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We investigate the symmetric Ashkin-Teller (AT) model on the triangular lattice in the antifer-
romagnetic two-spin coupling region (J < 0). In the J → −∞ limit, we map the AT model onto a
fully-packed loop-dimer model on the honeycomb lattice. On the basis of this exact transformation
and the low-temperature expansion, we formulate a variant of worm-type algorithms for the AT
model, which significantly suppress the critical slowing-down. We analyze the Monte Carlo data by
finite-size scaling, and locate a line of critical points of the Ising universality class in the region J < 0
and K > 0, with K the four-spin interaction. Further, we find that, in the J → −∞ limit, the critical
line terminates at the decoupled point K = 0. From the numerical results and the exact mapping,
we conjecture that this ‘tricritical’ point (J → −∞,K = 0) is Berezinsky-Kosterlitz-Thouless-like
and the logarithmic correction is absent. The dynamic critical exponent of the worm algorithm is
estimated as z = 0.28(1) near (J → −∞,K = 0).

PACS numbers:

I. INTRODUCTION

The Ashkin-Teller (AT) model is a generalization of
the Ising model to a four-component system of which
each lattice site is occupied by one of the four states [1–
7]. In 1972, Fan [1] associated each lattice site with two
Ising variables (σ, τ) and represented the four states by
the combined states (1, 1), (1,−1), (−1, 1) and (−1,−1).
On this basis, the reduced Hamiltonian (kBT ≡ 1) of the
AT model reads

H = −
∑

〈i,j〉

(Jσσiσj + Jττiτj +Kσiτiσjτj) , (1)

where the sum 〈ij〉 runs over all the nearest-neighbor
pairs of spins, Jσ (Jτ ) represents the two-spin interaction
for σ (τ), and K is the four-spin interaction. Examples of
physical realizations of the AT model include: 1), systems
with layers of atoms and molecules adsorbed on clean
surfaces–e.g., selenium adsorbed on the Ni(100) surface
[8] and oxygen-on-graphite system [9], and 2), systems
with layers of oxygen atoms in the CuO plane, like high-
Tc cuprate YBCO [10].
The AT model exhibits very rich critical behavior and

plays an important role in the field of critical phenomena.
Figure 1 displays the phase diagram of the AT model on
the square lattice for J ≡ Jσ = Jτ > 0 (we shall only
consider this symmetric case in this work). The model
reduces to two decoupled Ising systems for K = 0, and
is equivalent to the 4-state Potts model along the diago-
nal line J = K. The whole ‘P-I-O’ line is critical, with
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FIG. 1: (Color online) Phase diagram of the AT model on the
square lattice. The ‘P-I-O’ curve (thick cyan line) is self-dual
and has continuously varying critical exponents, separating
the paramagnetic and the ferromagnetic state in Ising vari-
ables σ, τ , and στ . The ‘P-A’, ‘P-B’ and ‘O-C’ lines are
commonly believed to be Ising-like, which are represented by
thin magenta lines.

continuously varying critical exponents, and with the de-
coupled Ising point I and the 4-state Potts point P as
two special points. The two branches ‘P-A’ and ‘P-B’
are also critical, and are numerically shown to be in the
Ising universality class. On other two-dimensional pla-
nar lattices like the honeycomb, triangular, and kaǵome
lattices, the phase diagram of the AT model with J ≥ 0
is similar as Fig. 1, except the fact that the antiferro-
magnetic transition line for K < 0 may be absent on
non-bipartite lattices like the triangular and the kaǵome
lattice.

In this work, we shall consider the AT model on the
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triangular lattice. From the duality relation and the star-
triangle transformation, it was already found [11] in 1979
that the critical P-I-O line is described by

e−4K =
1

2
(e4J − 1), (2)

with K ≤ 1
4 log 2. Further, it can be shown that the

model on the infinite-coupling point O (J = −K → ∞)
can be mapped to the critical O(n) loop model with n = 2
on the honeycomb lattice, and the well-known Baxter-Wu
model on the triangular lattice at criticality [12]. In the
limit J = K → −∞, the model is equivalent to the 4-
state Potts antiferromagnet at zero temperature, which is
also critical. In the limit J = 0,K → −∞, the AT model
reduces to the zero-temperature Ising antiferromagnet in
variable στ ; the same applies to the limit K = 0, J →
−∞ for the two decoupled Ising variables σ and τ . Phase
transition of the triangular-lattice Ising antiferromagnet
is absent at finite temperature, and at zero temperature
the system has non-zero entropy per site [13, 14]. The
pair correlation on any of the three sublattices of the
triangular lattice decays algebraically as a function of
distance, and the associated magnetic scaling dimension
is Xh = 1/4 [15].
On the square lattice, the phase diagram for J < 0 is

the symmetric image of Fig. 1 with respect to the K axis
(J → −J), arising from the bipartite property. However,
to our knowledge, the phase diagram of the AT model
is still unknown on the triangular and the kaǵome lat-
tice with J < 0. Clearly, the Ising critical line P − A
should continue into the region J < 0,K > 0, albeit
it remains to be explored how this extension looks like.
Due to the absence of exact result, we will apply Monte
Carlo method and the finite-size scaling theory. Monte
Carlo simulation of the triangular AT model is challeng-
ing for large negative coupling J < 0, arising from the so-
called geometric frustration. Antiferromagnetic coupling
J < 0 means that the neighboring Ising spins prefer to
be anti-parallel. However, such a preference cannot be
satisfied for all of the three neighboring pairs on any ele-
mentary triangular face. One can at most have two anti-
ferromagnetic pairs. For such a frustrated system, most
Monte Carlo simulation suffers significantly from criti-
cal slowing-down. In fact, as J → −∞, the Metropolis
and the Swendsen-Wang-type cluster algorithm are found
to be non-ergodic [6, 16–18]. Recently, worm-type al-
gorithms with the so-called rejection-free was developed
for the antiferromagnetic Ising model on the triangular
lattice and other systems [19, 20]. This algorithm has
been proved to be ergodic at zero temperature and only
suffers from minor critical slowing-down. The rejection-
free worm algorithm can be extended to the AT model,
albeit the efficiency is limited for nonzero K in the zero-
temperature limit J → −∞.
The outline of this paper is as follows. Section II de-

scribes the partition sum of the AT model as well as
an exact mapping to a fully-packed loop-dimer (FPLD)
model in J → −∞ limit. A variant of worm-type algo-

