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We present experimental measurements of dynamical heterogeneities in a dense system of microgel
spheres, sheared at different rates and at different packing fractions in a microfluidic channel, and
visualized with high speed digital video microscopy. A four-point dynamic susceptibility is deduced
from video correlations, and is found to exhibit a peak that grows in height and shifts to longer
times as the jamming transition is approached from two different directions. In particular, the time
for particle-size root-mean square relative displacements is found to scale as τ∗ ∼ (γ̇∆φ4)−1 where γ̇
is the strain rate and ∆φ = |φ− φc| is the distance from the random close packing volume fraction.
The typical number of particles in a dynamical heterogeneity is deduced from the susceptibility peak
height and found to scale as n∗ ∼ (γ̇∆φ4)−0.3. Exponent uncertainties are less than ten percent.
We emphasize that the same power-law behavior is found at packing fractions above and below
φc. Thus, our results considerably extend a previous observation of n∗ ∼ γ̇−0.3 for granular heap
flow at fixed packing below φc. Furthermore, the implied result n∗ ∼ (τ∗)0.3 compares well with
expectation from mode-coupling theory and with prior observations for driven granular systems.

PACS numbers: 64.70.pv, 83.80.Kn, 05.20.Jj

I. INTRODUCTION

Disordered materials of all kinds are considered to be
“jammed” if the relaxation time grows longer than the
observation window, so that that the constituent par-
ticles appear locked into a fixed configuration of nearest
neighbors [1–3]. For example, supercooled liquids can be-
come jammed by lowering the temperature; hard sphere
colloidal particles can become jammed by increasing the
density; macroscopic glass beads can become jammed by
lowering a driving force below some threshold. No mat-
ter what the material or set of control parameters, as
jamming is approached it has long been assumed that
the growing relaxation time is accompanied by increas-
ing co-operativity in particle motion [4]. The closer to
jamming, the larger the number of neighbors that must
cooperate in order to rearrange and the less frequently
this happens.

It is now widely accepted that the rearrangement dy-
namics are not continuous near jamming, but rather are
spatially and temporally heterogeneous [5, 6]. Intermit-
tent string-like swirls of rearranging particles come and
go in a background of less mobile particles. The four-
point dynamical susceptibility χ4(τ) is a powerful tool
for characterizing such dynamical heterogeneities [7, 8].
This function exhibits a peak at a characteristic relax-
ation time, τ∗, and the peak height χ∗

4 can be related
by a counting argument to the number n∗ of particles
in the fast rearranging regions [9]. One of the central
questions today, then, is the quantitative relationship
between the respective growth of τ∗ and of χ∗

4 on ap-
proach to jamming. Expectations for various models are
reviewed in Ref. [8]. For example a logarithmic connec-
tion is expected for “collectively-rearranging region” sce-
narios. A power-law connection χ∗

4 ∝ (τ∗)λ is predicted
by mode-coupling theory, where λ is the reciprocal of the
mode-coupling exponent, γ; Ref. [8] particularly notes

the values λ = 0.37 [10] and λ = 0.40 [11]. A power-law
connection with λ = 1 is expected for freely-diffusing de-
fects. And more recently a value λ = 1/2 was reported
for a kinetically constrained model jamming model [12].

For colloidal hard spheres this issue was recently ex-
plored in Ref. [13], which improves upon pioneering ob-
servations [14–17] by covering an unprecedented density
range near jamming such that the structural relaxation
time increased by seven orders of magnitude. The data
show that τ∗ grows faster than a power law, and n∗ grows
slower than a power law, in 1/(φc − φ) as φ approaches
φc from below. The critical packing fraction φc is close
to, but possibly distinct from, random close packing. Ir-
respective of the value, the conclusion is that n∗ grows
logarithmically with τ∗. For other colloidal systems it is
not yet known whether this relationship depends on the
nature of the particle interactions, or whether it changes
when the control parameter is temperature or driving
rather than just density. In this paper, we report on
dynamical heterogeneities for dense suspensions of soft
Hertzian colloidal particles. In particular we measure
the time and size scales, and determine how they grow as
jamming is approached both by bringing the density to-
ward φc, from either side, and also by lowering the strain
rate. In addition to establishing the dependence of n∗

and τ∗ on these two control parameters, we also show
that the size and time scales are related by a power law.
This result contrasts with Ref. [13], but compares well
with observations for macroscopic hard spherical grains,
where the control parameters are density and fluidizing
air speed [18] or strain rate and depth into a flowing
heap [19]. Here, as in Ref. [13] and Ref. [19], the dy-
namic range in relaxation time is more than seven orders
of magnitude.
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FIG. 1: (Color online) Properties of NIPA microgels as a func-
tion of packing fraction, as controlled by temperature: (left)
the elastic modulus measured by centrifugal compression, and
(right) the particle diameter measured by dynamic light scat-
tering [20].

