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A theory of aerosol coagulation rates resulting from continuum-regime Brownian coagulation
in the presence of size-dependent particle thermophoresis is developed and explored here. We are
motivated by a wide variety of applications in which particle Brownian coagulation occurs in a
non-isothermal gas where differential thermophoretic drift contributes to, but does not dominate,
the encounter frequency between suspended spherical particles (e.g. mist droplets) of different size.
We employ a Smoluchowski-like population-balance to demonstrate the relative roles of Brownian
diffusion and thermophoresis in shaping the short- and long- time (asymptotic or “coagulation-
aged”-) mist-droplet size distribution (DSD) function. To carry out these combined mechanism
DSD-evolution calculations we developed a rational “coupled” coagulation rate constant (allowing
for simultaneous Brownian diffusion and relative thermophoretic drift) rather than simply adding
the relevant individual coagulation “kernels”. Dimensionless criteria are provided to facilitate pre-
cluding other coagulation mechanisms not considered here (such as : simultaneous sedimentation
or Marangoni-flow induced mist droplet phoresis) and potential complications not included in the
present model (as finite-rate coalescence, initial departures from the continuum (Stokes drag-) limit,
and even dense (non-ideal) vapor effects).
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I. INTRODUCTION, MOTIVATION, BACKGROUND, OBJECTIVES

Except in the free-molecule limit, aerosols (comprised of spherical solid(-like) particles or “mist” droplets) finding
themselves in a non-isothermal carrier gas will drift at different speeds because of size differences. This may be regarded
as the result of “biased” Brownian motion, and such situations are now known to occur in many materials processing
and energy technologies (see, e.g., Rosner (2011) [1]). In some cases (especially metallurgical process engineering,
cutting and welding operations, and in certain accident scenarios, e.g., spilled molten metal- or salt- coolants) we
recently found that thermophoretic drift can actually dominate [2, 3] ordinary isotropic Brownian coagulation—
providing a natural limiting-case to initiate the exploration of this previously overlooked coagulation mechanism
(Rosner and Arias-Zugasti (2011) [4]). In the present extension, we now turn our attention to those more common
environments in which particle Brownian coagulation occurs in a non-isothermal gas and differential thermophoretic
drift contributes to, but does not initially dominate, the encounter frequency between suspended spherical particles
of different size in a dilute (low volume fraction-) suspension. When the carrier gas mean-free-path (ℓ) is small
compared to the initial Sauter mean diameter (SMD) for the coagulating population, this may be realized because of
“modest” : local temperature gradients (e.g. < 105 K/m), and/or : prevailing particle/gas thermal conductivity ratios
(e.g. not much above 10-fold). If particle coagulation persists in such an environment we ask : How will the presence
of this thermophoretic drift mechanism accelerate the associated reduction in particle number density, and distort the
evolving size distribution function ?
With these questions in mind, the present paper has been structured as follows : In Section II we summarize the

essential features of our present mathematical model—i.e. the physical assumptions to be exploited in Sections III-V
and discussed and defended in Section VI. Section III is devoted to the rational development of a coagulation rate
constant when Brownian coagulation occurs in the presence of size-dependent thermophoretic “drift”. Our approach,
extends that of Simons [5], also avoiding the common approximation of “additive kernels” (see, e.g., Friedlander (2000)
[6]). As in our recent paper (Rosner and Arias-Zugasti (2011) [7]), we are inevitably led to the remarkable need for a
coagulation rate “constant” which not only depends on the local thermodynamic state of the carrier gas (via T and p)
but also on the magnitude of the local temperature gradient—a feature which transcends linear irreversible thermody-
namics. The dynamics of thermophoretically-modified Brownian coagulation is analyzed by solving the corresponding
nonlinear integro-PDE governing the evolution of the aerosol population size distribution in Sections IV and V. In
particular, Section V outlines our use of both Gaussian quadrature-based “moment” methods (QMOM ; McGraw
(1997) [8]) and orthogonal collocation numerical methods (Arias-Zugasti [9, 10]). These methods are efficient enough
to enable accurate “long-time” predictions of “quasi-self-preserving” (QSP-) populations, asymptotically reached in
the long-time limit. Our principal assumptions are then briefly revisited and discussed in Section VI, which includes
dimensionless criteria for precluding other potential complicating factors not considered here, such as : initial de-
partures from the continuum (Stokes drag-) limit, simultaneous sedimentation, Marangoni-flow-induced mist droplet
thermophoresis, finite-rate coalescence, and even dense (non-ideal) vapor effects. Section VII concludes this paper
with the principal implications of our present methods and results, including mention of a method to allow additional
sources of relative inter-particle drift (e.g., sedimentation, electrophoresis, . . .)—generalizations which will necessary
be left to follow-on studies.

II. BASIC ASSUMPTIONS OF PRESENT MODEL

To identify and examine the characteristic new features of aerosol dynamics in the presence of simultaneous
Brownian- and thermophoretic coagulation mechanisms, we deliberately exploit an idealized mathematical model
based on the following simplifying assumptions ; viz. the evolving aerosol under study is assumed to be :
A1. present at low volume fraction in a thermodynamically ideal carrier gas characterized by a mean-free-path (ℓ)
small compared to the mean diameter (e.g., Sauter mean diameter (SMD)) of the population

A2. comprised of spherical particles of a single substance which coalesce rapidly on the time-scale set by inter-
particle binary encounters

A3. comprised of particles acted upon by a (creep-driven) size-dependent force which causes them to drift down
the local temperature gradient (as would an isolated solid of the same Fourier thermal conductivity in the same
local gaseous environment)

A4. not exchanging energy with the local gas or the local environment, resulting in the sol particle temperatures
being close to the local gas temperature

A5. describable by a continuous local droplet size distribution (DSD) of the form n(v, t) (in terms of particle
volume v and time t) satisfying a Smoluchowski- type integro-PDE in the absence of particle growth from the
vapor phase, or the nucleation of new particles. Particle volume is assumed to be conserved upon each successful
binary encounter
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A6. not acted upon by additional forces capable of modifying the local coagulation rate (including gravitational-
and electrostatic- body forces, . . .) or the break-up of existing particles.