:σ = −1, τ = −1 :σ = −1, τ = 1 :σ = 1, τ = −1

FIG. 2: (Color online) A spin configuration of the AT model
on the triangular lattice and the corresponding LT-expansion
graph on the honeycomb lattice. Thick blue line represents
blue bond; thin red line denotes red bond; the same below.

rithms is developed in Sec. III. The numerical results
are presented in Sec. IV. In Sec. V we investigate the
dynamic critical behavior of one of the worm algorithms.
A discussion is given in Sec. VI, including the phase di-
agram on the kaǵome lattice.

II. MODEL AND EXACT MAPPING

A. Low-temperature expansion of the AT model

Instead of directly updating the spins, the worm-type
algorithms [21, 22] for the Ising model simulate the
graphical representation which can be the high- and the
low-temperature expansion graphs. The worm methods
in Refs. [21, 22] can be generalized to the graphical ex-
pansion of the AT model. In the following, we shall use
the low-temperature (LT) expansion, defined on the dual
lattice of the triangular lattice—the honeycomb lattice.
Given a spin configuration {σ, τ}, for each pair of nearest-
neighboring vertices (i, j), one places on its dual edge:

• nothing if σi = σj , τi = τj ,

• a red occupied bond if σi = σj , τi 6= τj ,

• a blue occupied bond if σi 6= σj , τi = τj ,

• a red and a blue bond if σi 6= σj , τi 6= τj .

In other words, depending on the associated pair of spins
on the triangular lattice, an edge on the honeycomb lat-
tice can be in one of the four states: vacant, red, blue,
and red+blue. An example is shown in Fig. 2. Since the
coordination number is 3 for the honeycomb lattice, the
red and blue bonds form a series of disjointed loops in
red and blue color, respectively. Note that the red and
the blue loops are allowed to share common edges. In
this way, a spin configuration on the triangular lattice
is mapped onto a loop configuration on the honeycomb
lattice, while a loop configuration corresponds to 4 spin
configurations [31], which are related to each other by
globally flipping the σ or/and τ Ising spins. Let |Er|,
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FIG. 3: (Color online) Vertex states in the LT-expansion
graph of the AT model.

|Eb|, and |Er+b| be the number of red, blue, and red+blue
bonds, the partition sum of the AT model can be written
as (up to an unimportant factor)

ZAT =
∑

{L}

X |Er|
r X

|Eb|
b X

|Er+b|
r+b , (3)

where the summation {L} is over all loop configurations.
From the mapping, one can obtain the relative statistical
weights as

Xr = Xb = e−2J−2K and Xr+b = e−4J . (4)

One can further describe the AT model in the language
of the vertex states, which will serve as the basis for the
formulation of the worm-type algorithms in this work.
In the loop configurations, all the vertices must have an
even number of incident red (blue) bonds. Accordingly,
only the 5 types of vertex states in Fig. 3 exist, where
the states are unchanged under spatial rotations. Simple
calculations yield the statistical weights as

W1 = 1 , W2 = W3 = e−2J−2K ,

W4 = e−4J , and W5 = e−4J−2K . (5)

Let |Vi| be the number of vertices at state i with i =
1, 2, 3, 4, 5, the partition sum of the AT model can be
written as (up to a constant)

ZAT =
∑

{V}

5
∏

i=1

W
|Vi|
i , (6)

where the summation {V} is over configurations with ver-
tex states in Fig. 3.

B. Exact mapping in the J → −∞ limit

Given a finite four-spin coupling K, when the antifer-
romagnetic coupling J becomes stronger and stronger,
more and more vertices will be at state-4 and -5 in Fig. 3,
because W4 ∼ W5 ∝ exp(−4J) increases faster than
W1,W2,W3, as seen from Eq. (5). In the J → −∞ limit,
only state-4 and -5 survive. We can then redefine the
edge states in state-4 and -5 as following. The empty
edge is replaced by a ‘dimer’, while the ‘blue+red’ edge
is regarded as empty; namely, the edge is now at state:
empty, dimer, red, or blue. As a result, state-4 and -5
become those in Fig. 4(a). One observes that the occu-

4 5
(a)

6 7
(b)

FIG. 4: (Color online) (a), State-4 and -5 after the redefinition
of the edge states. (b), Vertex states in the FPLD model. The
dashed black line represents dimer.

pied bonds at state-5 form a series of disjointed loops;
these loops are now constructed by bonds alternatively
in color red and blue. Further, one notes that the color-
degree freedom can be simply integrated out, and each
loop gains a statistical-weight factor 2. Without the color
information, the edge is at state: empty, dimer, or bond,
and the vertex states reduce to those in Fig. 4(b), where
new labels ‘6’ and ‘7’ are used. The statistical weights
are

W6 = 1 , W7 = e−2K . (7)

On this basis, the partition sum of the AT model in
the J → −∞ limit can be written as

ZFPLD =
∑

{V}

nℓW
|V7|
7 , (n = 2) (8)

where the summation is over configurations with all ver-
tex states in Fig. 4, and ℓ is the number of loops. We
shall refer to the model defined by Eq. (8) and Fig. 4 as
the n-color FPLD model.
Note that, for finite K, the loops in the FPLD model

are ‘dilute’ due to the presence of state-6. However, in
the K → −∞ limit, only state-7 survives, and one ob-
tains the mapping between the triangular 4-state antifer-
romagnet at zero temperature and the honeycomb n = 2
fully-packed loop model. For K →∞, the model reduces
to the fully-packed dimer model, which is equivalent to
the triangular Ising antiferromagnet at zero temperature.
We conclude this subsection by mentioning that the

FPLD model is very similar to the honeycomb O(n) loop
model [23]. The difference is that in the former the ver-
tices off the loops are paired up by dimers, while not in
the latter. Namely, the configuration space for the FPLD
model is a subspace in the O(n) loop model. Albeit it
remains to be explored whether or not the two models
are in the same universality class, it is not surprising if
this turns out to be the case.

