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The dependence of the dynamics of open quantum systems upon initial correlations between the
system and environment is an utterly important yet poorly understood subject. For technical con-
venience most prior studies assume factorizable initial states where the system and its environments
are uncorrelated, but these conditions are not very realistic and give rise to peculiar behaviors. One
distinct feature is the rapid build up or a sudden jolt of physical quantities immediately after the
system is brought in contact with its environments. The ultimate cause of this is an initial imbalance
between system-environment correlations and coupling. In this note we demonstrate explicitly how
to avoid these unphysical behaviors by proper adjustments of correlations and/or the coupling, for
setups of both theoretical and experimental interest. We provide simple analytical results in terms
of quantities that appear in linear (as opposed to affine) master equations derived for factorized
initial states.

I. OPEN SYSTEM INITIAL CORRELATIONS

An open quantum system is a quantum system ‘S’ that
interacts with some environment ‘E’ whose degrees of
freedom have been coarse grained (colloquially, ‘traced
out’ or ‘integrated over’ ). The unitary evolution of the
combined system + environment, ‘C’ (for combined or
closed), is generated by the Hamiltonian

HC ≡ HS + HE + HI , (1)

where HI denotes the system-environment interaction.
Specifying the initial state of the combined system is
necessary to determine the open-system dynamics. The
most common choice is to assume factorized initial states
for the system and environment

ρC(0) = ρS(0)⊗ ρE(0) , (2)

ρE(0) =
1

ZE(β)
e−βHE . (3)

where ZE(β) denotes the partition function of the free
(non-interacting) environment and T = 1/β is the tem-
perature of the environment, which acts here as a thermal
reservoir.

When considering environments with a large number
of high-frequency modes and characterized by a UV fre-
quency cutoff Λ, such a factorized initial state (chosen
for mathematical simplicity) unfortunately engenders un-
physical behavior such as a sudden jolt in physical quanti-
ties near the initial time (this was analyzed in some detail
in Ref. [1]) or spurious cutoff sensitivity of certain sys-
tem correlators (see Appendix D in Ref. [2]).[3] This kind
of initial conditions assumes that an uncorrelated sys-
tem and environment are instantaneously coupled with
non-vanishing strength. The pathological behavior arises
because the factorized initial state contains a number of
highly excited energy states of the full Hamiltonian (in-
cluding HI), even when the initial reduced states of the
system and environment are not highly excited in the free
theory, and it is a reflection of the high-frequency modes

of the environment quickly becoming correlated with the
system within a time of order 1/Λ.

The next most common choice of initial state (see
Ref. [4] and references therein) has been to consider sys-
tem deformations or measurements of the global equi-
librium state of the combined system ‘C’, with density
matrix

ρC(0) =
∑
n

O′n
1

ZC(β)
e−βHC On , (4)

where the O and O′ operators are restricted to act on
the system. However, this method still gives rise to jolts
for sufficiently general deformations or measurements [5],
which can be understood as a consequence of altering the
state of the system instantaneously [6].

To cure or tame these drastic effects, especially in
the context of linear systems, the following procedure
has been suggested: a) force the system by a constant
amount, b) wait for it to relax into the displaced equi-
librium state, and then c) release the force [4]. Alterna-
tively and in order to generate interesting coherent su-
perposition states for the system, one can start with the
equilibrium state of the combined system and act on the
system, but for a non-vanishing time [6]. Essentially we
view the problem as an imbalance between initial corre-
lations and initial coupling strength; the imbalance can
be countered on either side. We also believe that the
most natural resolution should be a dynamical prepara-
tion which relies upon equilibration [4, 7] followed by an
additional preparation of the system for a finite time [6].
Our key contribution is showing that this can be achieved
while still taking advantage of the simpler analytical re-
sults obtained when deriving the master equation for a
factorized initial state, without the need to introduce in-
homogeneous terms and an affine master equation [7].

In the next section we will briefly discuss the pertur-
bative open-system master equation which we will use to
approach these issues. Then in Secs. III and IV we will
provide resolutions based, respectively, on balancing the
coupling and the correlations.
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II. OPEN-SYSTEM DYNAMICS

In the time-local representation (also called the con-
volutionless or Markovian representation), the equation
governing the dynamics of the reduced density matrix of
the system, ρ, can be expressed as a quantum Liouville
equation

d

dt
ρ(t) = L(t)ρ(t) , (5)

for any factorized initial condition. As a perturbative ap-
proximation, L(t) is expanded in powers of the system-
environment interaction HI(t) and truncated to some
order. (In this section we momentarily consider time-
dependent Hamiltonians, even in the Schrödinger picture,
since the more general relations will be necessary for our
techniques.) Such perturbative master equations can be
derived in a variety of ways [8–10] and find application
in many branches of physics and chemistry [11–14]. The
expansion of L(t) will then take the form

