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A self-consistent rate-equation (RE) approach to irreversible island growth and nucleation is pre-
sented which takes into account cluster mobility. As a first application, we consider the irreversible
growth of compact islands on a 2D surface in the presence of monomer deposition (with rate F )
and monomer diffusion (with rate D1) while the mobility of an island of size s is assumed to sat-
isfy Ds = D1s

−µ where µ > 0. Results are obtained for the dependence of the island-density and
island-size distribution (ISD) on the parameters D1/F , µ and coverage θ. For all values of µ, we
find excellent agreement between our self-consistent RE results and simulation results for the island
and monomer densities, up to and even somewhat beyond the coverage corresponding to the peak
island-density. We also find good agreement between our self-consistent RE and simulation results
for the portion of the ISD corresponding to island-sizes less than the average island-size S. However,
for larger island-sizes the effects of correlations become important and as a result the agreement is
not as good. Using our self-consistent RE approach we also demonstrate that the discrepancies be-
tween simulations and recent mean-field predictions for the exponent τ (µ) describing the power-law
size-dependence of the ISD for µ < 1 can be explained almost entirely by geometric effects. Our
results are also compared with those obtained using a simpler mean-field Smoluchowski approach.
In general, we find that, except for the case µ = 1/2 (for which the island and monomer densities
are reasonably well predicted) such an approach leads to results which are in poor agreement with
simulations.

PACS numbers: 05.40.-a, 68.43.Jk, 81.15.Aa

I. INTRODUCTION

Aggregation processes play an important role in many
areas of science and technology and have applications
including colloid science, aerosol physics, astrophysics,
cloud dynamics and chemical engineering. One of
the most important theoretical approaches used is the
mean-field rate-equation approach originally developed
by Smoluchowski [1]. A variety of studies of the scal-
ing behavior in aggregation processes have been carried
out based on this assumption. However, there has been
less emphasis on the quantitative evolution of the cluster
density and cluster-size distribution.

A related problem is the evolution of the island-density
and island-size distribution as a function of coverage in
submonolayer epitaxial growth. In this case it is generally
assumed that only monomers or very small islands are
mobile, while clusters above a certain size do not diffuse.
Based on this assumption, a self-consistent rate-equation
(RE) approach [4] has been developed by which the is-
land and monomer densities can be accurately calculated
in the pre-coalescence regime. While this method was
originally developed for the case of irreversible growth, it
has since been extended [5, 6] to reversible growth, and
has also been further extended to make accurate predic-
tions of the island-size distribution and size-dependence
of the island capture numbers [7–9]. While there have
been some attempts [10] to extend the Bales and Chrzan
[4] self-consistent RE approach to mobile clusters, no
fully quantitative and/or self-consistent method has so
far been developed.

Here we present a generalization of the self-consistent

RE method of Bales and Chrzan to the case of irre-
versible submonolayer growth in the presence of clus-
ter diffusion. As a specific application, we consider a
model of submonolayer growth in which all islands are
assumed to diffuse with diffusion coefficient Ds = D1s

−µ

(where s is the number of particles in a cluster). We
note that one of the motivations for this work is the
existence of recent experiments [11] on the growth of
(compact) colloidal nanoparticle islands at a liquid-air
interface in which significant cluster diffusion has been
observed. However, cluster diffusion has also been found
to be important in epitaxial graphene growth [12–14]. In
addition, in previous studies a variety of different pos-
sible mechanisms for the diffusion of epitaxial clusters
have been considered, [15–21] which imply the existence
of a power-law dependence of the diffusion coefficient on
cluster-size. These include cluster diffusion via uncor-
related evaporation-condensation (µ = 1/2), correlated
evaporation/condensation (µ = 1), and periphery diffu-
sion (µ = 3/2). We note that the case µ = 1/2 also
corresponds to the Brownian (Stokes-Einstein) diffusion
of compact 2D clusters in two-dimensions.