III. WORM ALGORITHMS

The worm algorithm for the high-temperature expan-
sion graphs of the Ising model was first formulated by
Prokof’ev and Svistunov [21], and the dynamic criti-
cal behavior was studied in Ref. [22]. Recently, Wolff
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1′ 2′ 3′ 4′

5′ 6′ 7′ 8′

FIG. 5: (Color online) Additional vertex states in the worm
method for the AT model. The red (blue) filled circle denotes
a defect in red (blue) vertex configuration.

provided a worm-type simulation strategy for O(N)
sigma/loop models [24]. The underlying physical pic-
ture of the worm method is beautifully simple: enlarge
the state space of the to-be-simulated model, define an
extended model, and simulate the system by a local al-
gorithm.

A. Worm algorithm for finite J

Let us now generalize the worm method in Refs. [21,
22] to the AT model in the language of the vertex states,
defined by Eq. (6) and Fig. 3.
Enlarge the state space. We first introduce new ver-

tex states by deleting from (or adding to) the states in
Fig. 3 a red or blue bond. This leads to the 8 additional
vertex states in Fig. 5. The state space is then enlarged
such that a configuration has a pair or none of vertices
at states in Fig. 5. Such a pair of vertices are named ‘de-
fects’ and denoted as (u, v). Accordingly, the state space
can be divided into two subspaces: one without defect
(u = v) and the other with two defects (u 6= v); we shall
refer to them the M (measuring) and W (worm) sector,
respectively. A careful check yields that the pair of de-
fects in the W sector must be connected via a string of red
or blue occupied bonds. Namely, u and v are either both
at states {1′, 4′, 5′, 7′} or {2′, 3′, 6′, 8′} in Fig. 5. For the
later convenience, we let u, v be ordered as u ← v, and
thus the interchange (u ↔ v) would lead to a different
configuration for u 6= v.
Define the extended model. With the inclusion of the

defects and the vertex states in the W sector, a configura-
tion can now be completely specified by its vertex states
{V}, and the ordered pair of defects (u, v). The partition
sum of the extended model can be separated into two
parts. The part in the M sector is defined as

ZM = ZAT =
1

V

∑

{V,u,v}

δu=v

5
∏

i=1

W
|Vi|
i , (9)

where V is the volume of the system and δ is the Kro-
necker delta function. The summation {V} is over vertex-

state configurations with states in Fig. 3 and coordina-
tions (u, v). Factor 1/V accounts for the summation of
u = v over the whole lattice. Similarly, the part of the
partition sum in the W sector can be defined by

ZW =
1

V

∑

{V,u,v}

δu6=v

5
∏

i=1

W
|Vi|
i

8
∏

j=1

W
|Vj′ |

j′ , (10)

where the summation {V} is over configurations with two
vertex states in Fig. 5 and all other in Fig. 3, and Wj′ are
the statistical weights for states in Fig. 5. The extended
model can then be defined as

Zworm = ZM + ξwZW , (11)

with ξw > 0 a constant factor controlling the relative
weight in the M and the W sector.
For a complete definition of the extended model, the

statistical weights Wj′ for states in Fig. 5 should have
a definite value. It is natural that they are defined in
accordance with the edge states, which lead to

W1′ = W2′ = e−J−K , W3′ = W4′ = e−3J−K ,

W5′ = W6′ = e−3J−3K ,W7′ = W8′ = e−5J−K .(12)

Formulate the worm algorithm. One can now use any
valid algorithm to simulate the model defined by Eq. (11).
Since a configuration is specified by the ordered triplet of
parameters (V , u, v), an update can be acted on the ver-
tex states V and/or the locations of defects (u, v). The
worm strategy is to randomly move u and/or v around
the lattice and update V by changing the edge states dur-
ing the biased random walk. Suppose that u 6= v are in
red (in the W sector). As umoves to a neighboring vertex
un, the edge (uun) state will be symmetrically updated:
a red bond is placed (deleted) if it is absent (present). In
this way, state at u will be back in Fig. 3 after umoves un.
Accordingly, the number of defects remains unchanged if
v 6= un or becomes zero if v = un. This accounts for
a step of random walk in the W sector or from the W
to the M sector. For the case u = v, by the symmetric
update of edge state, one will generate a pair of defects
which can be either in red or blue. Therefore, one never
introduces more than two defects. The parameter ξ = 1
is set in this work, and a version of the worm algorithm
reads (Algorithm 1)

1. If u = v, randomly choose a new vertex u′ and set
u = v = u′. Equally choose color red or blue for
the to-be-proposed defects; say red.

2. Interchange u↔ v with probability 1/2.

3. Randomly choose one neighboring vertex un of u.
Propose to move u→ un.

4. Propose to symmetrically update the edge-uun

state: red ↔ vacant and blue ↔ red+blue.
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5. Accept the proposal with probability

Pa = min
[

1, (W (a)
u W (a)

un
)/(W (b)

u W (b)
un

)
]

,

according to the Metropolis-Hasting scheme. The
superscript (b) and (a) means “before” and “after
update”, respectively. The statistical weights are
given Eqs. (5) and (12).