L(t) =

∞∑
k=0

L2k(t) , (6)

L0 ρ = [−ıHS(t),ρ] , (7)

where L2k = O(H2k
I ) and to zeroth-order the system is

driven in a unitary manner by its Hamiltonian HS(t). We
take the expansion to be even as we only consider Gaus-
sian noise with vanishing mean.[15] A Gaussian noise dis-
tributional is necessary for higher-order perturbation the-
ory to be non-secular in the late-time limit [16], though
at second order one is effectively truncating the noise cu-
mulants in a manner consistent with Gaussian noise.

The linear master equation is derived under the general
assumptions of a factorized initial state and an expansion
of the interaction as a sum of separable operators:

HI(t) =
∑
n

Ln(t)⊗ ln(t) , (8)

where Ln(t) and ln(t) are respectively (possibly time-
dependent) system and environment operators in the
Schrödinger picture. The environment coupling opera-
tors ln(t) will typically be collective observables of the
environment, with dependence upon very many modes.

Using the notation of Ref. [16], the second-order master
equation can be expressed as

L2{ρ} ≡
∑
nm

[
Ln,ρ (Anm� Lm)† − (Anm� Lm)ρ

]
,

(9)
where the A operators and � product define the second-
order operator

(Anm � Lm)(t) ≡
∫ t

0

dτ αnm(t, τ) {G0(t, τ)Lm(τ)} .

(10)

Here G0(t, τ) : ρ(τ)→ ρ(t) is the free-system propagator,
which for a constant Hamiltonian H is given by

G0(t, τ)ρ = e−ı(t−τ)H ρ e+ı(t−τ)H , (11)

while αnm(t, τ) are the environment correlation functions
defined by

αnm(t, τ) = 〈ln(t) lm(τ)〉E , (12)

where ln(t) represents the time-evolving ln in the interac-
tion (Dirac) picture. In general the correlation function
is Hermitian and positive definite. For constant coupling
to any stationary environment, the correlation function
will also be stationary, α(t, τ) = α(t−τ). Furthermore,
for a thermal environment the correlation function will
satisfy the KMS relation [17, 18]:

α̃(ω) = α̃∗(−ω) e−βω , (13)

where α̃(ω) =
∫ +∞
−∞ dtα(t) e−ıωt denotes the Fourier

transform.
From this perspective, the mathematical cause of the

initial jolt becomes clear. For constant Hamiltonians and
an initially stationary environment, the second-order op-
erator obeys the relation

d

dt
(Anm� Lm)(t) = αnm(t) {G0(t)Lm} , (14)

which can be extremely large near the initial time when
considering an environment with a sufficient amount of
high frequency modes (such as low-temperature ohmic
and supra-ohmic environments) since α(t) is typically a
very localized distribution in those cases. For a finite
but large cutoff Λ, the environment correlation function
becomes of order Λ for a time of order 1/Λ.

III. COUPLING SWITCH-ON

One method for balancing the initial coupling between
the system and environment with their initial lack of cor-
relation, is to turn on the coupling slowly with a time-
dependent interaction such as

HI = θs(t)
∑
n

Ln ⊗ ln , (15)

where θs(t) : [0,∞) → [0, 1) is a smooth switch-on func-
tion with a characteristic timescale τs, which vanishes at
the initial time and becomes (effectively) one for times
longer than τs. To some extent, this was considered for
linear systems in Ref. [19].

Such a time-dependent interaction is equivalent to em-
ploying the second-order operator

(Anm� Lm)(t) = θs(t)

∫ t

0

dτ θs(t−τ)αnm(τ) {G0(τ)Lm} ,

(16)
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FIG. 1. (Color online) Zero-temperature, ohmic decay rate for
the • instantaneously coupled and · gradually coupled initial
states of a two-level system with exponential cutoff frequency
Λ = 100 Ω. In this case the switch-on function is exponential,
θs(t) = 1 − e−t/τs , and the switch-on times τs are chosen to
take the values 1/Λ, 2/Λ, 4/Λ, 8/Λ, 16/Λ.

for otherwise constant couplings and Hamiltonians.
Therefore, any initial jolt due to the localized nature of
α(t) will be suppressed by θs(t) as long as τs � 1/Λ. As
can be seen in Fig. 1, the cutoff-frequency jolts are es-
sentially replaced by jolts of frequency min[Λ, 1/τs] and
amplitude proportional to the same value. This ap-
proach provides a useful way of generating initial system-
environment correlations when τs is much larger than 1/Λ
but smaller than any other relevant timescales (such as
the system frequencies). Furthermore, even if a mild jolt
is still present, the important point is that it is cutoff
insensitive (for fixed τs and sufficiently large Λ).

