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Ground state structures of finite, cylindrically confined two-dimensional Yukawa systems com-
posed of charged superparamagnetic dust grains in an external magnetic field are investigated nu-
merically, using molecular dynamic simulations and lattice summation methods. The ground state
configuration of the system is identified using, as an approximation, the experimentally obtained
shape of the horizontal confinement potential in a classical single layer dusty plasma experiment
with non-magnetic grains. Results are presented for the dependence of the number density and lat-
tice parameters of the dust layer on (1) the ratio of the magnetic dipole-dipole force to electrostatic
force between the grains and (2) the orientation of the grain magnetic moment with respect to the
layer.

I. INTRODUCTION

Plasma crystals composed of dust grains that are su-
perparamagnetic, where each grain can acquire a strong
magnetic dipole moment in a magnetic field, are expected
to lead to new possibilities in dusty plasma research
[1]. While the electrostatic interaction between the nega-
tively charged grains is repulsive and isotropic, the mag-
netic dipole-dipole interaction is in general anisotropic
and can be attractive or repulsive as a function of orien-
tation of the magnetic dipole moments [2].
The use of superparamagnetic grains could enable

the magnetic tuning of plasma crystal structures, sim-
ilar to what has been considered for superparamagnetic
colloidal crystals (e.g. [3–6]). Very recently, colloidal
suspensions of sub-micron sized (≈ 100 nm) polyacry-
late capped superparamagnetic magnetite (Fe3O4) par-
ticles were successfully used to produce colloidal pho-
tonic crystals with magnetically tunable stop bands cov-
ering the visible spectrum [7–9]. The superparamag-
netic colloids form chain-like structures along an exter-
nal magnetic field with regular inter-particle spacing, en-
abling the diffraction of visible light. The tuning of the
diffraction wavelength was accomplished by varying the
inter-particle spacing. In turn this was done by varying
the magnetic field that alters the strength of the mag-
netic dipole-dipole interaction, which balances the repul-
sive electrostatic interaction between the charged colloids
[7, 8]. Single layer experiments with superparamagnetic
particles on the water-air interface have demonstrated
the advantages of the tunable inter-particle interaction
in the studies of fundamental collective phenomena, like
the solid-liquid phase transition [10, 11]. Coagulation
of charged, charged-magnetic, and magnetic dust aggre-
gates formed from a ferrous material in various environ-
ments was studied in [12], showing that the dipole-dipole
interaction can affect the orientation and structural for-
mation of aggregates as they collide and stick.
While colloidal crystals typically have inter-particle

spacings in the sub-micron regime, the spacing between

dust grains in plasma crystals is typically larger, on the
order of 100 µm, which is in the range of terahertz (THz)
wavelengths. We investigate the possibility of using su-
perparamagnetic particles in the larger micrometer size
range in a dusty plasma monolayer in a magnetic field,
with the aim of producing a tunable two-dimensional
(2D) lattice structure with spacings that correspond to
the THz regime [13]. The tuning is accomplished by vary-
ing the angle the magnetic field subtends with the plane
of grains. If such structures can be produced with the
grains occupying a large volume fraction of dust grains
(see [13]), they may have photonic applications in the
THz frequency range which is currently of great interest
owing to potential applications in spectroscopy, imaging,
etc. [14].
The paper is organized as follows. Section II presents

the model system, which is a confined 2D layer of charged
superparamagnetic grains in a plasma, placed in an ex-
ternal magnetic field. Section III presents the results of
MD simulations of the ground state structures of a finite
2D system in the crystalline solid phase as the relative
strength of the electrostatic to magnetic dipole-dipole in-
teraction and the direction of the grains’ magnetic mo-
ment with respect to the layer plane are varied. Section
IV presents lattice summation calculations of the corre-
sponding infinite 2D lattice limit of this system. A dis-
cussion of possible experimental parameters is given in
Section V, and a brief summary is given in section VI.

II. MODEL SYSTEM

The model system comprises a 2D lattice of superpara-
magnetic dust grains immersed in a plasma in a constant,
homogeneous external magnetic field B. Each grain ac-
quires an electric charge q due to plasma collection, and a
magnetic dipole moment M, which is induced by the ex-
ternal magnetic field and therefore lies in the direction of
B. The lattice lies in the x− y plane with an unspecified
orientation of its principal axes. The lattice structure is
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characterized by the lattice spacing b, the rhombic angle
φ and the aspect ratio ν = c/b ≥ 1, and the direction
of its principal axes with respect to the projection of the
magnetic field onto the plane, as shown in Fig. 1.
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FIG. 1. Geometry of the model system. (a) The lattice lies
in the x − y plane and its structure is characterized by the
lattice spacing b, the rhombic angle φ and the aspect ratio
ν = c/b. (b) The magnetic moment M of each grain lies in
the x − z plane at an angle α to the x-axis. The principal
lattice axes subtends an angle β with the projection of the
magnetic moment.