Explicit criteria sufficient to ensure the validity of most of these assumptions in any particular application will
be presented and discussed in Section VI. For the present, however, we wish to identify and display (Section V)
the expected features of coagulation under the simultaneous influence of Brownian motion and thermophoresis in an
externally imposed gas temperature gradient. For example, even if only modest to begin with, will thermophoresis
ultimately dominate the Brownian mechanism ? Would novel quasi-self-preserving (QSP-) DSD “shapes” evolve show-
ing the influence of thermophoresis ? How “broad” will these populations be and how long will it take for approximate
QSP behavior to set in ? etc.
Of course, in practice we expect the onset of other complicating phenomena not considered here, which require future

generalizations of the present model. For instance, the local environment will generally change with (residence-) time
and additional coagulation mechanisms may set in (e.g., sedimentation when SMD exceeds a calculable threshold size
(Section VIC), or fractal-like aggregate formation when the coalescence rate becomes too slow, etc.). In this regard,
while some of these generalizations appear to be straightforward, as briefly outlined in Sections VI and VII, others
will have to be left for necessary extensions of the present work.

III. RATE CONSTANT FOR BROWNIAN COAGULATION IN PRESENCE OF THERMOPHORESIS

It is well known that, in the continuum regime, particles of different sizes finding themselves in a temperature
gradient will experience different thermophoretic drift velocities [6, 11]. Therefore, this phenomenon can be responsible
for collisions between particles of different sizes, which can lead to the subsequent coagulation (as recently shown by
Rosner and Arias-Zugasti (2011) [4])—this occurs, for instance, for particles with different sedimentation velocities
under the more familiar action of gravity. The rate constant for thermophoretically dominated coagulation adopted
here is given by [4, 12]

βTP,12 = π · (a1 + a2)
2
· ‖V 1 − V 2‖, (1)

where ai and V i are the radius and the thermophoretically induced drift velocity of particle i. In terms of the
dimensionless thermophoretic particle “diffusivity”, written here as : α̃ ≡ αTD/ν, the vector expression for the
particle drift velocity is given by

V i = α̃iν · (−∇ lnT ) , (2)

where T is the local carrier gas absolute temperature, ν the carrier gas momentum diffusivity (i. e. the kinematic
viscosity), D the Brownian diffusion coefficient, and αT (dimensionless) an effective thermal diffusion factor. For a
spherical particle with intrinsic Fourier thermal conductivity kp and diameter dp the decisive factor α̃ depends on
particle size (via the Knudsen number based on gas mean free path ℓ and particle diameter : Kn ≡ ℓ/dp) and thermal
conductivity ratio kp/kg (where kg is the gas thermal conductivity), via the simple semi-empirical relation [13]

α̃ =
2Cs · ((kg/kp) + 2CtKn) · C

(1 + 6CmKn) · (1 + 2(kg/kp) + 4CtKn)
, (3)

where C is the Cunningham-Millikan Stokes drag correction factor, Ct is the gas/solid temperature jump coefficient,
and Cm and Cs are the gas/solid momentum exchange and thermal slip coefficients respectively. The values of these
gas/solid interaction coefficients [13] can be estimated from kinetic theory, approximate values are given after Eqs.
(2.21 & 2.56) of [6].
On the other hand, the rate constant for the well known case of Brownian coagulation in the continuum regime,

derived by Smoluchowski (see, e.g., [6]), is given by

βB,12 = 4π · (D1 +D2) · (a1 + a2) (4)

where the Brownian diffusion coefficient is

D =
kBT

6πµa
· C, (5)

where µ is the gas shear viscosity, kB is the Boltzmann constant and the remaining symbols have already been defined.
Although the assumption of rate law additivity for different coagulation processes is usual in the literature, a

more accurate approximation has been adopted in the present work. In this regard, the rate constant for combined
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Figure 1. Factor F (Pe) vs. Pe, from Eq. (7) [5].

Brownian + thermophoretic coagulation has been obtained following the classical Smoluchowski formulation [6],
based on the calculation of the diffusive flow towards a target particle, but including an additional convective term
which accounts for the relative thermophoretic speed between the particles. Assuming that all collisions lead to the
corresponding coagulation (i.e. neglecting collision efficiency corrections) and assuming a rectilinear thermophoretic
drift superimposed with the Brownian motion (i.e. neglecting hydrodynamic creep-flow interactions between the
particles), the convective-diffusion equation that determines the coagulation rate is the same as the one considered
by Simons et al. [5] for the combined Brownian + differential sedimentation coagulation case, exchanging their
sedimentation velocities by the corresponding thermophoretic velocities. Hence, the combined coagulation rate is
given by

β12 = (βB,12 + βTP,12) · F (Pe12) (6)

where the correction factor F (Pe) is given by [5]

F (Pe) =
4π/Pe

4 + Pe

∞
∑

n=0

(−1)
n
(2n+ 1)