IV. DYNAMICALLY PREPARED INITIAL
STATES

Alternatively, in order to balance the initial correla-
tions with an initially non-vanishing interaction strength,
we will consider here initial states with suitable correla-
tions to the environment. Such states will be obtained
via an auxiliary construction which involves evolving an
initially uncorrelated state for a sufficiently long time (a
similar procedure was used in Refs. [20, 21] within the
context of semiclassical gravity). The system-enviroment
correlations are then dynamically generated through the
environment interaction itself. Our first examples of equi-
librium preparation will be the simplest mathematically,
while the final examples of non-equilibrium preparation
will be closer to actual laboratory experiments.

In all cases we will take the system and environment
to be uncorrelated not at t = 0 but in the infinite past.

ρC(−∞) = ρS(−∞)⊗ ρE(−∞) , (17)

for some (possibly unimportant) system state ρS(−∞)
and thermal ρE(−∞). We then define the system Hamil-

tonian piecewise in time

HS(t) =

{
H+(t) 0 < t
H− t < 0

, (18)

such that in past the system is allowed to equilibrate with
the environment for an infinite time, which determines
the correlated initial state at t = 0. The second-order
master equation is then determined by

(Anm� Lm)(t) =

∫ t

−∞
dτ αnm(t, τ) {GS(t, τ)Lm(τ)} .

(19)
To analyze the coefficients associated with the initially-
correlated state, we will reduce them to a sum of coeffi-
cients for the auxiliary initially-uncorrelated state involv-
ing various time ranges. First, we split the integration
into two parts ∫ t

−∞
dτ =

∫ t

0

dτ +

∫ 0

−∞
dτ , (20)

with the first integral depending only upon G+(t, τ) and
corresponding to the uncorrelated coefficients. Inserting
the product G−(0, t)G−(t, 0), which equals the identity,
the second integral can be written as

M(t)

∫ 0

−∞
dτ αnm(t, τ) {G−(t, τ)Lm(τ)} , (21)

given the operator

M(t) ≡ G+(t, 0)G−(0, t) . (22)

The integral in Eq. (21) is then broken up into two parts∫ 0

−∞
dτ =

∫ t

−∞
dτ −

∫ t

0

dτ , (23)

corresponding to the asymptotic and finite-time coeffi-
cients for an initially uncorrelated system driven by the
time-independent preparation Hamiltonian H−. Finally,
our correlated coefficients can be expressed in terms of
the uncorrelated coefficients as

(Anm� Lm)(t)︸ ︷︷ ︸
correlated

= (Anm� Lm)+(t)︸ ︷︷ ︸
uncorrelated

(24)

−M(t)
{

(Anm� Lm)−(t)︸ ︷︷ ︸
jolt suppression

− (Anm� Lm)−(∞)︸ ︷︷ ︸
preparation eraser

}
,

where the subscripted (A � L)± coefficients are defined
as

(Anm� Lm)±(t) ≡
∫ t

0

dτ αnm(t, τ) {G±(t, τ)Lm(τ)} .

(25)
If the system frequencies are always small as compared to
the cutoff, we can inspect the early-time behavior (and
jolts) by taking G±(t) ≈ 1. Then one can see that the
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first two terms of Eq. (24) will precisely cancel in the
early-time regime. Therefore, the correlated initial states
are jolt-free given sufficiently small system frequencies as
compared to the cutoff: Ω � Λ. The final term in turn
is such that in the late-time limit it precisely cancels the
second term and erases all memory of H−. Finally note
that, quite trivially, if we choose H+(t) = H−, then the
first two terms cancel and we recover the equilibrium
coefficients at any finite time.

A. Equilibrium preparation

To prepare an initial state in this approach, we choose
the past Hamiltonian H− such that its dynamics along
with the environment interaction relaxes our system to
the desired initial state:

lim
t→∞

etL−(∞) ρ0 = ρ0 , (26)

L−(∞)ρ0 = 0 , (27)

where L−(∞) is the stationary limit of the Liouvillian
for a system with the past Hamiltonian as well as the
coupling to the environment.