II. EXPERIMENTAL DETAILS

The system we study is a dense aqueous suspension of
thermoresponsive N-isopropylacrylamide (NIPA) micro-
gel beads [21, 22], synthesized with the Yodh group at
Penn [23–27]. Dynamical heterogeneities for unsheared
suspensions of such particles have been reported previ-
ously in Refs. [25, 28, 29], both below random close pack-
ing as well as above – where aging effects are impor-
tant. Here experiments are performed on ≈10% polydis-
perse suspensions of two different size particles, primarily
about 1 µm but also of about 0.6 µm in diameter. For
the former, the number density is 0.455/µm3 and the vis-
cosity of the suspending water is η0 = 0.01 g/(cm · s) =
0.001 Pa · s. Fig. 1 shows the diameter D and Young
elastic modulus E for the larger particles, obtained previ-
ously from dynamic light scattering and centrifugal com-
pression [20] respectively, as a function of volume frac-
tion φ. For decreasing temperature the particles swell
with water and soften, so D increases while E decreases.
Since the applied pressure needed to squeeze water from
the gel is very large compared to the elastic modulus
[20], the particles deform without deswelling and can be
compressed to a known volume fraction φ above ran-
dom close packing φc = 0.635, simply by lowering the
temperature. For the chosen fixed number density of
the D ≈ 1 µm sample, the relationship between vol-
ume fraction and temperature is accurately described by
φ(T ) = 1.34 − T/(29.4 ◦C) over the temperature range
19 ◦C ≤ T ≤ 25 ◦C used here (see Fig. 2 of Ref. [20]).

Previously we studied the shear rheology of these sus-
pensions by a custom microfluidic technique, in which
the velocity profile is measured at the mid-height of a
tall channel for various packing fractions and for various
pressure-controlled flows [30]. The experimental channel
is 25 µm wide, 100 µm tall, and L = 2 cm long, fab-
ricated of PDMS by soft lithography and bonded to a
glass microscope slide. The video imaging system con-

FIG. 2: (Color online) (a) An image taken from video data
of particles. (b) The velocity and (c) the strain rate, as a
function of position across the channel, averaged over time
for a T = 60 s run with a PIV delay time of τp = 50 ms. In
(c) the height of the points is the statistical uncertainty based
on the difference between the velocity data and the local cubic
polynomial fits used for differentiation.

sists of a Phantom CMOS camera (1-10,000 fps) con-
nected to a Zeiss Axiovert 200 microscope with 100×
objective. An objective-cooling collar (Bioptechs) and
cooling plate above the sample are controlled to about
±0.01 ◦C (misquoted as 0.1 ◦C in [30]). This corresponds
to a volume fraction control of ±0.0003. The suspension
is forced through the channel using pressurized air and in-
let/outlet tubing of sufficient diameter that the imposed
pressure drop ∆P occurs only along the length L of the
channel and can be related to the local shear stress in the
suspension as σ(y) = ∆Py/L. The local strain rate is
found by numerical differentiation of the velocity profile,
γ̇(y) = ∂vx(y)/∂y. These two local measures are then
combined to give the stress vs strain rate shear rheology.
For packing fractions varied discretely between 0.5 and
0.7, and for strain rates varied continuously from nearly
10−4 to 100 s−1, we found that the shear rheology data
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could be collapsed onto two branches by Olsson-Teitel
[31] scaling with powers of the distance ∆φ = |φ − φc|
to jamming; the resulting exponents can be understood
in terms of particle interactions [32]. In the following
sections, we analyze the same data for dynamical hetero-
geneities.