In+1/2 (Pe/2)

Kn+1/2 (Pe/2)
(7)

with I and K being the modified Bessel functions and Pe the Peclet number, defined as the ratio between the relative
thermophoretic and Brownian diffusion velocities

Pe12 =
‖V 1 − V 2‖

(D1 +D2) / (a1 + a2)
. (8)

Owing to the low convergence rate of the series in Eq. (7) and the extremely large numbers involved when the
Peclet number becomes large, the accurate numerical evaluation of Eq. (7) for large values of Pe is a mathematically
involved and time-consuming task [14]. In this regard, the convenient approximate least-squares formula provided by
[15] has been used for our present calculations.
The time evolution of an initially lognormal DSD under the combined kernel Eq. (6) has been analyzed and is shown

below (section V) as a function of the reference Peclet number Peref , defined as the ratio between the characteristic
evolution times for the initial DSD function under the Brownian and thermophoretically dominated coagulation kernels
acting alone

Peref ≡
tB,ref
tTP,ref

. (9)

These characteristic evolution times are given (in terms of the unconditional particle number density in the initial
population N0) by ti,ref ≡ 1/ (βi,refN0). Thus

tB,ref =
3µ

8kBTN0

, and tTP,ref =
4

πd2
ref
VrefN0

, (10)

where the reference particle diameter dref is defined as the Sauter mean diameter of the initial population (SMD),
and where the reference velocity Vref is the thermophoretic drift velocity of a SMD droplet in the limit kp/kg = ∞.
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As a consequence, the combined coagulation kernel is finally written as

β12 = βB,ref (KB,12 + PerefKTP,12) · F (Pe12) (11)

where the dimensionless coagulation kernels KB,12 and KTP,12 are defined by Ki,12 ≡ βi,12/βi,ref and Peref (Eq. (9))
plays the role of an independent parameter that measures the relative importance of both coagulation processes in
the initial population. Namely, according to the former definition of Peref (Eq. (9)) we find that the reference Peclet
number is related to the prevailing conditions in the initial population by

Peref =
α̃∞,ref

32Knref
· Scref · ‖∇ lnT ‖ℓ (12)

where subscript ref corresponds to a SMD particle in the initial population, subscript ∞ corresponds to the limit
kp/kg = ∞ and Sc = ν/D is the corresponding particle Schmidt number. It may be easily seen that the first factor
α̃∞,ref/32Knref reaches a constant value close to 0.32 for Knref < 10−2.

IV. POPULATION BALANCE EQ. GOVERNING CONTINUOUS DSD-FUNCTION

Once the coagulation rate law β12 is known in terms of the particle state variables (Eq. (11)), the population balance
equation that determines the evolution of an initial particle distribution is the Smoluchowski coagulation equation [6]

∂n

∂t
= B −D, (13)

where the particle production (B) and destruction (D) terms by coagulation are explicitly given by

B(v) =
1

2

∫ v

0

dv′β(v′, v − v′)n(v′)n(v − v′)

D(v) = n(v)

∫ ∞

0

dv′ β(v, v′)n(v′) (14)

in terms of particle volume v = (4π/3)a3.
A systematic parametric study of this integro-PDE has been performed using a two-stage combined quadrature

method of moments (QMOM [8]) and orthogonal collocation method [16], as reported below. The values for the
reference Peclet number considered in the numerical calculations shown below go from Peref = 10−3 (corresponding
to coagulation dominated by Brownian motion) to Peref = 103 (corresponding to thermophoretically dominated
coagulation). Regarding the Fourier thermal conductivity ratio kp/kg, the values considered were 10, 102, 103, 104

and ∞. In all the cases the asymptotic results for pure Brownian (Peref = 0) and pure thermophoretic (Peref = ∞)
coagulation are also shown for reference (gray lines). The results from QMOM are shown as a function of the reference
Peclet number in Figs. 2, 3 and 4. On the other hand, the results from orthogonal collocation are presented in Fig. 5.

A. Numerical Integration Based on QMOM

In the first stage, the time evolution of the 2N lowest order moments of the DSD n(v, t)

µk(t) ≡

∫ ∞

0

dv vkn(v, t), N = 0, 1, 2, . . . , 2N − 1 (15)

has been computed by means of QMOM [8], solving the corresponding evolution equations, given by [17]

dµk
dt

=
1

2

∫ ∞

0

dv′
∫ ∞

0

dv′′β(v′, v′′)n(v′)n(v′′)

·
[

(v′ + v′′)
k
− v′k − v′′k

]

, k = 0, . . . , 2N − 1. (16)

Although QMOM calculations based on a relatively low number of quadrature abscissae are usual in the literature (for
instance N ≃ 3), in the present case a higher number of abscissae were needed to reach convergence for intermediate
values of the reference Peclet number. Thus, in the present work N = 6 quadrature abscissae were used in all the
QMOM calculations.
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Figure 2. Time needed to approach the self-preserving DSD function vs. Peref for several values of kp/kg. The solid lines
correspond to the coagulation frequency given by Eq. (6), the broken lines correspond to Eq. (6) assuming F (Pe) = 1. The
horizontal gray lines correspond to the asymptotic results of pure Brownian (Peref = 0) and pure thermophoretic (Peref = ∞)
coagulation.