Accordingly, as a first application of our method, here
we present a comparison between our self-consistent RE
results and kinetic Monte Carlo (KMC) simulations for
a variety of values of µ including µ = 1/2 (Brownian
diffusion) as well as for higher values of µ. For com-
parison, results for the case µ = ∞ corresponding to no
cluster-diffusion are also presented. In general we find
that, using our self-consistent RE method the island and
monomer densities are accurately predicted up to and
even significantly beyond the coverage corresponding to
the peak island-density for all values of µ considered. In
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addition, we find that for small values of µ (µ ≤ 2) there
is excellent agreement between our RE results for the
island-size distribution (ISD) and simulation results, al-
though the effects of correlations (which are not included
in our RE approach) appear to become more important
with increasing µ. In particular, we find that while our
RE results give good predictions for the small-s tail cor-
responding to “raw” islands for µ > 2, the agreement
is not as good for the peak of the distribution corre-
sponding to large “ripe” islands. We note that this is
consistent with the results of Bales and Chrzan [4] for
the case of immobile islands (µ = ∞) for which it was
found that correlations between the size of an island and
the size of the surrounding capture zone (which are not
included in the RE approach) lead to significant discrep-
ancies between the ISD predicted from RE’s and KMC
simulations.
Our RE results also demonstrate that the discrepancies

between recent theoretical predictions for the exponent
τ(µ) describing the size-dependence of the ISD for µ < 1
can be explained almost entirely by geometric effects. For
comparison, we also present RE results corresponding to
the “constant capture-number” Smoluchowski assump-
tion Kij = σ0(Di +Dj) [1–3]. In general, we find that,
except for the case µ = 1/2 (for which the island and
monomer densities are reasonably well predicted) such
an approach leads to results which are in poor agreement
with simulations.
The organization of this paper is as follows. In Sec. II

we present our self-consistent RE approach while in
Sec. III we briefly discuss the model [22] used in our
KMC simulations. In Sec. IV we then present our RE
results and compare with simulations. Finally, in Sec. V
we discuss our results.

II. RATE EQUATION ANALYSIS

Assuming that Ns is the density of islands of size s and
θ is the coverage, then for the case of cluster-diffusion
and irreversible aggregation in the presence of monomer
deposition, we may consider the following set of rate-
equations,

dNs

dθ
= δs,1(1 −

∞
∑

i=1

κiNi) +
1

2

∑

i+j=s

Ki,jNiNj/F

−Ns

∞
∑

i=1

Ks,iNi/F (1)

whereKi,j(θ) is the aggregation kernel for a cluster of size
i and size j to aggregate to form a cluster of size i+j and
the terms with κi (where κi = (1+δ1,i)

π
4
(
√
s+1)2 for the

circular islands considered here) correspond to the direct
impingement of monomers on an island of size i. Without
loss of generality we may rewrite the aggregation kernel
in the form,

Kij(θ) = Di σij(θ) +Dj σji(θ) (2)

where Di correponds to the diffusion rate for a particle of
size i and σij is the “capture-number” for a cluster of size
i by a cluster of size j. Defining the ratio Ri = Di/F ,
Eq. 1 may be rewritten more compactly as,

dNs

dθ
= Js −RsNs/ξ

2
s (3)

where,

Js = δs,1(1 −
∞
∑

i=1

κiNi) +
1

2

∑

i+j=s

(Riσij +Rjσji)NiNj

−Ns

∞
∑

i6=s

RiσisNi −∆ [RsσssN
2
s ] (4)

and

1

ξ2s
= (1−∆) σssNs +

∞
∑

i=1

σsiNi (5)

We note that the terms with ∆ in Eqs. 4 and 5 above
indicate different possible ways to apportion the RE term
2RsσssN

2
s [corresponding to the “capture” of a cluster of

size s by another cluster of size s] among the two terms
Js and RsNs/ξ

2
s of Eq. 3. In particular, assuming ∆ = 0

is consistent with the previous work of Bales and Chrzan
[4], while assuming ∆ = 1 has the advantage that it leads
to a diffusion length ξ which is independent of the size s
of the diffusing island (see below).
In order to obtain an expression for the capture number