Since the strain rate is a crucial parameter, we provide
further experimental details. An example video frame is
displayed in Fig. 2a. The bead-scale intensity variations
are insufficient to permit particle tracking, but are ideal
for Particle Image Velocimetry (PIV) measurement of the
average velocity profile, vx(y) vs y, where y is measured
across the channel and x is in the flow direction. With
custom LabVIEW code, the images are broken into fifty
strips, 0.5 µm, which is about 7 times the pixel width
of l = 0.07 µm, and F = 175 µm = 2450l pixels long.
The speed of each strip is then found by maximizing its
spatial cross correlation with an image strip taken at a
later time, chosen so that the particle displacement is at
least one diameter. Final velocity profiles are obtained
by averaging over all video data. Final strain rate pro-
files are obtained by fitting each profile point and its six
neighbors to a cubic polynomial (see supplemental mate-
rial of Ref. [30]). Note that the the distance over which
the differentiation is performed is thus δy = 3 µm.

Example velocity and strain rate profiles are shown
in Figs. 2b-c. There the packing fraction is φ = 0.643,
which is above random close packing, φc = 0.635. There-
fore, the flow is somewhat plug-like and exhibits wall
slip. Considering all packing fractions and driving pres-
sures, the range of speeds is 0.04 − 200 µm/s and the
range of strain rates is 3 × 10−4 − 1000/s. If speeds
are measured with an uncertainty of one-tenth percent,
for example, then the strain rate uncertainty would be
∆γ̇ ≈ 0.001v/δy, which can be as small as 10−5/s.

An order-of-magnitude estimate of the uncertainty in
the strain rate may be made as follows. The PIV delay
time, τp, is an important input; it ought to be chosen
as τp > D/v where D is the particle size and v is the
average speed. The speed uncertainty is ∆x/τp where ∆x
is the uncertainty in locating the maximum spatial cross-
correlation for time-delayed images of one particle-scale
blob. If located by fit to a peaked function, then ∆x =
l/
√
n where l is the pixel size and n = D/l is the number

of pixels per blob. For a video data set of duration T ,
the speed uncertainty is reduced by a factor of 1/

√
N

where N = vT/D is the total number of blobs examined.
Dividing the speed uncertainty by the transverse distance
over which the differentiation is performed, δy, gives the
expected scaling of the strain rate uncertainty as

∆γ̇ ∝ 1

τpδy

√
l3

vT
, (1)

<
v

δy

√
l3

vTD2
. (2)

For our experiments, the pixel size is l = 0.07 µm and
the differentiation length is δy = 3 µm. In the example

of Fig. 2c, the plotted error bars agree with the right-
hand side of Eq. (1) times a factor of about seven. For
the smallest strain rates, γ̇ ≈ 10−4/s, the speeds are
slower and the run durations are longer: v ≈ 0.04 µm/s,
T = 2 hours. For these numbers the right hand side
of Eq. (2) is 10−5/s, showing that the measurement is
feasible if the PIV delay time is properly chosen.

Lastly, before analyzing for dynamical heterogeneities,
we discuss the possibility of a non-uniform volume frac-
tion that could be induced by the variation of strain rate
across the width of sample. For hard sphere colloids,
even very small concentration gradients can be amplified
by shear [33]. However, our system of soft spheres would
probably correspond better to an emulsion, where no sig-
nificant concentration gradient is seen under shear [34].
Indeed, we find no sign of a concentration gradient across
the channel, either directly or indirectly. Unfortunately
video images could reveal only a gross variation, greater
than at least several percent. However, shear rheology
data of Ref. [30] indicate that one volume fraction value
collapses multiple strain rates (corresponding to multiple
positions across the channel) onto a single master curve
with two branches. If the volume fraction were signifi-
cantly nonuniform, this collapse would fail. Judging from
the insets of Fig. 4 in Ref. [30], an inhomogeneity in φ of
0.005 would be detectable but probably not a change of
0.001.

III. HETEROGENEITY ANALYSIS

While the presence of dynamical heterogeneities can be
registered by the correlation of equal-time velocity fluc-
tuations, the use of higher order correlation functions is
required to demonstrate that the dynamics are truly het-
erogeneous in space and time. See for example Refs. [5–
7] for reviews. As done for quiescent systems, we thus
characterize the spatiotemporally heterogeneous nature
of the dynamics using a four-point dynamic susceptibil-
ity, χ4(τ), which exhibits a peak that grows in propor-
tion to the size of the heterogeneities. The measurement
of χ4(τ) begins with an ensemble-averaged self-overlap
order parameter, Qt(τ), constructed so that the contri-
bution from each particle decays from 1 toward 0 as time
increases from t to t+τ and the particle moves some pre-
scribed distance. If all particles were to experience the
same rearrangement dynamics, then the decay of Qt(τ)
vs τ would be independent of t. But if the dynamics were
heterogeneous, then the decay of Qt(τ) would be faster or
slower than the time average Q(τ) ≡ 〈Qt(τ)〉 according
to the number of independent rearranging regions that
happen to exist at a particular instant. This is governed
by counting statistics, so the variance