The QMOM-based time integration of Eq. (13) was carried until the self-preserving size distribution function was
reached to within a certain tolerance. As is well known, in the long-time limit coagulation-aged size distribution
functions approach (in general) a self-similar form ψ(η) [6, 18] ; i.e., if ψ(η, t) is defined according to

n(v, t) ≡ N ψ(v/v, t) / v, (17)

(where N = µ0(t) is the unconditional droplet number density, v(t) = µ1(t)/µ0(t) is the time-dependent average
particle volume, and η ≡ v/v is the similarity variable), we find that in the long-time limit ψ(η, t) approaches a

function that does not depend on time. According to the former definition (Eq. (17)), the moments of ψ(η, t) (µψk )

are dimensionless and fulfill µψ0 = µψ1 = 1, and are related to the moments of n(v, t) by µψk = (µk/µ0) /v
k, as can be

easily seen.
If the DSD approaches a self-similar form in the long-time limit, then ψ(η, t) becomes independent of time for long

times, and as a consequence all its moments should reach constant values in the limit t→ ∞. Based on this expected
behavior of ψ(η, t), the condition used in the present calculations to test whether the self-preserving size distribution
function has been reached, is determined by the variation rate of the 5 lowest order moments of ψ(η, t). This condition
is given by :

tB,ref
(1 + Peref) · F (Peref)

4
∑

k=0

∣

∣

∣

∣

∣

dµψk
dt

∣

∣

∣

∣

∣

< ε. (18)

The numerical solution of Eq. (16) by means of QMOM has been calculated for ε between 10−1 and 10−3. In this
respect it was found that the principal effect of changing the value of ε, in that range, was simply to re-scale the
times at which the self-preserving size distribution is “reached” (obviously this time approaches infinity as ε → 0,
since the approach is asymptotic). Besides the re-scaling of the time needed to reach self-preservation no qualitative
changes were observed (with ε in the aforementioned range), and no significant quantitative changes were observed
for ε < 10−2. Thus, a tolerance ε = 10−2 was finally chosen for the results presented here.
The QMOM-based solution of Eq. (16) provides information on the time evolution of the considered moment set

(µk, with k = 0, 1, . . . , 2N − 1), and by means of the condition Eq. (18) it also provides information on the time
needed to approach the self-preserving size distribution function ψ(η) to within a certain tolerance.
It has been found that the present self-similarity test (Eq. 18) leads to characteristic times for reaching the self-

preserving form that are about an order of magnitude longer than most self-preservation times reported in the literature
[19], which are based only on the standard deviation of the self-preserving size distribution function. However, our
results show that even though the standard deviation of ψ(η, t) reaches its asymptotic value relatively fast, one must

wait longer times for the higher order moments.
The results for the time (tfin) needed to reach the self-preserving form (according to (Eq. 18)) are shown in Fig.

2 for both, the simple addition kernel (assuming F (Pe) = 1, broken lines), and the more accurate combined kernel
(Eq. (6) with F (Pe) given by Eq. (7), solid lines). The results for the lowest order moments of ψ(η) ≡ ψ(η, tfin) are
shown in Fig. 3 in terms of the geometric standard deviation, the (asymmetry parameter) skewness and the (flatness
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Figure 3. Moments of the self-preserving size distribution function as a function Peref for kp/kg = 10 (separate lines), 102, 103,
104 and ∞ (almost superimposed lines). Top (a) : geometric standard deviation σg, center (b) skewness γ1, bottom (c) kurtosis
β2. The horizontal gray lines correspond to the asymptotic results of pure Brownian (Peref = 0) and pure thermophoretic
(Peref = ∞) coagulation.

parameter) kurtosis. In Fig. 4 we show the ratio between the skewness and kurtosis of ψ(η) and the corresponding
results found for a lognormal fit of ψ(η).
One of the goals of the present work is to test (in the case of Brownian + thermophoretic coagulation) the fre-

quently used simplification of assuming an addition collision frequency when several coagulation processes take place
simultaneously. In this regard, our results show significant differences (close to 30%) in the time needed to reach self-
preservation when both coagulation mechanisms are equally important, i.e., for intermediate values of the reference
Peclet number (see Fig. 2). As expected, these differences become insignificant as either asymptote, Peref → 0 or
Peref → ∞, is approached. On the other hand, the differences between the simple addition kernel and the combined
coagulation kernel regarding the moments of the final self-similar distribution ψ(η) were only about 10%, and as a
consequence only the results corresponding to the coagulation kernel given by Eq. (6) with F (Pe) given by Eq. (7)
have been plotted for clarity.
Regarding the dependence of the coagulation dynamics on the particle/gas thermal conductivity ratio (kp/kg), our

results show that, in the range considered here (kp/kg > 10), this dependence becomes negligible as either asymptote
(Peref → 0 or Peref → ∞) is approached. On the other hand, for intermediate values of the reference Peclet number
this dependence is appreciable only in the limit of low particle thermal conductivity (i. e. when kp/kg approaches 10),
but becomes negligible for kp/kg > 102 for all values of Peref . Of course it was expected that the results should become
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Figure 4. Moments of the self-preserving size distribution function over the corresponding moments of ψ(η) fitted to a log-
normal distribution, as a function Peref for kp/kg = 10 (separate lines), 102, 103, 104 and ∞ (almost superimposed lines). Top
(a) : skewness γ1, bottom (b) kurtosis β2. The horizontal gray lines correspond to the asymptotic results of pure Brownian
(Peref = 0) and pure thermophoretic (Peref = ∞) coagulation.