Monte Carlo simulation of the AT model consists of repe-
tition of these steps. The detailed balance at each step is
straightforward since the algorithm is just a Metropolis-
type update. If one regards the connected pair of ‘de-
fects’ as a worm, the above steps mimic the crawling of
the worm on the lattice. This is responsible for the ter-
minology ‘worm’.
Measurement. Measurement can take place either in

the whole enlarged state space or in the M subspace. For
the high-temperature graph of the Ising model, it can
be shown that the partition sum of the extended model
is related to the Ising model as Zworm = χZIsing, where
χ is the magnetic susceptibility. Thermodynamic quanti-
ties can be measured in the enlarged configuration space.
Nevertheless, if one is only interested in the original sys-
tem, it is sufficient to sample in the M sector. This would
define a Markov subchain with a coarse unit of Monte
Carlo step between two subsequent configurations in the
M sector. The detailed balance is clear since it is satisfied
in each basic step in Algorithm 1.
Improved version. As mentioned earlier, state-4 and

-5 (Fig. 3) would dominate in the M sector as J → −∞;
analogously, only state-7′ and -8′ (Fig. 5) survive in the
limit, as seen from Eq. (12). This implies that, as soon as
both u and v are at state-7′ and −8′, they will be frozen
there forever, and thus Algorithm 1 becomes non-ergodic.
The same difficulty occurs for the worm simulation

of the triangular Ising antiferromagnet at zero temper-
ature. A rejection-free technique was introduced [19, 20]
to overcome such a problem, based on the observation
that the detailed balance in the coarse step does not re-
quire the detailed balance in each basic step in the W
sector. Let un (n = 1, 2, 3) denote the neighbouring ver-
tices of u and pn be the probability that u moves to un

in Algorithm 1, the probability for u to be unmoved is
p0 = 1−(p1+p2+p3). The absorbing problem of (u, v) at
state-7′ and -8′ is reflected by p0 → 1 as J → −∞. In the
W sector, one can explicitly set zero for the probability
that u remains unmoved, and defines the new transition
probabilities p′n as

p′1
p1

=
p′2
p2

=
p′3
p3

,

p′0 = 1− (p′1 + p′2 + p′3) = 0 . (13)

The details can be found in Refs. [19, 20].
The absorbing problem can also be solved in the

present formulation of the worm algorithm. Actually,
the absorbing problem is somewhat ‘artificial’ here, since

9′ 10′ 11′ 12′ 13′

FIG. 6: (Color online) Vertex states in the W sector for the
FPLD model. The black filled circle denotes a defect.

it arises from the particular assignment of the statisti-
cal weights to states in Fig. 5 by Eq. (12). There is no
reason, however, why one should use Eq. (12) if only the
original AT model (6) is of interest. The absorbing prob-
lem simply dissolves if the statistical weights are given
by

W1′ = W2′ = e−2J−2K ,W3′ = W4′ = e−4J ,

W5′ = W6′ = e−2J−2K ,W7′ = W8′ = e−4J−2K .(14)

Other definitions are possible.

B. Worm algorithm for J → −∞

Algorithm 1 using Eq. (14) is found to be efficient in
most of the region with 0 > J > −∞ and for small
K in the J → −∞ limit. In this limit, the efficiency
significantly drops as K deviates from 0.
Hereby we shall make use of the exact mapping of the

AT model onto the FPLD model (8) and formulate an-
other version of the worm algorithm. Following the same
procedure in the above subsection, we first introduce 5
additional states in Fig. 6. The partition sum in the M
sector is defined as

ZM = ZFPLD =
1

V

∑

{V,u,v}

δu=vn
ℓW

|V7|
7 , (15)

with n = 2. Again, the summation is over configurations
with states in Fig. 4 and over the location of u = v. The
partition sum in the W sector is given by

ZW =
1

V

∑

{V,u,v}

δu6=vn
ℓW

|V7|
7

13
∏

j=9

W
|Vj′ |

j′ . (16)

The extended model is defined by Eq. (11).
The formulation of the worm algorithm follows the

standard strategy in the above subsection, except that
the edge-state update should take a different scheme. Let
e = 0, 1, 2 denote the edge-e state ‘empty’, ‘bond’, and
‘dimer’, respectively, and define the module-3 summa-
tion rule as mod 3(e +∆e) with ∆e = 1, 2. As moving
u → un, one randomly chooses ∆e = 1 or 2 and pro-
pose to update the edge-uun state as mod 3(e + ∆e).
In other words, an ‘empty’ edge is proposed to randomly
become a ‘bond’ or a ‘dimer’; ‘dimer’ is to be ‘empty’ or
‘bond’; and ‘bond’ is to be ‘empty’ or ‘dimer’. However,
not all the proposals will generate a valid configuration
that has at most two states in Fig. 6 and the others in
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Fig. 4. For instance, (1), in the M sector, when u = v
is at state-7 and the empty edge is proposed to become
a dimer, the resulting vertex state at u will not be in
Fig. 6; (2), in the W sector, when u is at state-9′ and the
proposal is e = 0→ e = 1, this would yield state-11′ at u
which is not in Fig. 4 as required. A proposal would be
rejected if it leads to an invalid configuration. On this
basis, a version of the worm algorithm can be formulated
as (Algorithm 2)

1. If u = v, move it to a randomly chosen vertex.

2. Same as in Algorithm 1.

3. Same as in Algorithm 1.

4. Randomly choose ∆e = 1 or 2, and propose to up-
date the edge-uun state as euun

→ mod 3(euun
+

∆e). The proposal will be rejected if it yields

• for u = v, Vv or Vun
6∈ {9′, · · · , 13′} in Fig. 6;

• for u 6= v and v 6= un, Vu 6∈ {6, 7} in Fig. 4 or
Vun
6∈ {9′, · · · , 13′};

• for u 6= v and v = un, Vu or Vun
6∈ {6, 7}.

In this case, step-5 will be skipped. Symbol Vu

represents the vertex state at u.