Our target state ρ0 will only be specified to zeroth
order in the system-environment interaction. This is be-
cause for sufficiently long times (and in particular for the
asymptotic equilibrium state) the diagonal elements of
the reduced density matrix in the energy basis cannot be
determined beyond zeroth order anyway when using the
second-order perturbative master equation [22]. Due to
unavoidable degeneracy present in all open-system dy-
namics, one actually requires components of the fourth-
order master equation to calculate the full second-order
solutions. The second-order master equation provides for
all second-order dynamical quantities, such as frequency
shifts, dissipation, diffusion and decoherence rates. We
are concerned here with the induced jolts, which are dy-
namical quantities, and so this subtle point does not raise
any additional problems for us.

1. Preparation by decoherence

For Ln all commuting with each other, one can force
a general environment into `-state preparation via de-
coherence. If the past Hamiltonian is deactivated, or
more generally taken to commute with Ln, then since all
system operators commute with each other, the master
equation and its solutions will trivially result in a system
which decoheres in the `-basis associated with the Ln.
Thus, coefficients prepared in this manner are consistent
with any initial state which is a completely incoherent
mixture of `-states. [Note that if ρS(−∞) corresponds
to a pure eigenstate of the set {Ln}, this procedure sim-
ply adjusts the state of the environment, while system
and environment remain unentangled.]

2. Preparation by equilibration

A finite-temperature environment allows mixed state
preparation by equilibration. Essentially one chooses the
past Hamiltonian so that its thermal state (or some other
steady state) is the desired initial state. For a positive-
temperature environment, at zeroth order one can pre-
pare a (sufficiently) mixed state ρ0 with the past Hamil-
tonian H− = −T log(ρ0). However, one must be careful
that past system frequencies are small as compared to the
high frequency jolts, otherwise this preparation will fail
to remedy jolting. One can work out that the adiabatic
preparation regime is given by

pmax

pmin
� eβ Λ , (28)

where Λ is the jolt frequency and p are the initial state
probabilities of preparation energy levels connected by
Ln. (Clearly, for this method to work there can only be
a finite number of such energy levels.)

3. Preparation by freezing

To prepare an initially pure state via equilibration
at the order that we are working, one requires a zero-
temperature environment for preparation by freezing.
Then one can choose any H− with ground state ρ0. It is
important to emphasize that the reduced density matrix
of the system corresponding to the ground state of the
combined system will not be a pure state in general due
to the entanglement between the system and the environ-
ment: the free ground state of the system is a pure state,
but the reduced density matrix of the open system is in
general a mixed state beyond zeroth order in the system-
environment coupling. However, this point becomes irrel-
evant at the order that we are working since, as explained
above, when using the second-order perturbative master
equation to prepare the initial state by equilibration, one
cannot meaningfully specify ρ0 beyond zeroth order.

B. Non-equilibrium preparation

In order to consider situations closer to actual lab-
oratory experiments, here we will first allow the sys-
tem to equilibrate with the environment (as described
in the previous subsection) and then choose some prepa-
ration Hamiltonian HP(t), which would (in the absence
of coupling to the environment) generate the desired ini-
tial state in some finite time τP. One simply applies
the master-equation coefficients in Eq. (24) with future
Hamiltonian

H+(t) =

{
H0(t) τP < t
HP(t) t < τP

, (29)

where H0(t) is the desired post-preparation Hamiltonian.
All jolts will be avoided if 1/τP � Λ: the introduction
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FIG. 2. (Color online) Zero-temperature, ohmic decay rate for
the • unprepared and · prepared initial states of a two-level
system with exponential cutoff frequency Λ = 100 Ω. In this
case preparation by freezing was used to create an initially
excited state.

of a non-vanishing preparation time serves to tame the
jolts and eliminate their high-cutoff sensitivity.

1. State flipping

A possible preparation Hamiltonian, which could
model as a particular case Rabbi oscillations induced by
an appropriate laser field acting on a two-level system, is
the following:

HP =
π

2τP
(|ψ0〉〈0|+ |0〉〈ψ0|) . (30)

Assuming that one has a zero-temperature environment
and that the system is already equilibrated, driving the
system with this Hamiltonian for a time τP provides a rel-
atively easy way of preparing an initial pure state |ψ0〉.
As discussed above, the reduced density matrix of the
system will actually be a mixed state in general, because
of the system-environment entanglement of the equilib-
rium state as well as the interaction to the environment
while evolving the combined system during this addi-
tional finite preparation time. In fact, the preparation
time τP cannot be too long if we want the state of the
system to be more or less close to |ψ0〉.

