different cases.

In the first case, we study how ionic sizes affect the equilibrium counterion concentra-
tion profile. We fix Z = 60 and choose four sets of the values of linear sizes (a0, a1, a2):

(a0, a1, a2)I = (10 Å, 10 Å, 10 Å),

(a0, a1, a2)II = (10 Å, 10 Å, 2 Å),

(a0, a1, a2)III = (8 Å, 10 Å, 2 Å),

(a0, a1, a2)IV = (8 Å, 8 Å, 2 Å).

In Figure 4, we plot the concentration profiles for counterions with these choices of the
linear sizes. For comparison, we also plot the profile obtained by the classical PB theory.
Clearly, the counterion concentration when the size effect is included deviates largely
from that of the classical PB solution. The identical profiles of group I and group II
indicate that the change of the coion size has very little influence on the distribution of
counterions close to the charged surface, since almost all of the coions are distributed
away from the surface. A comparison between group II and group III demonstrates
clearly that the larger size of the solvent molecule results in a wider saturation region,
implying that the solvent molecules present in the saturation region. This verifies the
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Figure 4: (Color online) Counterion concentrations vs. distance in Å to the charged surface
with different ionic sizes and with no ionic sizes (the classical PB theory). The linear size
of counterions is a1. The counterion concentration at the charged surface is 1/a31 = 1.666
M when a1 = 10 Å and is 1/a31 = 3.254 M when a1 = 8 Å.

conclusion made in [36] that entropy drives solvent molecules into the saturated region.
It should be noted that the saturation concentrations of group II and group III are the
same. A comparison between group IV and the other groups implies that the value of the
saturation concentration mainly depends on the size of the counterions, rather than the
size of solvent molecules or coions. Furthermore, as expected, the counterions accumulate
to the close packing concentration 1/a31, i.e., 1.666 M for a1 = 10 Å, and 3.254 M for
a1 = 8 Å, in the saturation region.

In the second case, we study the relationship between counterion concentrations and
the surface charge density. We fix the linear sizes

a0 = 8 Å, a1 = 10 Å, a2 = 2 Å.

We vary the total fixed surface charge Ze to be

Ze = 80 e, 60 e, 40 e, and 20 e,

which correspond to the surface charge density

σ = 0.0325 e/Å
2
, 0.0244 e/Å

2
, 0.0162 e/Å

2
, and 0.0081 e/Å

2
,

respectively. As depicted in Figure 5, the surface charge densities σ = 0.0081 e/Å
2
and

σ = 0.0162 e/Å
2
are not high enough to attract the counterions to form a saturation

region. In contrast, higher charged surfaces with charge densities σ = 0.0244 e/Å
2
and

σ = 0.0325 e/Å
2
make the counterions come to a saturation concentration, 1.666 M, which

is determined by the same linear size a1 = 10 Å of counterions. Also, it is easy to see that
a higher charged surface density yields a wider saturation region.
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Figure 5: (Color online) Counterion concentration vs. the distance in Å to the charged
surface with different values of the surface charge density σ.

4.3 Example 3

We now consider a system with the same geometrical setting but with a highly negatively
charged surface of the spherical colloidal particle and with multiple ionic species in the
solution occupying the region Ω \ Bc. We assume again that the total surface charge is
Z e. Our parameters are

M = 3, z1 = +3, z2 = +2, z3 = +1, Z = −200,

N1 = N2 = N3 = −Z/3, R = 10Å, L = 80 Å.

Our numerical grid size is 128× 128× 128.
We first use our Lagrange multiplier method described in Subsection 3.1 to minimize

the electrostatic free-energy functional that does not include the ionic size effect under
the respective constraints to obtain the equilibrium concentrations and the electric field.
These are the classical PB solutions of our underlying problems. The resulting concen-
trations of these multivalent ions are plotted in Figure 6 (a), where +i with i = 1 or 2
or 3 means the concentration of the counterion with the valence +i. We then use our
augmented Lagrange multiplier method described in Subsection 3.2 to solve the same
constrained optimization problem that includes the ionic size effect. We denote by a+i
the linear size of the counterion with valence +i (i = 1, 2, 3) and consider the following
three groups of linear sizes of counterions:

Group I : a0 = 5 Å, a+1 = 5 Å, a+2 = 5 Å, a+3 = 5 Å;

Group II : a0 = 4 Å, a+1 = 5 Å, a+2 = 5 Å, a+3 = 5 Å;

Group III : a0 = 2 Å, a+1 = 5 Å, a+2 = 5 Å, a+3 = 5 Å.
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We plot our computed concentrations of the three counterions in Figure 6 (b) for Group
I, (c) for Group II, and (d) for Group III.
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(a) The PB theory: No size effect.
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(b) a0 = 5Å and a+1 = a+2 = a+3 = 5Å.
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(c) a0 = 4Å and a+1 = a+2 = a+3 = 5Å.
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(d)

(d) a0 = 2Å and a+1 = a+2 = a+3 = 5Å.