independent of the kp/kg ratio in the small Peref limit (i. e. as the pure Brownian coagulation limit is approached),
but it is remarkable that the results become also independent of kp/kg in the opposite limit (corresponding to pure
thermophoretic coagulation).
This result can be easily explained in the following way. Assuming that the diameters of the colliding particles fulfill

d1, d2 ≫ ℓ, which certainly holds in the long time limit, to leading order in ℓ/di the coagulation frequency Eq. (6) is
given by

β12
βB,ref

≃
(d1 + d2)

2

4d1d2

(

1 +
4Peref

1 + 2(kg/kp)

·

∣

∣

∣

∣

d1
dref

−
d2
dref

∣

∣

∣

∣

)

· F (Pe12). (19)

Hence, in the limit Peref ≫ 1 the thermophoretic part dominates, and in that case the dependence in kp/kg is given

only by the factors (1 + 2kg/kp)
−1

and F (Pe12). The latter factor depends also in kp/kg since, in the limit d1, d2 ≫ ℓ,
the Peclet number Pe12 is given by

Pe12 ≃
16Peref

1 + 2(kg/kp)

∣

∣

∣

∣

d1
dref

−
d2
dref

∣

∣

∣

∣

(20)

to leading order in ℓ/di. Therefore, if Peref ≫ 1, in the long-time limit the dependence of β12 (Eq. (19)) on kp/kg given

by the factor (1 + 2kg/kp)
−1

affects only the time scale, but not the final self-preserving distribution reached. On the
other hand, the dependence on kp/kg given by the factor F (Pe12) (Eq. (20)) affects only the length scale (defining an
“effective” reference diameter as dref,eff ≡ [1 + 2(kg/kp)] dref), but not the final distribution reached.
Hence, as a consequence of these approximate symmetry relations of the combined coagulation kernel reached in the

long-time limit (i. e. for d1, d2 ≫ ℓ), the results for ψ(η) become independent of kp/kg, not only in the small Peref limit
(as expected), but also in the opposite limit Peref ≫ 1, corresponding to coagulation dominated by thermophoresis.
On the other hand, if we consider intermediate values of the reference Peclet number, in the range of values of

kp/kg considered here (kp/kg > 10) we find that, for kp/kg = 102 or larger the former coagulation kernel differs only
in a small correction (of order 10−2 or smaller) from the coagulation frequency corresponding to kp/kg = ∞. As a
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consequence, the dependence on kp/kg is only appreciable for intermediate values of Peref in the limit of low particle/gas
thermal conductivity ratio (i. e. for kp/kg ≃ 10), being almost negligible for kp/kg = 102 or larger. In particular, for
kp/kg = 103 or larger our numerical results become totally indistinguishable from the results corresponding to the
limit kp/kg = ∞ (see Figs. 2, 3, 4 and 5).
Regarding the time needed to reach self-preservation (tfin), figure 2 shows a dramatic increase in tfin for interme-

diate values of the reference Peclet number, whereas the much shorter self-preservation times corresponding to pure
Brownian and thermophoretic coagulation are recovered for Peref < 10−2 and Peref > 10 respectively. This result will
be explained in Section V, along with the results found for the function ψ(η), computed using orthogonal collocation
(see also section IVB below).
Finally, regarding the shape of the self-preserving DSD function ψ(η), our results (Fig. 4) show that ψ(η) is not a log-

normal distribution, irrespective of the reference Peclet number and the thermal conductivity ratio. As a consequence,
the approximation of considering a closed form mathematical form for the DSD (log-normal in this case), which is
a frequently used approximation, is not justified, and may be misleading, yielding increasing errors as higher order
moments of the DSD are considered.

B. Numerical Integration Based on Orthogonal Collocation

While QMOM is extremely efficient, it has the limitation that it only provides information about the moments (Eq.
(15)) of the number density distribution function, which remains an unknown function. To calculate the evolution of
the number density n(v, t), from its initial condition until the self-preserving form is reached, one needs to integrate
Eq. (13). But then, since one needs to carry this time integration until relatively long times, one is forced to discretize
extensive regions of the state variables space (here particle volume), because the average particle volume and standard
deviation of a population n(v, t) under coagulation increase with time. As a consequence, if a time-independent
discretization is used, this would force us to consider extremely fine discretizations, resulting in a computationally
expensive scheme. On the other hand, a time-dependent discretization that evolves in time in an adaptive way,
determined by the time evolution of n(v, t), can produce an efficient numerical method that enables the time integration
of Eq. (13) for long times.
In principle there are several possible ways of implementing adaptive spectral schemes to solve Eq. (13). On one hand

one can compute a time-dependent spectral basis, which is specially suited to solve Eq. (13), and then use this basis to
perform the spectral expansion of n(v, t), as successfully implemented in [20, 21]. Another possibility is to introduce a
time-dependent mapping based on the time evolution of n(v, t), in such a way that the region v ∈ [vmin, vmax], where
n(v, t) is mainly located, is mapped to the standard interval ([−1, 1]), and then perform a spectral expansion of n(v, t)
in terms of a complete basis on that interval (for instance Chebyshev or Legendre), as successfully implemented in
[22, 23]. The numerical method used here belongs to this second class of adaptive schemes. In the present calculations
Eq. (13) has been numerically integrated using orthogonal collocation in terms of an adaptive variable x, defined as
the ratio between particle volume v and the time-dependent standard deviation of n(v, t) (σ(t)), computed previously
using QMOM. Hence, in terms of the mapped variable x the standard deviation of n(x, t) is always 1, and a time-
independent accurate discretization in terms of x allows for an efficient numerical solution of Eq. (13). This numerical
integration of Eq. (13) has been carried out for values of t between 0 and the tfin previously derived from QMOM.
The numerical method used here to integrate Eq. (13), written in terms of the mapped variable x ≡ v/σ(t), has been