5. Accept the update with probability

Pa = min
[

1, n∆ℓ (W (a)
u W (a)

un
)/(W (b)

u W (b)
un

)
]

,

where ∆ℓ denotes the change of the loop number
in the update. We remind that the constant ξw in
Eq. (11) is set ξw = 1.

Simulation consists of repetition of these steps, and the
measurement is taken in the M sector.
A practically important matter for implementing Al-

gorithm 2 is that a non-local query is needed to calcu-
late the loop-number difference ∆ℓ. We shall follow the
simultaneous breadth-first searching technique and the
trick to avoid as much as possible queries, as described
in Ref. [20].
More importantly, one can apply the so-called color-

ing method to avoid altogether the need for such global
queries for n ≥ 1. The key ingredient of the coloring
method is the trivial identity n = 1 + (n − 1) for the
statistical weight n of each loop. One can introduce an
auxiliary variable c = 0, 1 and rewrite the identity as

n =
∑

c=0,1

[1δc,0 + (n− 1)δc,1] . (17)

The variable c is generally referred to as the coloring
variable, and c = 0 (1) is said ‘active’ (‘inactive’) . See
Refs. [20] for details. In practise, the coloring variable
is assigned to each vertex in the M sector as (Coloring
assignment)

1. Set all vertices off loops be active (c = 0).

2. Independently for each loop, choose c = 0 with
probability 1/n and c = 1 with probability (1 −
1/n), and assign it to all the vertices on the loop.

On the basis of the Coloring assignment, the whole lattice
G is divided into the active sublattice Ga and the inac-
tive sublattice Gi. In Ga the vertices are active and the
edges connect two active vertices; in Gi the vertices are
inactive and the edges connect two inactive vertices. The
edges connecting one active and one inactive vertex form
the boundaries separating Ga and Gi. We state that,
conditioning on this decomposition, the vertex-state con-
figuration on the induced sublattice Ga and Gi is nothing
but a generalized FPLD model with n′ = 1 and (n− 1),
respectively.
One has now the right to update these generalized

FPLD models via any valid Monte Carlo algorithm. We
choose Algorithm 2 to update the model with n′ = 1 on
Ga and the identity operation (‘do nothing’) on Gi. Due
to the fact n′ = 1, the loop-number change ∆ℓ does not
matter anymore. Therefore, one can formulate another
version of the worm algorithm as (Algorithm 3)

1. Do the Coloring assignment if u = v.

2. Do M times of the coarse Monte Carlo steps (from
and back to the M sector) by performing Algorithm
2 on the induced subgraph Ga with n′ = 1.

The parameter M ≥ 1 can be set such that step 1 and 2
take comparable CPU time.
For the actual implementation of Algorithm 2 and 3,

positive statistical weights have to be assigned to vertex
states in Fig. 6. Before discussing on this, we mention
that there exist some freedom to choose which vertex
state is allowed in the W sector. As long as ergodicity is
satisfied, the consideration is to optimize the efficiency.
In Fig. 6, we do not allow the state with two bonds and
a dimer, because the only way to generate this state is
to add a dimer to state-7 and the only way to return to
Fig. 4 is to delete the newly generated dimer. Thus, such
a state will not help updating the configuration while
increasing computational burden. In contrast, state-9′

and -10′ (-11′ and -13′) are important for moving around
the dimers (bonds). We set

W9′ = W10′ = 1 W12′ = min(1,W7) and

W11′ = W13′ = W7 = e−2K . (18)

State-12′ is useful for switching between dimer and bond,
but should not occur more frequently than state-6 or -7.

IV. RESULTS

The complete phase diagram of AT model on the tri-
angular lattice is shown in Fig. 7. In following, we shall
present numerical results and discuss the phase bound-
ary in the antiferromagnetic two-spin coupling region
(J < 0).
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FIG. 7: (Color online) Phase diagram of the AT model on
the triangular lattice. Points–‘P’, ‘I’, ‘O’–correspond to the
4-state Potts, the Ising, and the O(2) loop model, respec-
tively. Points–‘F’, ‘C’, ‘D’–denote the zero-temperature Ising
antiferromagnet in variable στ , σ or τ (decoupled), σ or τ
(correlated), respectively. Point ‘E’ is the zero-temperature
4-state Potts antiferromagnet.

A. Finite J

We employ Algorithm 1 with Eq. (14) to simulate the
AT model in the region of finite J < 0 on triangular
lattices with periodic boundary conditions, using system
sizes in the range 6 ≤ L ≤ 192.

For a given loop configuration, we generate the associ-
ated spin configuration on the triangular lattice accord-
ing to the low-temperature expansion rule. Note that,
due to the periodic boundary condition, a loop config-
uration may correspond to no spin configuration. This
occurs when there exists an odd number of red or blue
loops winding around the boundary. In this case, we take
no measurement, and the simulation continues until the
next try. Let X be the indicator function which is 1 if
the loop configuration is measuring and corresponds to a
spin configuration, and 0 otherwise; let O be the operator
computed in one of the 4 compatible spin configurations;
therefore, what we are computing is [OX ]/[X ], with [ ]
the statistical average over loop configurations. The non-
valid loop configuration is not weighted, thus it does not
influence any of the numerical data related to the spin
variables. Further, since the special cases that the loop
configuration does not correspond to any spin configu-
ration result from boundary effects, such cases do not
dominate in large systems.