Figure 6: (Color online) Concentrations of multivalent counterions vs. the distance in Å
to the charged surface. In the symbols, +i means the concentration of the counterion with
the valence +i (i = 1, 2, 3). (a) The classical PB solution: without the size effect. (b) The
size effect included with the linear sizes of Group I. (c) The size effect included with the
linear sizes of Group II. (d) The size effect included with the linear sizes of Group III.

From Figure 6, we see that the concentration profiles for the counterions predicted
by the classical PB theory are monotonically decreasing. They deviate significantly from
those predicted by size modified mean-field models. When the ionic size effect is included,
concentrations of the counterions are quite moderate, and counterions of different species
become stratified, cf. Figure 6 (b)–(d). Notice that the difference between (b), (c), and (d)
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in Figure 6 is only in the linear size a0 of the solvent molecule. From Figure 6 (d), we see
that, with a smaller size a0 = 2 Å of the solvent molecule, a stronger stratification occurs
in the vicinity of the charged surface. It is also very interesting to observe that, with the
same linear size of all the counterions, the counterions with higher valences are easier to
be attracted to the charged surface. For instance, the trivalent counterions are attracted
first to compensate the surface charge, and then are divalent counterions, and then are
monovalent ions. This agrees with some initial predictions in [40] with a Poisson–Fermi
formalism.

To further investigate the role of the ionic valence and ionic size on the distributions
of multiple counterions, we perform a series of more numerical computations with the
following different combinations of ionic valences and sizes:

(a0, a+3, a+2, a+1) = (2 Å, 7 Å, 6 Å, 5 Å);

(a0, a+3, a+2, a+1) = (2 Å, 7 Å, 5 Å, 6 Å);

(a0, a+3, a+2, a+1) = (2 Å, 7 Å, 6 Å, 4 Å);

(a0, a+3, a+2, a+1) = (2 Å, 8 Å, 6 Å, 4 Å).

For each set of linear sizes, we plot in Figure 7 the concentration profiles of all the three
counterions. After analyzing the differences among the plots, we realize that the stratifi-
cation behavior of the counterions in the vicinity of the charged surface is determined by
the ionic valence-to-volume ratios, i.e., by the parameters

αi =
zi
a3i
, i = 1, . . . ,M.

Figure 7 (a) and (b) show that the divalent counterions are distributed closest around
the surface, and then are the trivalent counterions, and then are the monovalent counte-
rions, since in this case

α+2 > α+3 > α+1.

Moreover, we observe that the larger differences of αi the stronger stratification. For
instance, the stratification phenomenon in Figure 7 (b) is stronger than that in Figure (7)
(a), since the differences of the values of αi in Figure 7 (b) are larger than those in Figure 7
(a). In Figure 7 (c) and (d), we see that the monovalent counterions are distributed closer
to the charged surface than the other two counterions, as α+2 is greater than the other
two counterparts α+3 and α+1. With larger differences among αi, Figure 7 (d) exhibits
more pronounced stratification layers than those in Figure 7 (c) in the vicinity of the
charged surface.
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(a)

(a) a0 = 2 Å, a+3 = 7 Å, a+2 = 6 Å, a+1 = 5 Å.
α+2 : α+3 : α+1 = 1.163 : 1.088 : 1.
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(b)

(b) a0 = 2 Å, a+3 = 7 Å, a+2 = 5 Å, a+1 = 6 Å.
α+2 : α+3 : α+1 = 3.478 : 1.891 : 1.
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(c)

(c) a0 = 2 Å, a+3 = 7 Å, a+2 = 6 Å, a+1 = 4 Å.
α+1 : α+2 : α+3 = 1.793 : 1.069 : 1.
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(d)

(d) a0 = 2 Å, a+3 = 8 Å, a+2 = 6 Å, a+1 = 4 Å.
α+1 : α+2 : α+3 = 2.644 : 1.576 : 1.

Figure 7: (Color online) Concentrations of multivalent counterions vs. the distance in Å to
the charged surface. In (a) and (b), α+2 > α+3 > α+1. In (c) and (d), α+1 > α+2 > α+3.

5 Conclusions

In this work, we study numerically the mean-field electrostatic free-energy functional (1.1)
for an ionic solution with multiple ions of possible different valences and ionic sizes. We
develop (ψ, c)-formulation and (E, c)-formulation of the free energy and design an aug-
mented Lagrange multiplier method for our underlying constrained optimization problem.