orthogonal collocation [16]. The spectral basis used was the truncated Whitaker cardinal basis [16], with 75 spectral
components. Since orthogonal collocation involves the evaluation of the differential equation at the corresponding
collocation abscissae (xi), which are constant in time, when this method is implemented in terms of the mapped
variable x we find that the coagulation term has to be evaluated at the time-dependent locations vi(t) = xiσ(t).
Hence, in principle this strategy would result in a quite expensive numerical scheme, since all the integrals that
appear in the coagulation term of Eq. (13) would have to be recalculated at every time step. However, by means of
the fast algorithm introduced in Ref. [9] this problem can be avoided, which results in an extremely efficient numerical
method. This strategy has also been successfully used in [4, 7]. More details on the implementation of orthogonal
collocation in terms of the mapped variable x ≡ v/σ(t), for aerosol dynamics under coagulation, can be found in [10].
The results for the self-preserving normalized size distribution function reached in the long time limit ψ(η), found

according to the self-similarity test Eq. (18), are shown in Fig. 5 as a function of the reference Peclet number (see
solid lines), together with the results corresponding to pure Brownian and pure thermophoretic coagulation (see thick
gray lines). As may be seen in Fig. 5, for Peref < 10−2 the quasi-self-preserving size distribution function is almost
identical to the self-preserving size distribution function corresponding to pure Brownian coagulation. On the other
hand, for Peref > 10 the quasi-self-preserving size distribution function is almost identical to the result found for pure
thermophoretic coagulation.
As can be seen in Fig. 5, both asymptotic limits Peref → 0 and Peref → ∞ lead to self-preserving size distribution
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functions which do not depend on the thermal conductivity ratio (kp/kg), as could be expected (see Section IVA).
On the other hand, for intermediate values of the reference Peclet number, and for values of kp/kg in the range
considered, the dependence of ψ(η) on kp/kg is almost negligible. According to our numerical results ψ(η) becomes
slightly dependent on kp/kg only for the intermediate values of Peref between 0.1 and 1, where the self-preserving
size distribution function corresponding to kp/kg = 10 can be slightly distinguished from the self-preserving size
distribution functions found for kp/kg = 102, 103, 104 and ∞, which are totally superimposed. The results for ψ(η)
corresponding to Peref < 0.1 or Peref ≥ 1 are totally independent of kp/kg. The reason of this near in-dependence of
ψ(η) on the particle/gas thermal conductivity ratio has already been explained in Section IVA.
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Figure 5. Solid lines : normalized self-preserving DSD functions reached in the long time limit for several values of Peref and
kp/kg = 10, 102, 103, 104 and ∞. The gray lines correspond to pure Brownian (Peref = 0) and pure thermophoretic (Peref = ∞)
coagulation. The results for different values of kp/kg are almost superimposed for all values of Peref , except for Peref = 10−1

and 10−0.25 (see (c) and (d)) where ψ(η) corresponding to kp/kg = 10 can be distinguished from the remaining values. For all
values of kp/kg, ψ(η) becomes indistinguishable from the pure Brownian coagulation QSP DSD for Peref ≤ 10−2 (see (a) and
(b)), and from the pure thermophoretic coagulation QSP DSD for Peref ≥ 101 (see (f), (g) and (h)).
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V. QMOM/OC-RESULTS FOR DSD-EVOLUTION ; ULTIMATE TP-DOMINANCE?

The results for ψ(η) computed using orthogonal collocation show a smooth transition from the pure Brownian
coagulation limit (reached for Peref ≤ 10−2) to the pure thermophoretic coagulation limit (reached for Peref ≥ 10), see
Fig. 5. As already mentioned these results are almost independent of kp/kg (Section IVA). However, even though this
smooth transition from pure Brownian to pure thermophoretic coagulation, as a function of Peref , seems a natural
result, a different result could have been expected according to the combined Brownian + thermophoretic coagulation
frequency given by Eq. (6), as explained below.

For arbitrary long times the characteristic sizes of the colliding particles are expected to become very large compared
to the reference size, which is based on the initial size distribution function. Likewise, the typical difference in diameter
between two colliding particles is expected to become very large compared to the reference diameter. Hence, in the
long time limit the coagulation frequency given by Eq. (6) approaches the corresponding limit for d1, d2 ≫ ℓ, which is
given by Eq. (19) and Eq. (20). As a consequence, as long as Peref > 0, at sufficiently long times the thermophoretic
contribution becomes dominant over the Brownian contribution, i.e. thermophoretic coagulation (if present) ultimately
dominates over Brownian coagulation for arbitrary long times irrespective of Peref .

The reason why this behavior is not observed in our numerical integration of Eq. (13) is because for small values of
the reference Peclet number the stopping-test condition (Eq. (18)) is satisfied before the thermophoretic contribution
becomes relevant. This is because the characteristic evolution time of the aerosol scales with the inverse of the
unconditional particle number density N(t), becoming very large in the long time limit as N(t) decreases. As a
consequence, even though no true self-similar behavior may have been reached yet, the stopping-test condition Eq.
(18) becomes eventually fulfilled in the long time limit.