Two types of magnetization are measured as

Mσ =
1

V

∑

i

σi and Mστ =
1

V

∑

i

σiτi , (19)

where the summation is over the whole lattice. Accord-

0.1264 0.1265 0.1266

0.85

0.86

 

 

Q

K

 96
 120
 144
 168
 192

FIG. 8: (Color online) Quantity Qστ versus K at J = −1.0.
Lines connecting the data points are for illustration purpose.

ingly, the susceptibilities are defined as

χσ = V 〈M2
σ〉 and χστ = V 〈M2

στ 〉 , (20)

with 〈 〉 for statistical average. Dimensionless ratios are
found to be very powerful in locating the critical points
of many systems under continuous phase transitions. On
the basis of the fluctuation of the magnetization, we de-
fine two distinct dimensionless ratios as [25]

Qσ =
〈M2

σ〉2
〈M4

σ〉
and Qστ =

〈M2
στ 〉2

〈M4
στ 〉

. (21)

We also measure energy-like quantities as

Eσ = −J
∑

〈i,j〉

σiσj (22)

Eστ = −K
∑

〈i,j〉

σiτiσjτj (23)

E = Eσ + Eτ + Eστ , (24)

as well as the associated specific-heat-like quantities
Cσ = (〈E2

σ〉 − 〈Eσ〉2)/V , Cστ , and C.
The AT model for J = 0 reduces to the standard Ising

model in the Ising-spin variable στ , and undergoes a
Ising-like transition at Kc. For K < Kc, the configu-
rations in the Ising variables σ, τ , and στ are all in the
disordered (paramagnetic) state; forK > Kc, στ is in the
ferromagnetic state while σ and τ are still in the para-
magnetic state. We expect that this scenario continues
into the region J < 0.
We choose J = −0.2,−0.6,−1.0, and −2.0, and per-

form some preliminary and coarse simulations to approx-
imately locate the intersection of Qστ for various linear
system sizes L. Then, fine and extensive simulations are
carried out near the estimated critical point. Figure 8
displays Qστ versus K for different L at J = −1.0, indi-
cating a critical point near K ≈ 0.1265.
The finite-size scaling behavior of Qστ (K,L) near the

critical point Kc is described by

Q(K,L) = Q(tLyt , bLyi) , (25)
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J -0.2 -0.6 -1.0 -2.0
Kc 0.25303 (2) 0.18164 (2) 0.12653 (2) 0.06306 (3)
Lmin 48 48 48 48

χ̄2/dof 1.05 0.86 1.14 1.21

TABLE I: Details in the data fits according to Eq. 26.

where t and i represent the leading and the subleading
thermal scaling fields, with t ∝ (K − Kc) + · · · . The
associated renormalization exponents are denoted as yt
and yi. A Taylor expansion of Eq. (25) yields [26]

Q(K,L) = Qc + a1∆KLyt + a2(∆K)2L2yt + bLyi

+ c∆KLyt+yi + ... , (26)

with ∆K ≡ K − Kc. Parameters a1, a2, b, and c are
unknown constants.
According to the least-squares criterion, we fit the Qστ

data to Eq. (26). Assuming the transition is Ising-like,
we expect that the leading two finite-size correction expo-
nents are y1 = 2−2yh = −7/4 and y2 = yi = −2 for Qστ ,
where yh = 15/8 is the magnetic renormalization expo-
nent. With y1 and y2 fixed and L ≥ Lmin = 48, we obtain
Kc = 0.12653(2), yt = 1.01(2), and Qc = 0.8587(1) for
J = −1.0. The chi square per degree of freedom (χ̄2/dof)
is 1.14. The estimate of yt is consistent with the exact
result yt = 1, and the universal ratio Qc = 0.8587 also
agrees well with the earlier estimate Qc = 0.858 725 28(3)
for the Ising model on the triangular lattice [27].
The data of susceptibility χστ is analyzed by

χ(K,L) = L−2yh+d(a0 + a1∆KLyt + a2(∆K)2L2yt

+ bLyi + c∆KLyt+yi + ...) , (27)

and we determine the magnetic exponent as yh =
1.876(2), in good agreement with the exact value yh =
15/8. The specific-heat-like quantity C is also found to
diverge approximately in the logarithmic scale as L in-
creases. No phase transition is observed for Ising variable
σ or τ .
Similar results are found for other values of J , and the

estimated critical points are listed in Table I.
On this basis, we conclude that the phase transition

of the AT model in region (K > 0, J < 0) with finite J
is in the Ising universality. Finally, we mention that the
worm-type algorithm hereby does not suffer much from
critical slowing-down.

B. J → −∞

Table I suggests that the critical coupling Kc becomes
smaller as J becomes more negative, and that the ending
point of the critical line for J → −∞ is very close to
K = 0, since Kc(J = −2) = 0.06306(3) is already near 0.
To locate the ending point more accurately, we directly
simulate the J → −∞ limit, which makes use of the
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FIG. 9: (Color online) Dimensionless ratio Qστ versus K for
the n=2 FPLD model.

exact mapping to the n = 2 FPLD model and employs
Algorithm 3. System sizes take 6 values in range 30 ≤
L ≤ 960.
Note that the loops in the FPLD model serve as do-

main walls for the Ising variable στ in the AT model.
According to the low-temperature expansion rule, on the
triangular lattice we sample magnetization density Mστ ,
susceptibility χστ , dimensionless ratio Qστ , energy Eστ ,
and specific heat Cστ , whose definitions can be found in
Eqs. (19)–(24). Further, to explore the loop-length distri-
bution, on the honeycomb lattice we measure the length
of the longest loop as S1.
The finite-size data of the dimensionless ratio Qστ are

plotted in Fig. 9; an eye-view fitting yields a critical point
as Kc = 0.00(2). For K > Kc, the Qστ value rapidly ap-
proaches to 1 as size L increases. This reflects that the
Ising variable στ exhibits a long-range ferromagnetic or-
der on the triangular lattice; correspondingly, on the hon-
eycomb lattice loops are small–i.e., in a disordered state.
For K < Kc, Qστ converges to a constant Qc which
deviates from the trivial Gaussian value 1/3. This im-
plies that, despite the absence of a long-range order, the
spin-spin correlation function decays algebraically over
the distance.
In Fig. 9, one can observe that Qστ at K < 0 rapidly

converges to a K-dependent value, as expected in the low-
temperature BKT phase. This reminds us the analogy
between the FPLD and Nienhuis’s O(n) honeycomb loop
model with n = 2. The phase diagram of the latter is
shown in Fig. 10, where x is the statistical weight for an
occupied bond. For a given 0 ≤ n ≤ 2, the O(n) loop
model exhibits three distinct phases: a dilute and dis-
ordered phase (small x), a densely-packed phase (large
finite x), and a fully-packed phase (infinite x). Further-
more, the model is exactly solvable on the curves [23]