σsi we consider [4] the diffusion equation for the local
density ns of clusters of size s, embedded in an average
distribution of clusters and diffusing towards a particular
cluster of size i and radius ri. Since the motion of island
i will be taken into account in the capture number σis,
we assume for simplicity that the island i is not moving.
This leads to a local diffusion equation of the form,

∂ns

∂θ
= Rs∇2ns + Js −Rsns/ξ

2
s (6)

which is consistent with Eq. 3. Subtracting Eq. 3 from
Eq. 6 gives,

1

Rs

(

∂ns

∂θ
− ∂Ns

∂θ

)

= ∇2ns − ξ−2
s (ns −Ns) ≃ 0 (7)

Assuming the boundary conditions ns(ri) = 0 (corre-
sponding to irreversible growth) and ns(∞) = Ns, along
with circular symmetry, leads to the solution,

ns(r) = Ns

[

1− K0(r/ξs)

K0(ri/ξs)

]

(8)

From this, we obtain the following expression for the cap-
ture numbers,

σsi =
2πri
Ns

(

∂ns

∂r

)

r=ri

=
2πri
ξs

K1(ri/ξs)

K0(ri/ξs)
(9)
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where Kj is the modified Bessel function of order j. We
note that for the case in which only monomers diffuse
(e.g. s = 1, ξ = ξ1) this result is consistent with the
results of Bales and Chrzan. [4]
We first consider the case ∆ = 1 which corresponds

to an equal division of the aggregation term 2RsσssN
2
s

[corresponding to the “capture” of a cluster of size s by
another cluster of size s] between the two terms Js and
RsNs/ξ

2
s of Eq. 3. We note that if the capture-length

ξs is independent of island-size (e.g. ξs = ξ) then Eq. 9
implies that the capture-number σsi only depends on the
size i of the “absorbing” island, e.g. σsi = σi. For the
case ∆ = 1, this is consistent with Eq. 5 which implies
that ξs = ξ for all s. Accordingly, our self-consistent RE
theory corresponds to self-consistently solving the two
equations,

1

ξ2
=

∞
∑

i=1

σiNi (10a)

σi =
2πri
ξ

K1(ri/ξ)

K0(ri/ξ)
(10b)

as a function of the island-densities {Ns} at each inte-
gration step while the corresponding rate-equations may
be written,

dNs

dθ
= δs,1(1−

∞
∑

s=1

κiNi) +
1

2

∑

i+j=s

(Ri σj +Rj σi)NiNj

−Ns

∞
∑

i=1

RiσsNi −RsσsN
2
s (11)

While this approach is perhaps the most natural one,
it is also interesting to consider the case ∆ = 0, since
this corresponds to the Bales-Chrzan approach for the
case in which only monomers diffuse. In this case, Eq. 5
becomes,

1

ξ2s
= σssNs +

∞
∑

i=1

σsiNi (12)

and as a result the capture-length ξs depends explicitly
on s and is not consistent with the assumption (σsi = σi)
that the capture number depends only on the size of the
“absorbing” cluster. Accordingly, in order to integrate
the REs (1), the capture-lengths ξs must be calculated
self-consistently using Eqs. 9 and 12 at each integration
step. Unfortunately, in addition to being computation-
ally demanding, this approach leads to poor agreement
with simulations except for the original case (studied by
Bales and Chrzan [4]) in which only monomers diffuse
and there is only one capture length ξ1.
Accordingly, we have modified this approach by replac-

ing the capture-length ξs in Eq. 3 and Eqs. 6-9, and 12
by a “renormalized” capture length ξ (averaged over all

islands) defined by,

∑∞
s=1

RsNs

ξ2
=

∞
∑

s=1

RsNs

ξ2s
(13)

With this modification the capture numbers σi depend
only on the size i of the “absorbing” island and Eq. 5
becomes,

1

ξ2s
=

∞
∑

i=1

σiNi + (1−∆) σsNs (14)

Substituting this expression into the renormalization
equation (13) the self-consistency condition becomes,

1

ξ2
=

∞
∑

i=1

σiNi + (1−∆)

∑∞
i=1

RiσiN
2
i

∑∞
i=1

RiNi
(15)

By solving Eqs. 10(b) and (15) self-consistently, the rate-
equations (11) may be numerically integrated for both
∆ = 0 and ∆ = 1. As previously noted, for the case in
which only monomers diffuse, the assumption ∆ = 0 cor-
responds to the original equations of Bales and Chrzan.