This explains the extraordinarily long times needed to reach “quasi”-self preservation for intermediate values of
the reference Peclet number (Fig. 2). When both (Brownian and thermophoretic) contributions to the coagulation
frequency are relevant, the coagulation kernel is not a homogeneous function of particle size, and no true self-similar
behavior is observed. However, for times long enough the characteristic coagulation time is so long that the coagulation
process becomes slow enough for the stopping-test condition (Eq. (18)) to become satisfied, even though the DSD has
not yet reached the asymptotic self-similar form.

This also explains the smooth transition found for ψ(η) between the pure Brownian and thermophoretic self-
preserving functions. For Peref < 10−1 long before the thermophoretic contribution becomes important the self-
similar stopping test defined by Eq. (18) is fulfilled, yielding a self-similar distribution which is very close to the one
corresponding to pure Brownian coagulation. On the other hand, for values of the reference Peclet number of order
unity or larger, the thermophoretic contribution to the coagulation frequency is important right from the start. In these
cases the self-similar distribution found is very close to the one corresponding to pure thermophoretic coagulation. In
this respect, we recall [4] that in the long time limit the coagulation frequency corresponding to pure thermophoretic
coagulation becomes a homogeneous function of degree 1 in particle diameter (degree 1/3 in particle volume). A
similar conclusion can be drawn from Eq. (19) for the combined Brownian + thermophoretic coagulation considered
here. However, for intermediate values of the reference Peclet number (for 10−1 < Peref < 1 according to Fig. 2), both
contributions to the coagulation frequency are equally important, which results in a coagulation frequency that is not
a homogeneous function of particle size. For reference Peclet numbers close to 1 the contribution of the thermophoretic
term becomes dominant before the stopping-test condition is fulfilled simply because of the decrease inN(t), producing
a dramatic reduction in tfin, along with a rather fast transition in ψ(η) towards a function that is very close to the
asymptotic self-similar distribution corresponding to pure thermophoretic coagulation.

In order to be observed in nature a coagulation-aged self-similar distribution should be reached in a reasonable time,
before other processes (or changes in the environment) set in. In the case under consideration, for small values of
the reference Peclet number the typical particle size needed for the thermophoretic contribution to become dominant
over the Brownian contribution becomes extremely large. This has two consequences, on one hand it is possible that
before this ultimate thermophoresis dominance may be observed other coagulation processes (i.e. sedimentation) may
become important. On the other hand, since the characteristic coagulation time scales with the inverse of the total
number density of the aerosol N(t) which decreases with time, if Peref is too small the time needed before the ultimate
thermophoresis dominance can be observed may become too large to be physically relevant.

As a consequence, even though in principle thermophoretic coagulation ultimately dominates over Brownian co-
agulation irrespective of Peref (provided that Peref > 0), this result will only be observed for values of the reference
Peclet number close to unity or larger, and for this reason the smooth transition between the pure Brownian and the
pure thermophoretic self-similar distributions shown in Fig. 5 seems physically relevant.
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VI. DISCUSSION

A. Collision Efficiency and Finite-Rate Coalescence

Our present results pertain to the limiting case that each binary encounter between particles of volumes v1 and
v2 leads to “successful” coalescence, producing a spherical particle of volume v1 + v2 before the next encounter
with another particle. In the language of cloud physics we are assuming “unit collision efficiency (fraction)”—as is
appropriate for collisions for which the average relative kinetic energy is insignificant compared to typical droplet
surface energies (i.e. negligible Weber number).

Whether surface tension-driven viscous flow leads to coalescence on the coagulation time scale (βrefNp)
−1

depends
on a reference characteristic time estimated from :

tcoalesce = πµL

SMD

γL
(21)

where γL is the prevailing surface tension and µL the dynamic viscosity (see, e.g. [6]). It is interesting to note that on
this basis a micron-diameter molten iron micro-droplet near Tmp = 1808 K would have a coalescence time of only 8.5
ns. Based on βref = (8/3)kBT/µg, appropriate for continuum regime Brownian coagulation, this would be insignificant
compared to the coagulation time (of order 10 ms) of any such low volume fraction “mist” in, say, 1808 K helium (for
which µg = 0.62× 10−4 Pa s).
For sols comprised of more viscous liquids, or coagulation sufficiently far below the effective melting temperature,

then “aggregation” would set in, leading to fractal-like “particle” morphologies [6] governed by rather different laws
of diffusion and thermophoresis (e.g., Filippov et al. (2000) [24]).

B. Marangoni-Induced Thermo-Phoresis

Our use of “solid body” thermophoresis results for micro-droplet transport in a temperature gradient requires
further discussion. This is because there are situations where micro-flows driven by surface tension gradients can
retard (or even reverse) the motion of micro-droplets in such environments.
For present purposes we merely envision an engineering environment in which such liquid/vapor interfaces are

“contaminated”, retarding any surface tension gradient-driven flows. It should also be mentioned that the use of
gas/liquid experimental results (e.g. oil droplet drag in low density gases) to describe gas/solid situations is common
in aerosol science and technology, where contaminated liquid surfaces are avoidable only if extraordinary precautions
are taken.
For some systems the aforementioned Marangoni-effect may be precluded simply based on the following “sufficient”

condition :

γL
d
<

(

Tc
T

− 1

)

(Kn)
2
· p (22)

where p is the prevailing pressure and the Knudsen number Kn = ℓ/d is necessarily ≪ 1 for the “continuum limit”.
This can be derived by insisting that the difference in surface tension induced stress across the non-isothermal drifting
droplet be small compared to the average Stokes drag stress. However, for many systems of practical interest this
criterion would not be satisfied in the absence of surface contamination.
The consequences of Marangoni-driven flows are therefore certainly of theoretical interest—including the limiting

case in which this is the dominant source of thermophoresis (from cold to hot). However, such extensions are beyond
the scope of our present model, which can be regarded as applying to situations for which the viscosity ratio : µL/µg
is large (say O(10) ∼ O(1000), but not “too large” (cf. the effect of µL on the coalescence time, Eq. (21)).