Our numerical tests demonstrate that our method is accurate and efficient. In particu-
lar, our method improves largely the efficiency of a local relaxation method that has been
previously proposed. It is worth to note that the complexity of our iteration method is in
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fact similar to that of Newton’s iteration method which is a robust method for treating
the nonlinearity in the PB equation. In both methods, a linear boundary-value problem
of Poisson type equation is solved in each iteration. Therefore, our method is promising
in future applications, e.g., the level-set variational implicit-solvent modeling of charged
biomolecules [48, 49].

We apply the continuum model (1.1) and our numerical method to study how the ionic
sizes, the ionic valences, the size of a solvent molecule, and the surface charge density affect
the counterion concentrations near a charged surface. We find the following:
(1) The classical PB theory that does not include the ionic size effect gives a poor

prediction of the counterion concentration near the charged surface;
(2) The counterion concentrations reach saturation values in a region near the charged

surface. As the size of the counterion decreases, the saturation value increases and
the width of the saturation region decreases. This value is not affected much by the
size of coions and that of the solvent molecule;

(3) The concentrations of multiple species of counterions with different valences exhibit
stratification layers, resulting from the competition of counterions in binding to the
charged surface. The ionic valence-to-volume ratios

zi
a3i
, i = 1, . . . ,M,

are the key parameters in determining the structure of these layers. For instance,
the counterions with the highest valence-to-volume ratio form the top layer in the
region closest to the charged surface and then becomes the second top layer in the
next region, and so on. Those counterions with the lowest valence-to-volume ratio
form the bottom layer in the region closest to the charged surface but the top in
the region further away.

We note that several physical effects are neglected in the continuum model used here.
These include the Stern layer of counterions surrounding a charged surface due to the
ionic steric hindrance, the image charge effect, and the nonuniformity of the dielectric
permittivity.

The current study is clearly in the direction of pushing a continuum model to its
maximum capacity in terms of capturing microscopic details of ionic solutions. But how
far can we go in this direction? To answer this question, we address a number of issues
related to our studies.

The first issue is about the optimal packing of ions in a fixed space. Our current
model and method predict that a full, 100% packing: for the case of only one species of
counterions in the solution, the concentration of the counterions near the charged surface
is exactly the inverse of the ionic volume. In real systems, however, only a fraction of
a spatial region of unit volume can be occupied by the ions. To capture this partial
packing, we can introduce some packing parameters λi with 0 < λi < 1 (i = 0, . . . ,M) in

24



the entropic part of our free-energy functional (1.1) as

kBT
M
∑

i=0

∫

Ω

ci log
(

λ−1
i a3i ci

)

dV.

Effectively, we are enlarging the volumes a3i and our results will then predict the cor-
rect packing of counterions near the charged surface. One of course needs to adjust the
parameters λi to achieve quantitatively an optimal result.

Second, we have found that the ionic valence-to-volume ratios play a key role in de-
termining some of the important properties of the concentration profiles for counterions
near the charged surface, particularly for systems with multiple ionic species of multi-
ple valences and different sizes. It is then necessary to understand how such parameters
affect quantitatively the concentration profiles, the stratification structure, and the free
energy of an underlying system. It will be also interesting to see how our findings with
these important parameters can be applied to the study of some important issues of real
biological systems, e.g., the selectivity of ions passing through ion channels.

Third, the differences between a uniform ionic size and non-uniform ionic sizes are only
explored numerically in our current work. With the assumption on the charge neutrality of
ions in the solution, Li [31] obtained (1.2), the implicit Boltzmann distributions that relate
the equilibrium ionic concentrations c1, . . . , cM and the electrostatic potential ψ. If all the
sizes are the same, then we have explicit formulas for these concentrations depending
on the potential, the generalized Boltzmann distributions, cf. [31]. Consequently, it is
possible to study such differences analytically.

Finally, we point out that a mean-field model like (1.1) does not capture ion-ion
correlations. In fact, Li [31] proved rigorously that, under the assumption of charge
neutrality of ions in the solution and using the function (1.1), the negative induced charge
density −

∑M
i=1 zieci, as an implicitly defined function of the potential ψ, is the derivative

of a strictly convex function. This important analytical property implies that the classical
PB-like mean-field model like (1.1), with or without the size effect included, fails in
predicting the ion mediated like-charge attractions [50, 51, 44, 31]. One way to circumvent
this problem is to introduce nonlocal or convolution terms in the free-energy functional
[52]. But it is unclear if such an approach will be accurate and efficient for large charged
systems. It therefore remains still challenging to develop systematically theories and
methods that include the ion-ion correlation, the ionic size effect, and other microscopic
properties of ions and that can be applied to efficient studies of large biological systems.
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