1

x±
=

√

2±
√
2− n . (28)

The system is equivalent to the tricritical q = n2 Potts
model along the critical line x+, belongs to the criti-
cal q = n2 Potts universality class in the densely-packed
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FIG. 10: (Color online) Phase diagram of the O(n) loop
model [23]. Red lines denote the directions of the renormal-
ization flows.

phase, and is in another critical universality in the fully-
packed phase. For n = 2, the two solvable lines x±

merge at a single point; the renormalization field is
marginally relevant (irrelevant) for x < x± (x > x±). In
other words, the phase transition at x± is Berezinsky-
Kosterlitz-Thouless(BKT)-like. At the special point
x±(n = 2), the amplitude of the renormalization field is
zero, and thus logarithmic corrections, present at most of
BKT-like critical points, disappear. This explains the ab-
sence of logarithmic corrections in the critical Baxter-Wu
model, which can be exactly mapped onto the O(2) loop
model at x±. For the critical O(2) loop model, it has been
identified that S1 ∝ LyH = L3/2 and χστ ∝ L2yt0−2 = L,
where yH = 3/2 is the hull exponent and yt0 = 3/2 is
the leading thermal renormalization exponent in the lan-
guage of the Potts model [28].

Since the state space of the FPLD model is a subspace
of the O(2) loop model, it is reasonable to conjecture
that the two models are in the same universality class.
Namely, we expect that the FPLD model undergoes a
BKT-like transition at Kc, where the logarithmic correc-
tions are absent; for K < Kc the system is in the same
universality class as at Kc but with logarithmic correc-
tions; for K → −∞ it is in another universality class.
Making use of the known exponent yH = 3/2 for S1 and
2yt0−2 = 1 for χστ , we plot L

−3/2S1 and L−1χστ versus
K in Figs. 11 and 12, respectively. They both display
a nice intersection at K = 0.000. From Fig. 12 one can
observe that the exponent yH varies along the BKT crit-
ical line, which reconciles the difference of yH between
the present model and the two-dimensional XY models.

To further explore the potential logarithmic correc-
tions, we assume Kc = 0 and plot L−3/2S1 and L−1χστ

at K = 0 versus L−1. As shown in Fig. 13, the rapid con-
vergence implies the absence of logarithmic corrections;
corrections with term L−1 are also very weak if they ex-
ist.

According to the least-squares criterion, the S1 and
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FIG. 11: (Color online) L−3/2S1 versus K for the n=2 FPLD
model.
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FIG. 12: (Color online) L−1χστ versus K for the n=2 FPLD
model.

χστ data are fitted by

Y (K,L) = c0 + c1∆K + · · ·+ LXY (a0 + a1∆K lnL

+a2(∆K)2 ln2 L+ b1L
y1 + b2L

y2 + ...) . (29)

Here ai are coefficients of the finite-size scaling variable
∆K lnL with ∆K = K −Kc, bi are amplitudes of finite-

0.00 0.01 0.02 0.03 0.04

-0.01

0.00

0.01

L-X
Y
Y

 - 
a 0

 

 

L-1

 
 S1

FIG. 13: (Color online) Quantities L−3/2S1 − a0,s1 and
L−1χστ −a0,χ at K = 0 versus L−1 for the n=2 FPLD model.
Constants a0,s1 and a0,χ are obtained from the fits.
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size corrections, and the terms with ci accounts for ana-
lytical background. There are also cross-terms involving
products of terms arising from these three sources. The
exponent XY is a general label for quantity Y . Equa-
tion (29) has assumed the absence of logarithmic cor-
rections. It occurs that both the S1 and the χστ data
with L ≥ Lmin = 60 can be well described by Eq. (29)
with fixed correction exponents y1 = −1 and y2 = −2.
The results for S1 are XY = 1.498(3), Kc = 0.001(2),
and χ̄2/dof=1.22; for χστ are XY = 1.001(2), Kc =
−0.001(1), and χ̄2/dof=0.87. These agree well with the
known exponents 3/2 for S1 and 1 for χστ , as well as with
the expectation Kc = 0. If the exponents XY are further
fixed at the known values, we obtain Kc = 0.0002(3),
χ̄2/dof=0.94 from S1 and −0.0003(4), χ̄2/dof=1.09 from
χστ . On this basis, we estimate the critical point as
Kc = −0.0001(6), which covers the uncertainties of Kc

from S1 and χστ .
We mention that, when an external field of strength

h/T is applied to the triangular Ising antiferromagnet,
the critical state of the system is not immediately de-
stroyed. Instead, the system has a BKT-like transition
at hc = 0.266(10) [29]. However, our Monte Carlo results
suggest that a critical point Kc 6= 0 is rather unlikely for
the n = 2 FPLD model.
In the limit K → ∞, the Ising variable στ is in the

ferromagnetic state. However, in terms of the σ or the
τ variable, it can be easily derived that the system is
also an Ising model with coupling 2J . Namely, along the
tanhK = 1 line, the AT model has an Ising-like tran-
sition at tanh 2J =

√
2 − 1. Further, the corner point

D :≡ (tanhK = 1, tanhJ = −1) corresponds to the
triangular antiferromagnet at zero temperature, which
is critical. Together with the earlier discussions in Sec.
I, this means that, in Fig. 7, the limiting points–D, C,
O, F, E–are all critical. From our simulations in range
−0.2 ≤ K ≤ 0.1 along the tanh J = −1 line (EC+CD),
we observe that, in the whole range, there exist alge-
braically decaying two-point correlation function for the
σ or the τ variable. On this basis, we conjecture that the
whole tanh J = −1 line (EC+CD) is critical for the σ or
the τ variable. Simulation along the tanhK = −1 line us-
ing the present worm algorithms suffers significantly from
critical slowing-down. Nevertheless, we suspect that the
whole tanhK = −1 line is critical for the στ variable.