χ4(τ) ≡ N
[
〈Q2

t (τ)〉 − 〈Qt(τ)〉2
]

(3)

is independent of the number N of particles in the field
of view. The average number n∗ of particles in a fast re-
arranging region has been explicitly computed in Ref. [9]
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FIG. 3: (Color online) (a) Overlap order parameters and (b)
corresponding dynamic susceptibilities, plotted vs delay time
for several strain rates as labelled. The packing fraction is
φ = 0.643, as in Fig. 2 where strain rates are seen to be lower
towards the center of the channel. In (a) the light dashed
curves represent Qt(τ) for a selection of different start times
t, and the heavy solid curves represent the average Q(τ) =
〈Qt(τ)〉 over all t.

as

n∗ =
χ∗

4

(Q1 −Q0)(Q1 −Q∗)
(4)

where χ∗
4 = χ4(τ∗) is the peak height, Q∗ = Q(τ∗), and

Q1 and Q0 are respectively the average values of the over-
lap parameter at delay τ∗ taken separately over beads in
slow and fast rearranging regions. The same results for
n∗ were found for three very different choices for over-
lap order parameters, whose associated susceptibilities
had different peak heights and peak times: step func-
tion, persistent area, persistent bond [9]. Therefore, as
long as the prescription of Eq. (4) is followed, the choice
of overlap order parameter is not crucial.

Here we use this same standard procedure, imple-
mented in a co-moving frame. Since the video data, as
in Fig. 2, have insufficient resolution to track individual
particle positions, we adopt an overlap order parameter
similar to that introduced in Ref. [19] based on image
correlations. In particular, we divide the video images
into 50 narrow strips of constant speed and strain rate,
7 pixels ≈ 0.5 µm wide, containing N ≈ 200 particles.
For each of these strips we compute

Qt(τ) ≡ 〈Ii(t)Ii+di(t+ τ)〉 − 〈Ii(t)〉2

〈Ii(t)2〉 − 〈Ii(t)〉2
(5)

FIG. 4: (Color online) Relaxation time, τ∗, as a function
of residence time, F/v, where F = 175 µm is the length of
the field of view and v is the average velocity of a strip of
particles. Since all data are under the black line τ∗ = F/v,
the timescales probed are less than the channel residence time
and hence are not improperly measured. The symbols are the
same as in Fig. 6.

where 〈· · ·〉 is the ensemble average over all pixels i run-
ning along a row, where di = vτ/l, and where l is the
pixel size. This is done for each of the seven rows of pix-
els in each strip, and averaged together. Since i+di is not
an integer, the value of Ii+di is taken by interpolation of
the intensity at pixels with indices above and below i+di.
Prior to this, the speed v of the strip was found by vary-
ing di at fixed τ , and averaging over t, to maximize the
cross-correlation as in the usual PIV method. Note that
the length scale probed by the associated four-point sus-
ceptibility is set by the particle-size grayscale variations
in the video images. Therefore the time τ∗ at which χ4(τ)
reaches its peak is a characteristic relaxation time needed
for particle-scale relative displacements. For illustration,
example results for Qt(τ) vs τ are shown in Fig. 3a for
a strip corresponding to packing fraction φ = 0.643 and
strain rate γ̇ = 0.0025 s−1. This is close to jamming,
and indeed the decay is quite variable. Multiplying the
variance by N gives the susceptibility shown in Fig. 3b.
This exhibits a peak at delay time τ∗ ≈ 1000 s of height
χ∗

4 ≈ 9, when the average overlap order parameter is
Q∗ ≈ 0.5. For a second example strip with a higher strain
rate, γ̇ = 0.078 s−1, the dynamics are more homogeneous
as seen in Fig. 3 by the tighter spread of Qt(τ) and the
smaller susceptibility. As a final check, Fig. 4 shows a
plot of τ∗ vs channel residence time F/v, where F is the
length of the field of view and v is average particle speed.
All of the data fall below the line of equality, τ∗ = F/v,
showing that the relaxation time is smaller than the res-
idence time and hence is not improperly measured.