III. MODEL AND SIMULATIONS

In order to test our self-consistent RE approach we
have carried out KMC simulations of an off-lattice model
of irreversible island growth in the presence of cluster dif-
fusion. Since the details of this model have previously
been described elsewhere, [22] here we only describe it
briefly. In our model we assume that all islands are cir-
cular while irreversible aggregation and instantaneous re-
laxation are also assumed. In particular, each island or
cluster of size s (where s is the number of monomers in a
cluster) is represented by a circle with area As = πd2s/4
and diameter ds = d1s

1/2, where d1 is the monomer di-
ameter. In addition, each cluster of size s may diffuse
with diffusion rate Ds = D1s

−µ where D1 = D1,hδ
2/4 is

the monomer diffusion rate, D1,h is the monomer “hop-
ping rate”, and δ is the hopping length. Similarly, we
may write Ds = Ds,h δ2/4 where Ds,h = D1,hs

−µ is the
hopping rate for a cluster of size s. In all of our simula-
tions, we have assumed a hopping length δ = d1.
In order to take into account deposition, monomers

are also randomly deposited onto the substrate with rate
F/d21 per unit time per unit area. Since instantaneous
coalescence and relaxation are assumed, whenever two
clusters touch or overlap, a new island is formed whose
area is equal to the sum of the areas of the original clus-
ters, and whose center corresponds to the center-of-mass
of both islands. We note that in some cases a coales-
cence event may lead to overlap of the resulting cluster
with additional clusters. In this case, coalescence is al-
lowed to proceed until there are no more overlaps. In
addition, if a monomer lands on an existing cluster, then
that monomer is automatically ‘absorbed’ by the cluster.
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Our simulations were carried out assuming a 2D square
substrate of size L (in units of the monomer diameter
d1) and periodic boundary conditions. In order to avoid
finite-size effects, the value of L used (L = 4096) was
relatively large, while our results were averaged over 100
runs in order to obtain good statistics. In order to de-
termine the asymptotic dependence of the island density
on coverage and Rh our simulations were carried out us-
ing values of R′

h = 4Rh/π ranging from 107 − 109 up to
a maximum coverage of 0.1 monolayers (ML). In order
to study the dependence on µ, simulations were carried
out for µ = 1/2 (corresponding to Brownian diffusion
or uncorrelated evaporation-condensation), µ = 1 (cor-
responding to correlated evaporation-condensation), and
µ = 3/2 (corresponding to periphery diffusion) as well
as for higher values (µ = 2, 3, and 6) as well as the case
µ = ∞ corresponding to only monomer diffusion.
In order to obtain a quantitative understanding of

the submonolayer growth behavior, we have measured
a variety of quantities including the monomer density
N1 = (π/4) n1/L

2 (where n1 is the number of monomers
in the system) as a function of coverage θ, and the aver-
age island density N = (π/4)

∑

s≥2
ns(θ)/L

2 (where ns

is the total number of islands in the system). In addition,
we have also measured the island-size distribution Ns(θ)
where Ns = (π/4) ns/L

2 corresponds to the density of
islands of size s (where s is the number of particles in
the island) as well as the scaled island-size distribution
(ISD),

f(s/S) = Ns(θ)S
2/θ (16)

where S = (θ−N1)/N is the average island-size. We note
that the factors of π/4 in the definitions above take into
account the fact that the area of a monomer is (π/4) d21,
and as a result the densities defined above all correspond
to area fractions. Similarly, the coverage θ =

∑

s≥1
sNs

corresponds to the fraction of the total area covered by
islands (including monomers).