V. DYNAMIC CRITICAL BEHAVIOR

In this section, we briefly report the efficiency of Algo-
rithm 2 for the n = 2 FPLD model, using the standard
procedure described in Ref. [30].
For each observable (say O), we calculate its autocor-

relation function

ρO(t) = 〈O(t)O(0)〉 − 〈O〉2,

where 〈 〉 denotes expectation with respect to the sta-
tionary distribution. We then obtain the corresponding

2 3 4 5 6

-2

-1

slope=-0.50(1)

ln
(T

E/L
2 )

 

 

lnL

FIG. 14: (Color online) Ln(TE/L
2) versus lnL at K = 0.

integrated autocorrelation time as

τint,O =
1

2

∞
∑

t=−∞

ρO(t) . (30)

The dynamic critical exponent zint,O is defined by

τint,O ∼ ξzint,O . (31)

where ξ is the spatial correlation length. On a finite lat-
tice at criticality, ξ is cut off by system size L. Therefore,
one has

τint,O = a+ bLzint,O , (32)

with a and b unknown parameters.

We simulate at the critical point Kc = 0. Note that,
during the worm simulations we measure the observables
only when the chain visits the Eulerian subspace, roughly
every TE ∼ Ld−2Xe hits. However, it is natural to de-
fine zint,O as in Ref. [19] to measure time in units of
sweeps of the lattice, i.e. Ld hits. Since one sweep takes
of order L2Xe visits to the Eulerian subspace, we have
τ ∼ Lz+2Xe . As shown in Fig.14, the exponent 2Xe is
estimated to be 0.50(1).

Among the measured quantities including the longest-
loop length S1, the loop number ℓ, and the energy-like
quantity Eστ etc, Eστ is found to have the largest value
of τint. Figure 15 displays ρEστ

(t/τint,Eστ
) as a func-

tion of t/τint,Eστ
, where an approximately exponential

decay is observed. The τint,Eστ
data are analyzed, and

we obtain zint,Eστ
= 0.28(1), which is shown in Fig. 16.

Similar fits are done for other quantities, and we have
zint,S1

= 0.26(1) and zint,ℓ = 0.27(1). In these fits, χ̄2/dof
ranges from 0.74 to 1.31. Therefore, our numerical results
suggest that the present worm algorithm is even more ef-
ficient than the one in Ref. [19].

Simulations are also carried out for K = −0.05, and
the dynamic critical behavior cannot be distinguished
from that for K = 0.
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FIG. 15: (Color online) ρEστ (t/τint,Eστ ) versus t/τint,Eστ at
K = 0.
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FIG. 16: (Color online) Ln(τint,O) versus lnL for different
observables at K = 0.

VI. DISCUSSION

In summary, we have formulated two versions of the
worm-type algorithms for the AT model on the triangular
lattice. The algorithms are based on the low-temperature
expansion graph of the AT model, and use the language of
vertex states. Such a formulation not only provides us a
different angle to understand the worm method, but also
offers an easy way to overcome the absorbing difficulty.
The efficiency of our algorithm is studied and can also
be reflected by the fact that we can simulate up to size
L = 960. Apparently, Algorithm 1 can be applied to the
ferromagnetic region J > 0 of the triangular AT model
and to the AT model on other planar lattices. Further, we
mention that the worm-type algorithms can be developed
on the basis of the high-temperature expansion graph of
the AT model. This yields a graphical model also by
Eq. (3), but defined on the original lattice for the AT
model. The statistical weights of the occupied bonds are

Xr = Xb = (e2K sinh 2J)/(e2K cosh 2J + 1)

Xr+b = (e2K cosh 2J − 1)/(e2K cosh 2J + 1) . (33)

It is reasonable to expect good efficiency for the AT
model on non-planar lattices–e.g., in higher spatial

J -0.2 -0.4 -0.6 -1.0 -2.0 −∞

Kc 0.442(2) 0.408(2) 0.386(2) 0.370(2) 0.366(2) 0.3655(3)
Lmin 36 36 36 36 36 36
χ̄2/dof 1.21 0.91 1.07 1.23 0.85 1.15

TABLE II: Details in the data fits according to Eq. 26 on the
kaǵome lattice.
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FIG. 17: (Color online) Phase diagram of the AT model on
the kaǵome lattice.

dimensions–with non-negative weights Xr = Xb and
Xr+b.
The high efficiency of the worm algorithms allows us

to explore the triangular-lattice AT model in the antifer-
romagnetic region, and accordingly we conjecture a com-
plete phase diagram in the (J,K) plane. Of the particu-
lar interest is the J → −∞ limit, where the AT model is
mapped onto the FPLD model with n = 2. As suggested
by the Monte Carlo simulation, the AT model undergoes
a BKT-like transition along the tanh J = −1 line, in the
same universality class as the classical XY model. We
also mention that it remains to be explored whether or
not, for other values of n, the FPLD and Nienhuis’s O(n)
model are in the same universality class.
Finally, we perform simulations for the AT model on

the kaǵome lattice in the region (J < 0,K ≥ 0), and
determine a line of Ising-like critical points. The results
are shown in Table II. Unlike on the triangular lattice,
the critical line ends at Kc = 0.3655 > 0, still in the Ising
universality. Taking into account that the frustration on
the kaǵome lattice is only partial, this is not surprising.
Accordingly, the phase diagram is shown in Fig. 17.
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[26] Y. Deng, H. W. J. Blöte, Phys. Rev. E 68, 036125(2003).
[27] G. Kamieniarz and H. W. J. Blöte, J. Phys. A: Math.
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