To deduce the number n∗ of particles in a fast rear-
ranging region from the peak height χ∗

4 using Eq. (4), we
must first find the three different averages of the overlap
order parameter at delay time τ∗. These are shown in
Fig. 5 as a function of volume fraction, where each point
corresponds to a different strip and hence to a different



5

FIG. 5: (Color online) Averages of the overlap order param-
eter at time delay τ∗, plotted versus volume fraction, where
each data point represents a different strain rate: (a) Q1 and
(c) Q0 are the averages for the slow and fast rearranging re-
gions, respectively, whereas (b) Q∗ = Q(τ∗) is the average
for the whole sample. None of these quantities is found to
depend on volume fraction or strain rate; their averages are
indicated by the dashed horizontal lines with accompanying
values.

strain rate. Since there is no evident variation with vol-
ume fraction, or strain rate, we simply compute a total
average over all conditions. The average overlap order
parameter at the time τ∗ when χ4 peaks is found to be
Q∗ ≡ Q(τ∗) = 0.49± 0.06. The average for beads in the
slow rearranging regions, i.e. for beads with order param-
eter greater than Q∗, is Q1 = 0.73 ± 0.08. The average
for the fast rearranging regions, i.e. for beads with or-
der parameter less than Q∗, is Q0 = 0.26 ± 0.05. These
three averages are indicated by dashed horizontal lines
in Fig. 5. Note that the constancy of Q1, Q0, and Q∗

implies that the factor of N in the Eq. (3) definition of
χ4(τ) is not significantly affected by the flow of beads
into and out of the field of view.

Since the overlap order parameter is measured in a long
strip, about half a particle wide and 200 particles long,
the field of view may not contain the entirety of any of the
fast rearranging regions. However if the heterogeneities
are 1-dimensional string-like swirls, as expected for a qui-
escent system, then they will cut the field of view a num-
ber of times in proportion to their length. Therefore, the
true number of particles involved would be a constant
multiplicative factor larger than the n∗ value we deduce
by the above prescription. This is borne out by the good
comparison of the size of heterogeneities in a monolayer
of air-fluidized beads, analyzed across the whole sample

FIG. 6: (Color online) (a) Relaxation time and (b) number
of particles in a fast-rearranging heterogeneity, plotted versus
strain rate, for several volume fractions φ as labelled. The
solid lines are fits to a power of γ̇, with exponents of −1 in
(a) and of −0.3 in (b).

or in strips [35]. But it could also be that in channel flow
the heterogenieties are linear chains or sheets of particles
aligned with the velocity, in which the true number of
particles involved would still be proportional to the n∗

value we deduce.

IV. RESULTS

Data for the relaxation time τ∗ and the number n∗ of
particles in a fast-rearranging region are plotted vs strain
rate in Figs. 6a-b, respectively, for the ∼ 1 µm diameter
colloidal microgel particles. There, each data set corre-
sponds to a given packing fraction as labelled, and each
data point corresponds to a different strip and hence to
a different strain rate. As the strain rate decreases and
jamming is approached, both τ∗ and n∗ grow as pow-
ers of the strain rate. For the time scale, the power
law is consistent with τ∗ ∝ 1/γ̇ as shown by the solid
lines. This is the simplest dimensionally-correct possibil-
ity. For the size scale, all power law fits are consistent
with n∗ ∝ 1/γ̇0.30±0.03. This exponent agrees with recent
observations of a value near 1/3 in dry granular systems,
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FIG. 7: (Color online) Coefficients of the fits in Fig. 6 to (a)
τ∗ ∝ 1/γ̇ and (b) n∗ ∝ 1/γ̇0.3 vs volume fraction, shown as
closed symbols, for the ∼ 1 µm diameter particles. The open
symbols are for the smaller ∼ 0.6 µm diameter particles. The
solid curves are fits to a power of ∆φ ≡ |φ− φc|, where φc =
0.635 is the random close packing fraction, with exponents of
−4 in (a) and of −1.2 in (b).

including experiments on heap flow [19], simulations of
uniform shear [36], and simulations of flow down an in-
cline [37]. In these works, shear occurs at essentially fixed
packing fraction near φc. A value in the range 0.2 − 0.3
was also reported for a Lennard-Jones system [38]. So
our observations considerably reinforce and extend all
these results, not just to overdamped systems but also
to packing fractions away from φc both above and below.
Nonetheless, the value of approximately 1/3 has yet to
be explained.