The grains interact via an electrostatic screened
Coulomb (Debye-Hückel or Yukawa) force and by the
induced magnetic dipole-dipole force. The electrostatic
interaction energy between two grains with charge q sep-
arated by a distance r is

UE =
q2

4πε0
exp(−r/λD)/r, (1)

where λD is the plasma Debye screening length, yielding
a repulsive force

FE(r) =
1

4πε0

q2

r2

(

1 +
r

λD

)

exp

(

− r

λD

)

r̂, (2)

where r̂ is a unit vector in the direction of r, which is
the vector connecting the two particles. The magnetic
dipole-dipole force between two grains, FM can be re-
pulsive or attractive depending on the relative positions
and orientations of the grains. Since it is assumed that
the magnetic dipole moments of all the grains are parallel
and have the same magnitude, the interaction energy of
the two magnetic dipoles is given by

UM =
µ0

4π

[

M2

r3
− 3(M · r)2

r5

]

. (3)

The magnetic dipole-dipole force between the two grains
is

FM =
µ0

4π

3M2

r4
[−r̂(5cos2 θ − 1) + 2m̂ cosθ], (4)

where r̂ and m̂ are unit vectors in the direction of r and
M, respectively, and θ is the angle between r̂ and m̂.
In the following we choose without loss of generality our
coordinate system such that M is in the x− z plane and
is oriented at an angle α with respect to the x-axis (see
Fig. 1).
In a typical 2D dusty plasma laboratory experiment,

the dust grains are confined by an electrostatic poten-
tial. In order to approximate experimental conditions in
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FIG. 2. (color online) Experimental (a) and MD simulation
(b) results for the radial dust density distribution in 2D layer
of non-magnetic dust. Distances are normalized to the ob-
served average central lattice spacing 〈b〉. The total particle
numbers are ∼ 3000 in the experiment and 5000 in the simu-
lation.

our simulations, we considered a more accurate repre-
sentation of the radial dependence of the horizontal con-
finement potential beyond the usual quadratic approx-
imation. This was done by performing an experiment
using non-magnetic melamine-formaldehyde (MF) parti-
cles with the aim of measuring the radial density profile of
the single layer dust cloud. Without going in the details,
the experiments used 4.36 µm diameter MF spheres, in a
1 Pa argon gas discharge driven by 5 W of RF power at
13.56 MHz. A layer of ∼ 3000 MF spheres was created
over the 18 cm diameter lower powered electrode. Par-
ticle detection was performed using 650 nm wavelength
laser illumination from the side and a 1.4 Megapixel CCD
camera from the top. Sub-pixel resolution was achieved
using the center-of-mass method discussed in detail in
[15]. Calculating the density of the dust layer by averag-
ing over the nearest-neighbor distances, the experimental
density profile was approximated by the functional form:

n(r̄) ≈ n4r̄
4 + n2r̄

2 + n0, (5)

where r̄ = r/〈b〉 and 〈b〉 is the average central lattice
spacing, as shown in Fig. 2(a).
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A series of molecular dynamics (MD) simulations us-
ing N = 5000 non-magnetic particles with parameters of
the Yukawa interaction taken from the experiment were
performed assuming different fourth order polynomial
shapes for the horizontal confinement potential. The re-
sulting dust density profiles were compared with that ob-
tained in the experiment. A one-to-one correspondence
is not expected due to the different particle numbers,
instead, the one best matching the anharmonic char-
acteristics of the experimental dust density profile was
searched for. The level of anharmonicity is quantified by
the ratio of the fourth and the second order contribu-
tions at the outer edge on the equilibrated dust cloud as
n4r̄

4
max/n2r̄

2
max. The corresponding molecular dynamics

(MD) simulation results at an average Coulomb coupling
parameter Γ ≈ 1000 is displayed in Fig. 2(b). In contrast
to infinite, homogeneous systems, the Coulomb coupling
parameter does not fully characterizes the entire particle
ensemble as it depends on the particle density, which has
a strong radial profile in our confined system. Details of
the simulation model can be found in the next section.
The experimental dust density profile could be best

reproduced assuming a horizontal confinement potential
of the form

V (r) = V4r
4 + V2r

2, (6)

with V4 = 5·10−7 and V2 = 0.004. Here and in the follow-
ing, we use distances normalized to the Debye screening
length λD, kept constant for all simulations.
Note that compared to a confinement potential with

a simple quadratic dependence on r, (6) this simulation
leads to a more homogeneous distribution in the center
of the cloud, with about 10 to 20 % lower density and
has resulted in 〈b〉 ≈ λD and a dimensionless screening
parameter κ = (λD

√
πn)−1 ≈ 0.53 in the central region.