C. Body-Force “Sedimentation”

In the presence of a body force g (per unit mass) a particle of diameter d (d ≫ ℓ) will sediment at the speed gtp,
where tp is the familiar characteristic Stokes “stopping time” (1/18)ρpd

2
p/µg. This implies that the velocity difference

appearing in the corresponding coagulation rate constant will be proportional to
∣

∣d21 − d22
∣

∣ for a common ρp value.
When one then examines the ratio of βsed,ref to βTP,ref one finds that sedimentation would ultimately dominate the
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long-time coagulation behavior. However, one can show that, as long as the population SMD is less than about :

SMDcrit = νg

(

‖∇ lnT ‖
ρg/ρp
geff

)1/2

(23)

then the differential sedimentation mechanism can be neglected. Of course, this condition is readily met when the
effective “geff” is small.

D. Non-Continuum Effects

When the Knudsen numbers Kn1 and Kn2 are not small then the Brownian- and thermophoretic coagulation rate
constants are both affected, but in opposite directions.
The Brownian coefficient is increased because the relative Brownian diffusivity D1+D2 is increased by the relevant

Cunningham-Millikan- Stokes drag (“slip”) correction factors.
However, βTP is reduced because of the reduced sensitivity of the dimensionless thermophoretic diffusivity α̃ to size

as one approaches the “free-molecule” limit (Kn → ∞). These “rarefaction” effects would be straightforward to include
in an extended theory, at the expense of introducing the gas mean-free-path :SMD ratio as an additional parameter.
Indeed, for the high ‖∇T ‖, atmospheric pressure Fe(L)/He “mist” examples cited in Rosner and Arias-Zugasti (2011)
[4] Kn-values were not small enough to maximize the coagulation consequences of particle thermophoresis. Nevertheless,
we estimated that this mechanism probably dominated the encounter rate between particles straddling the nominal
diameter of 1 micrometer.

E. Dense Vapor Effects

Particle thermophoretic drift velocities outside of the domain of ideal gas kinetic theory remain an open question
(see, e.g., Rosner (2011) [1]). For small departures from ideality, as relevant to high pressure laminar diffusion flames,
the approach of Rosner and Arias-Zugasti (2007) [25] (based on the virial EOS together with the Thermodynamics
of Irreversible Processes) appears to be promising, but remains to be developed. However, extensions to higher
carrier vapor molecular volume fractions (> O(10−1)) will be needed to properly deal with supercritical fluid particle
processing applications (Rosner and Arias-Zugasti (2011) [7])—especially in the presence of simultaneous temperature
gradients.

VII. IMPLICATIONS, CONCLUSIONS, GENERALIZATIONS, FUTURE WORK

The nucleation of condensable vapors often occurs due to supersaturations achieved in the presence of strong
temperature gradients (see, e.g., Turkdogan and Mills (1964) [2], and Katz (1967) [26]). Yet, such data have previously
been analyzed on the basis of homogeneous nucleation theory and coagulation rate theory based on locally uniform
temperatures. This observation has motivated our present theoretical study of the coagulation-rate consequences of
spatially non-uniform temperature.
Here we consider for the first time the simultaneous role of size-dependent thermophoresis and continuum regime

Brownian diffusion in shaping “coagulation-aged” (asymptotic-) aerosol particle size distributions. In contrast to the
extreme case of initial thermophoretic “domination” (Rosner and Arias-Zugasti (2011) [4]), our present methods and
results apply to more general situations often encountered for smaller temperature gradients (< 105 K/m), where size-
dependent thermophoretic drift modifies but does not initially dominate the coagulation frequency. As described in
Section III, we have avoided using an “additive kernel” approximation by basing our combined kernel on the solution of
a test particle convective-diffusion equation which accounts for both ordinary Brownian diffusion and (thermophoretic)
drift. This kernel is then introduced into a Smoluchowski-type population-balance integro-PDE, so that we can track
the evolution of initially log-normal distributions in a locally non-isothermal gas environment. As expected, when a
reference Peclet number of the form : βTP,ref/βB,ref is much smaller than, say 0.1, we recover the previously well-
studied/characterized Brownian self-preserving populations, with a diameter-based geometric standard deviation near
2.4. However, for intermediate Peclet-values characteristic distortions set in, corresponding to increased spread and
skewness, and slightly smaller departures from log-normality. Ultimately (for Peclet-values larger than about 10)
our quasi-self-preserving DSDs become indistinguishable from our previously reported thermophoretically-dominated
results (Rosner and Arias-Zugasti (2011) [4]).
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Remarkably, it has been observed that, for kp/kg > 10, the dependence on the particle/gas Fourier thermal con-
ductivity ratio reduces to a slight modification of the characteristic time and size scales, and hence the results for the
self-similar normalized distribution function reached in the long-time limit are almost independent of the particle/gas
Fourier thermal conductivity ratio in the whole range of values of the Peclet number.
In view of the idealizations we have chosen to introduce, in Section VI we provide quantitative validity criteria and

indicate promising routes to further generalizations. These extensions are expected to be essential to make particle
processing predictions in yet-more demanding environments (e.g., high-pressure flames and supercritical fluids—which
are the focus of our current attention).
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