The relaxation time and number of particles in a fast-
rearranging region also depend on packing fraction, as
well as strain rate. This can be seen already in Figs. 6a-
b, where the data sets shift up and then down as φ goes
from below to above φc. This is displayed more clearly
in Fig. 7a-b, where the coefficients τ∗γ̇ and n∗γ̇0.3 of the
power law fits in the previous figure are plotted vs φ.
The results grow without apparent bound as φc is ap-
proached from either side. Data for the smaller particles
are also included, and display the same behavior. These
divergences are well described by fits to power laws in
∆φ = |φ − φc|, as shown, giving τ∗ ∝ 1/∆φ4.0±0.6 and
n∗ ∝ 1/∆φ1.2±0.4.

Altogether we thus find that the relaxation time and
the size of fast-rearranging heterogeneities grow as the
jamming transition is approached as functions of strain

FIG. 8: (Color online) Scaling collapse of (a) dimension-
less relaxation time and (b) number of particles in a fast-
rearranging heterogeneity versus dimensionless strain rate
times ∆φ ≡ |φ− φc| to the fourth. Here η0 is the viscosity of
water and E is the Young elastic modulus of the particulate
material. The symbol types are the same as in Fig. 6. The
solid lines are power-laws with exponents as labeled; these
fit well except for a noticeable deviation at the largest strain
rates.

rate and packing fraction as

τ∗ ∝ (γ̇∆φ4)−1, (6)

n∗ ∝ (γ̇∆φ4)−0.3. (7)

Notice that the combination (γ̇∆φ4) controls the behav-
ior in both cases. Hence there is more sensitivity to vari-
ation of ∆φ than to variation of strain rate. This is qual-
itatively consistent with numerical results for a driven
kinetically constrained jamming model [12]. To empha-
size this feature, we plot all τ∗ and n∗ results versus
(γ̇∆φ4) in Figs. 8a-b, where γ̇ is rendered dimension-
less by the intrinsic time scale set by the ratio η0/E of
liquid viscosity to particle modulus. Note that this col-
lapses the data onto power laws with exponents −1 and
−0.3, respectively. Thus, there are only three exponents
to explain rather than four. As discussed already, the
−1 makes dimensional sense and the −0.3 extends prior
observations but is not understood. The remaining ex-
ponent, 4, is reminiscent of the exponent Γ = 4 in the
timescale η0/(E∆φΓ) used in Olsson-Teitel scaling plots
of the shear rheology [30].

We note that some prior results are inconsistent with
Eqs. (6-7). In Ref. [38] a simulated Lennard-Jones system
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FIG. 9: (Color online) Number n∗ of particles in a fast-
rearranging heterogeneity vs relaxation time τ∗, made di-
mensionless by the Young modulus E of the particulate
material and the viscosity η0 of the suspending fluid (wa-
ter). The dashed black line is a power-law fit with exponent
λ = 0.31± 0.03 as labeled. The symbol types are the same as
in Fig. 6

shows the same size scaling, χ∗
4 ∼ 1/γ̇0.3, but a different

relaxation time scaling, τ∗ ∼ 1/γ̇0.5. In Ref. [39] sim-
ulated harmonically-repulsive particles under quasistatic
shear show χ∗

4 ∼ 1/∆φ1.8; the system at nonzero strain
rates [40] shows χ∗

4 ∼ 1/γ̇0.5−0.7, though the dependence
on strain rate may not be a power law. In Ref. [41], re-
laxation time data for a sheared hard sphere glass were
found to scale as τ∗ ∼ 1/γ̇0.8. And in Ref. [42], relaxation
time data for a sheared monolayer of bubbles were found
to scale as τ∗ ∼ 1/γ̇0.66. The cause of these discrepan-
cies with our results is unclear, but cannot be ascribed
to use of a co-moving frame since τ∗ ∼ 1/γ̇ was observed
in Ref. [19] where the overlap order parameter was com-
puted in the lab frame.