IV. RESULTS

In order to test our self-consistent RE approach, we
have compared our RE results obtained using Eq. 15 for
both ∆ = 0 and ∆ = 1 with simulation results for dif-
ferent values of µ. Somewhat surprisingly, we found that
there was relatively little difference between our RE re-
sults for ∆ = 0 and those for ∆ = 1, although our ∆ = 0
results for the densities and island-size distributions were
all in slightly better agreement with simulations than for
∆ = 1. Accordingly, the self-consistent RE results shown
here correspond to this case. However, it should be noted
that the difference between the results for both cases was
typically less than 1%. For comparison, we have also
carried out RE calculations using the mean-field (MF)
Smoluchowski kernel appropriate in two-dimensions,

KMF
ij = σ0 (Di +Dj) (17)
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FIG. 1: (Color online) Comparison of self-consistent RE re-
sults (solid curves) with simulation results (circles) for the
monomer density N1 and island-density N for R′

h = 107 and
R′

h = 109 for (a) µ = 1/2 and (b) µ = 1. Also shown
are constant capture number results (×) corresponding to
Kij = Di +Dj .

where we have assumed σ0 = 1 since this gives the best
agreement with simulations.

A. Island and monomer densities

We first compare our self-consistent RE results for
the evolution of the monomer density N1(θ) and island-
density N(θ) with the corresponding simulation results
for R′

h = 107 and 109. As shown in Fig. 1, for µ = 1/2
and µ = 1 there is good agreement between our KMC
simulations (circles) and RE results (solid curves) up to
and significantly beyond the coverage θpk correspond-
ing to the peak island-density. However, at a coverage
(θc ≃ 0.02) the RE predictions for the island-density



5

10
-6

10
-5

10
-4

10
-3

10
-5

10
-4

10
-3

10
-2

10
-1

R'
h
 = 10

9

R'
h
 = 10

7

D
i
 + D

j

D
e
n
s
it
ie
s

Coverage

N
1

N
1

N

N

(b)  µ = 2

10
-6

10
-5

10
-4

10
-3

R'
h
 = 10

7

R'
h
 = 10

9

D
i
 + D

j

D
e
n
s
it
ie
s

 µ = 3/2

N
1

N

N

N
1

(a)

FIG. 2: (Color online) Same as Fig. 1. (a) µ = 3/2 and (b)
µ = 2.

N(θ) begins to diverge somewhat from the KMC results,
which decrease more rapidly with increasing coverage.

For comparison, RE results based on the Smoluchowski
kernel Kij = σ0(Di +Dj) with σ0 = 1, corresponding to
coverage- and size-independent capture number, are also
shown. As can be seen, for µ = 1/2 the agreement be-
tween the Smoluchowski RE results and simulations is
as good as for our more complex self-consistent RE re-
sults, although neither approach correctly predicts the
slight decrease in the island-density beyond θ ≃ 0.02.
In contrast, for µ = 1 our self-consistent RE results for
the island density N are much closer to simulations than
the constant capture-number results, since they approxi-
mately predict the decrease of the island-density beyond
θpk. We note that for R′

h = 109 and µ = 1, self-consistent
RE results are not shown for coverage θ > 0.03 due to
the fact that the computation time becomes prohibitive.

Similar results are shown in Fig. 2 for µ = 3/2 (corre-
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FIG. 3: (Color online) Same as Fig. 1. (a) µ = 3 and (b)
µ = ∞.

sponding to cluster diffusion via periphery diffusion) and
µ = 2. As can be seen, for both values of µ there is good
agreement between our self-consistent RE results for the
island-density N(θ) and simulations all the way up to the
maximum coverage θ = 0.1. In contrast, the constant
capture-number results lead to an island-density which
continues to increase beyond the peak-island coverage
θpk, in disagreement with simulation results. Similarly,
the self-consistent RE results for the monomer density
N1(θ) give significantly better agreement with simula-
tions (for coverages up to the peak island-density) than
the constant capture-number results, although they pre-
dict a monomer density which decreases somewhat less
rapidly beyond the peak-coverage than the simulation re-
sults.