2. State swapping

Let us consider a system which is initially equilibrated,
without making any assumption as to the temperature of
the environment. We couple the system to an ancillary
and analog system (equivalent Hilbert spaces) that is al-
ready prepared in the desired initial state. The system
of interest and ancilla are temporarily coupled in such a
way that they swap states, for instance by means of the

following block-matrix preparation Hamiltonian:

HP =
π

2τP

[
0 1
1 0

]
. (31)

In the absence of coupling to the environment this would
exactly swap the system and ancilla states in a time τP.
The same remarks as for state flipping concerning the
purity and accuracy of the prepared state when taking
into account the coupling to the environment also apply
in this case.

3. Other possibilities

Within the second-order perturbative approach, gener-
ation of equilibrium correlations in a laboratory setting
can always be calculated using Eq. (24). One only needs
to make sure that any additional state preparation does
not rely upon large system energies as compared to the
bath cutoff. For instance, one can consider the prepa-
ration of Ref. [6], which relies on ancillary degrees of
freedom to drive the equilibrium state into a coherent
superposition. In fact, one could simply apply their own
time-dependent Hamiltonian to our formulas as H+(t)
and obtain results consistent with theirs.

V. DISCUSSION

In this paper we have provided a technically and com-
putationally simple method for generating properly cor-
related initial states of open quantum systems, which is
an important issue when the environment consists of a
large number of high-frequency degrees of freedom. The
need for considering appropriately correlated states is be-
cause factorized initial states (with uncorrelated system
and environment) typically lead to unphysical patholog-
ical results at very short times whose effect on certain
properties of the system can persist at much longer times.
They are a consequence of the high-frequency modes of
the environment suddenly becoming correlated with the
system due to the interaction Hamiltonian HI. (In fact,
while being well behaved with respect to the free Hamil-
tonian, factorized initial states are highly excited states
of the full Hamiltonian.)

In previous studies dealing with this issue an appro-
priately correlated state was obtained by considering the
equilibrium state for the combined system (including the
system-environment interaction), which is usually done
employing Euclidean path integrals. Other states with a
more interesting dynamics have been generated by start-
ing with such an equilibrium state and acting on the
system S to prepare nontrivial states (including those
involving interesting coherent superpositions). Carrying
out this preparation procedure instantaneously [4] will
still lead in general to a pathological behavior [5], which
can be avoided by performing the preparation in a fi-
nite time [6]. Unfortunately in these cases (as well as
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in approaches based on affine master equations [7]) the
formalism is rather involved, especially as compared to
the much simpler one for factorized initial states. The
salient merit of our method is that the results can be
written in terms of the same kind of objects that appear
in the study of factorized initial states; see Eq. (24).

The key element of our approach is the use of an aux-
iliary construction which involves evolving the combined
system for an infinite time so that it reaches a stationary
(equilibrium) state with the system and the environment
properly correlated. This global equilibrium state is then
taken as the initial state and is further evolved with the
full system + environment Hamiltonian. However, the
system Hamiltonian HS(t) used for this subsequent evo-
lution can differ from that employed in the generation
of the initial state and even be time dependent, so that
nontrivial states can be produced in a second preparation
stage. With our formulation for the perturbative master
equation it is easy to show that the result can be entirely
written as a combination of the different objects that
appear for factorized initial states associated with the
auxiliary Hamiltonian (both for finite and infinite times)
on the one hand, and with the Hamiltonian during the
actual evolution (for a finite time) on the other. Further-
more, there is a cancellation between the contributions
corresponding to the auxiliary and actual Hamiltonians
involving finite-time evolutions, which separately exhibit
the jolts and unphysical features characteristic of factor-
ized initial states.

It should be emphasized that the crucial role in the

suppression of jolts and related pathologies is played by
the interaction Hamiltonian, which establishes the appro-
priate correlations between the “fast” environment de-
grees of freedom (high-frequency modes) and the system.
On the other hand, this is fairly insensitive to the details
of the system Hamiltonian as long as its characteristic
frequency scales are much smaller than those of the en-
vironment high-frequency modes. We have provided a
number of explicit examples illustrating how to prepare
nontrivial states for the system making use of suitable
time-dependent preparation Hamiltonians for the system
that last for a finite time. Other similar preparation
schemes, like that of Ref. [6], can be straightforwardly
implemented within our approach. In this manner, our
results might be applied towards specific experiments or
other theoretical formalisms, such as stochastic prepa-
ration schemes in quantum process tomography [23, 24].
Initial correlations with an environment provide a natural
means of generating non-completely-positive maps [25–
27] and, as we have shown, such correlations are a general
feature of non-Markovian dissipative quantum mechanics
when physically-relevant initial states are considered.
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