V. DISCUSSION

The observations made here, summarized by Eqs. (6-
7), combine to give the size of heterogeneities as a power-
law of the relaxation time:

n∗ ∝ (τ∗)λ. (8)

For emphasis, we plot n∗ data vs τ∗E/η0 in Fig. 9 on
logarithmic axes and observe that indeed the data col-
lapse to a straight line, except for one data set whose
noise blooms at small τ∗E/η0. Note that the dynamic
range of the data is more than two decades in size and
nearly eight in dimensionless relaxation time, which is
sufficient to rule out the possibilities of a logarithmic or
exponential connection between n∗ and τ∗. Fitting to a
power-law gives the exponent and uncertainty as

λ = 0.31± 0.03. (9)

The observed power-law form is consistent with mode-
coupling theory [8], and the observed exponent is only

slightly smaller than the expectation λ = 1/γ where γ is
the mode-coupling exponent [10, 11].

One advantage of plotting n∗ and τ∗ parametrically
versus one another, rather than versus the control pa-
rameters, is that it allows comparison with other systems
where there is no shear or where the control parame-
ter is something other than strain rate. For example,
λ = 1/2 is reported for the driven kinetically constrained
model mentioned above [12], while a logarithmic con-
nection better accounts for the simulations of Brownian
harmonically-repulsive particles [43]. In terms of experi-
ment, comparison is possible for only a few experiments
of which we are aware. For hard spheres, Ref. [13] found
that τ∗ grows faster than a power law, and that χ∗

4 grows
slower than a power law, as φ approaches φc from be-
low. It is stated that n∗ grows logarithmically with τ∗,
which disagrees with our results. However, the final five
decades may be reasonably fit with λ = 1/3. For soft
NIPA microgel particles similar to those studied here,
Ref. [28] found that both τ∗ and χ∗

4 grow with increas-
ing packing fraction; no functional form was proposed or
tested. We digitized their data and plot parametrically,
rather than vs packing fraction, and find power law be-
havior of the form Eq. (8) with exponent λ = 0.34±0.16.
This is consistent with our findings. For a monolayer of
large spherical grains fluidized by a steady upflow of air,
Ref. [18] found that there is a meaningful effective tem-
perature Teff , and that size and time scales are consistent
with n∗ ∼ 1/Teff

0.7±0.2 and τ∗ ∼ 1/Teff
2±0.5, respec-

tively. These combine to give a power law relationship,
Eq. (8), with exponent λ = 0.35± 0.15 that agrees with
the results here in Fig. 9. Further experiments on the
fluidized grains, where the sample is tilted and where the
analysis is carried out by dividing the sample into a series
of strips each at a different pressure, also appear to agree
[35]. For steady gravity-driven flow of grains down along
a confined heap, and visualized through the sidewalls as a
function of depth z below the free surface, Ref. [19] found
τ∗ ∝ 1/I and n∗ ∝ (1/I)λ where I = γ̇d/

√
gz is the in-

ertia number, d is the grain diameter, g = 9.8 m/s2, and
λ = 0.33±0.02. This system is underdamped, so the time
scale is rendered dimensionless by different microscopic
physics, but the exponent for the power-law connection
between n∗ and τ∗ is the same as found here.

VI. CONCLUSION

In this paper we presented a study of dynamical het-
erogeneities in a colloidal system that (a) is not hard
spheres, (b) is compressed above as well as below φc, and
(c) is subjected to shear. Our experiments made crucial
use of custom synthesized NIPA microgel particles and
of a custom fabricated microfluidic channel, as well as
of a novel video-based dynamical order parameter. As
jamming is approached by bringing the packing fraction
difference ∆φ = |φ−φc|, or the strain rate γ̇, to zero, we
demonstrated that the time and size scales for dynamical
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heterogeneities both grow as powers of the combination
(γ̇∆φ4) according to Eqs. (6-7). While there is precedent
for the observed strain rate dependence from experiments
on underdamped granular systems, the packing fraction
dependence appears to be a new result. The observed
connection between the size and time scale is a power
law, n∗ ∝ (τ∗)λ, consistent with mode coupling theories
but perhaps not with observations for an unsheared sus-
pension of Brownian hard sphere colloids. It is intriguing
that the exponent we find, λ ≈ 1/3, agrees with prece-
dents for unsheared soft particles [28] and for two driven

systems of hard grains – one with shear [19] and one
without [18, 35]. This suggests universality with respect
to interactions, but perhaps with unsheared hard sphere
colloids in a different universality class.
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