Results for µ = 3 and µ = ∞ are also shown in Fig. 3.
We note that for these values of µ, the island-density
increases up to coverage θ = 0.1. In this case, our self-
consistent RE results for the island and monomer den-
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sities are in relatively good agreement with simulations
although the RE results tend to be slightly higher. In
contrast, the constant capture-number results give poor
agreement with simulations.

B. Island-size distribution

We now compare our self-consistent RE results for the
scaled ISD with the corresponding simulation results at
coverage θ = 0.01 somewhat below the coverage corre-
sponding to the peak island density. Fig. 4 shows a com-
parison between our RE results for the scaled ISD (solid
curve) and simulation results (filled symbols) at θ = 0.01
for µ = 1/2 and µ = 1. As can be seen, for island-
sizes less than the average island-size S there is excellent
agreement with simulations. However, for s > S (cor-
responding to large “ripe” islands for which correlations
can develop) the agreement is not as good. For com-
parison, the RE results with constant capture number
(σ0 = 1) are also shown. While the constant capture
number results agree with simulations for the very small-
est island-sizes, they disagree for larger island-sizes.
We note that our ISD results for µ = 1/2 are in qualita-

tive agreement with the MF prediction [23–26] of power-
law behavior Ns ∼ s−τ for µ < 1. However, the value of
the exponent (τ ≃ 1.35, see Fig. 4(a)) obtained in our RE
calculations and simulations is significantly higher than
the value (τ = 1.25) obtained using the MF prediction,
[23–26]

τ = (3− µ)/2 (18)

In order to further explore the dependence of τ on µ
for µ < 1, we have carried out additional simulations
and RE calculations for both compact and point-islands.
As can be seen in Fig. 5, for the case of compact islands
there is good agreement between our simulations and RE
results for µ < 1, while the exponent τ decreases approx-
imately linearly1 with increasing µ. Also shown in Fig. 5
are self-consistent RE results for the case of point-islands
corresponding to rs = r1. In contrast to our compact is-
land results, these RE results are in good agreement with
the MF prediction (18). This indicates that the devia-
tions from the MF prediction for compact islands are
not due to correlations (which are not included in our
self-consistent RE approach) but rather to the effects of
island geometry which are taken into account in our RE
calculations.
Additional results for the scaled ISD for µ = 3/2 and

µ = 2 are shown in Fig. 6. In both cases there is excellent
agreement for all values of the scaled island-size between
our self-consistent RE results and simulations. In con-
trast, the constant capture-number RE results exhibit

1 Interestingly, for compact islands the exponent τ approximately
satisfies the expression τ = (5− 2µ)/3 rather than Eq. 18.
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FIG. 4: (Color online) Comparison of self-consistent RE re-
sults (solid curves) with simulation results (circles) for the
scaled ISD at θ = 0.01 for (a) µ = 1/2 and R′

h = 108 and
(b) µ = 1 and R′

h = 109. Also shown are constant capture
number results (×) corresponding to Kij = Di +Dj .

poor agreement with simulations for small and interme-
diate island-sizes. However, as shown in Fig. 7, for higher
values of µ, e.g. µ = 3, 6 (not shown) and ∞, the height
of the ISD peak at s/S ≃ 1 is significantly overestimated
by our self-consistent RE approach, although there is still
reasonable agreement with simulations for s < S. This
behavior is similar to that previously found by Bales and
Chrzan [4] for the case in which only monomers diffuse
(corresponding to µ = ∞) and is most likely due to the
existence of correlations between the size of an island and
its capture-zone which develop due to the decreased ef-
fects of cluster-diffusion for large µ and large island-sizes.
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FIG. 5: (Color online) Simulation and self-consistent RE re-
sults for exponent τ for point (diamonds) and compact islands
(circles) for µ = 1/4, 1/2, 3/4 and R′

h = 109.

V. DISCUSSION

We have developed a self-consistent RE approach to
irreversible island growth which takes into account clus-
ter diffusion. In our approach, the capture-length for an
island of size s was assumed to be independent of its size,
while the aggregation kernelKij was assumed to be equal
to the sum of the capture-rate Diσj of a cluster of size
i by a stationary island of size j and the capture-rate
Djσi of a cluster of size j by a stationary island of size i.
We note that while the radius of the capturing island is
taken into account in our approach, the diffusing island is
treated as a point-particle.2 These last two assumptions
make our approach similar to that carried out by Bales
and Chrzan [4] in which only monomers diffuse.

In our approach we have considered two slightly differ-
ent versions of our REs in which collisions between two
islands of the same size are treated somewhat differently.
In one method, corresponding to ∆ = 0 in Eq. 5, we have
included the loss of both islands in the definition of the
capture-length. However, this leads to a size-dependent
capture length as well as poor agreement with simula-
tions. We have resolved this problem by renormalizing
the capture length (see Eq. 15) so that it is the same
for all islands. Alternatively, for the case ∆ = 1, the
loss of the “diffusing” island is assigned to the capture-
length (Eq. 5) while the loss of the stationary island is

2 In contrast, directly taking into account the relative motion of
two clusters of size i and j, as well as the sum rij = ri + rj of
their radii leads to poor agreement with simulations.
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FIG. 6: (Color online) Comparison of self-consistent RE re-
sults (solid curves) with simulation results (circles) for the
scaled ISD for R′

h = 109 and θ = 0.01 for (a) µ = 3/2 and (b)
µ = 2. Also shown are constant capture number results (×)
corresponding to Kij = Di +Dj .

assigned to the term Js (Eq. 4). While such an approach
is different from that used by Bales and Chrzan [4] for
the case in which only monomers diffuse, it automati-
cally leads to a capture length which is independent of
island-size. In addition, in this case the results are very
similar to those obtained for the case ∆ = 0. The rela-
tively small difference between the results obtained using
both approaches is most likely due to the fact that the
“correction” term in Eq. 15 (which corresponds to the
average value of σiNi) is in general significantly smaller
than the first term corresponding to

∑∞
i=1

σiNi.

As a first application of our self-consistent RE ap-
proach, we have applied it to a model of irreversible sub-
monolayer growth in which the diffusion coefficient for an
island of size s is given by Ds = D1s

−µ. For all values of
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FIG. 7: (Color online) Same as Fig. 6. (a) µ = 3 and (b)
µ = ∞.

µ we find good agreement between our self-consistent RE
results for the island and monomer densities and simu-
lations, up to and even somewhat beyond the coverage
corresponding to the peak island-density. In addition,
we have obtained good agreement for finite µ between
our RE results and simulation results for the portion of
the ISD corresponding to island-sizes smaller than the
average island-size. We note that for µ < 3 this corre-
sponds to the dominant portion of the scaled ISD. In-
terestingly, for intermediate values of µ (µ = 3/2 and
2) we also find excellent agreement between our ISD RE
results and simulations for all values of the island-size.
This result is perhaps not so surprising, since one of the
motivations of this work was our expectation that the
presence of significant cluster mobility for large islands
would reduce the effects of correlations and thus lead to
improved prediction of the ISD. However, for µ ≥ 3 the
effects of correlations become important for large islands
and as a result the agreement decreases with increasing
µ.

We have also compared our results with those obtained
using the MF Smoluchowski expression (17) correspond-
ing to constant and size-independent capture-numbers.
In general, we find that, except for the case µ = 1/2 (for
which the island and monomer densities are reasonably
well predicted) such an approach leads to results which
are in poor agreement with simulations. In addition, we
find that even for µ < 1 (for which power-law behavior of
the ISD is expected) our self-consistent RE results are in
good agreement with simulation results even though the
measured value of τ differs from the MF Smoluchowski
prediction Eq. 18. Since our REs do not take into ac-
count correlations, this implies that the size-dependence
of the ISD for µ < 1 can be explained almost entirely
by geometric effects which are taken into account in our
self-consistent RE approach. This is further confirmed
by the fact that our self-consistent RE results for point-
islands are in good agreement with the MF prediction
Eq. 18 for τ(µ). These results indicate that even for the
case µ < 1, for islands with a realistic geometry in two-
dimensions, the self-consistent RE approach developed
here is preferable to the MF Smoluchowski approach.
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