III. MOLECULAR DYNAMICS SIMULATIONS

The molecular dynamics (MD) simulations are based
on a standard method described in e.g. [16]. We consider
a 2D layer particle ensemble of 5000 particles. Pair in-
teractions (forces) are evaluated in every time-step for
each pair of particles. Time integration is performed
using the velocity-Verlet scheme. Particles are released
from random positions, a slow velocity back-scaling ther-
mostat is applied until the system reached an average
Coulomb coupling parameter of 1000. Simulations were
run for about 1000 plasma oscillation cycles without fur-
ther thermostation assuming that a near to ground state
configuration could develop during this time.
For the simulations and the presentation of our results

we use the following reduced quantities: λD = 1 (length
unit), b is the lattice spacing in units of λD, q = 1 (charge
unit) is the dust grain charge, and η =

√
µ0ε0M/qλD is a

measure of the relative strength of the magnetic dipole-
dipole interaction to the electrostatic interaction. The
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FIG. 3. Equilibrium distance req(M, α) for α < αth along
the x-direction versus η. For strong magnetic interactions
(large η) the attraction dominates at all distances, thus no
equilibrium distance can be found, as indicated by the dis-
continuation of the lines for α = 0o and 30o.

layer structure is further characterized by the bulk den-
sity n, both b and n being an average over the central
region of the layer, along with the rhombic angle φ and
aspect ratio ν.
Setting FM (r,M, α) + FE(r) = 0, yields the equi-

librium distance req(M, α) where the electrostatic and
magnetic forces balance. A particle pair separated by a
distance of req is, however an unstable configuration, be-
cause a small perturbation could result in collapse or ex-
pansion. The effect of the magnetic field is the strongest
when r is purely in the x-direction, in this case Eq. (4)
yields

FM (x,M,α) = −µ0

4π

3M2

x4

[

3(cos2α) − 1
]

. (7)

In this case, there is a threshold angle, αth =
cos−1(1/

√
3) ≈ 54.74o, below which the attractive inter-

action due to the magnetic dipole-dipole force can over-
come the repulsive electrostatic interaction for certain
values of η, and agglomeration can set in. The variation
of req with η is shown in Fig. 3 for several values of α that
are below the threshold angle. As expected, req increases
as η increases, with the largest increase for small α since
the magnitude of the attractive interaction gets larger
as α gets smaller. Thus the grains could agglomerate at
progressively smaller values of η as α decreases. Further-
more at large enough η values the magnetic attraction
fully dominates over the electrostatic repulsion, thus an
equilibrium distance can not be found at all. This trend
will also be apparent in the following discussions of the
MD simulation results on the variation of the structure
of the lattice under variation of η and α.
An illustration of the effect of the competing magnetic

and electrostatic interactions is shown in Fig. 4, display-
ing the total pair potential energy U(r) = UE(r)+UM (r)
of a single particle for selected α angles above and below
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FIG. 4. (color online) Total pair potential energy U(r) =
UE(r) +UM (r) around a single particle situated at r = (0, 0)
at a relative strength of the magnetic interaction to the elec-
trostatic interaction η = 0.5: (a) α = 60o > αth and (b)
α = 50o < αth. The potential energy surface is cut at y = 0
to display the variation of the interaction energy along the
x-axis. The central particle is shown.

the threshold value and η = 0.5. The interaction is re-
pulsive in all directions for α = 60o; for α = 50o around
x = 0 an attractive region develops in a narrow angle
around the ±x direction, separated by a potential barrier
from the outside, as it can be seen from this cross-section
at y = 0 (front face). Particles with high enough energy
in the tail of the thermal distribution can overcome the
potential barrier and result in particle agglomeration af-
ter a long enough time.

Turning now to the lattice structure, first consider the
case when there is no magnetic field, so that there are
no induced magnetic moments (η = 0). The underly-
ing hexagonal structure is due to the isotropic repulsive
electrostatic interaction and is characterized by φ = 60o

and ν = 1. Due to the boundary condition imposed
by the cylindrical symmetry of the confinement and to
the fact that a perfect hexagonal configuration cannot
form in a system with density gradinet, lattice frustra-
tions result in slight fragmentation of the ground state
structure. Next, consider the case there is an external
magnetic field perpendicular to the layer, α = 90o. The
lattice structure remains hexagonal, since both the mag-
netic dipole-dipole and electrostatic interactions are re-
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FIG. 5. Radial density distribution in the dust layer as a
function of r (the distance from the center), for α = 90o and
several values of η.

pulsive and isotropic. As expected, the density decreases
as η increases (as q = 1 and λD = 1 are kept constant),
that is, the average lattice spacing increases owing to the
increased repulsive force, as can be seen in the density
profile results in Fig. 5. Figure 6 shows a snapshot of the
system for α = 90o and η = 0.1.
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FIG. 6. Snapshot of layer for α = 90o and η = 0.1

Consider now the more interesting cases when the di-
rection of the induced magnetic moments is tilted with
respect to the dust layer (α < 90o). The shortest lattice
distance forms along the x-axis, thus the lattice forms
with β = 0 (see Fig 1), as might be expected since the
magnetic repulsion weakens or eventually turns purely
attractive in that direction (depending on the value of
α). Thus the system appears to align along that direc-
tion. Figure 7 shows a snapshot of the system for α = 60o

and η = 0.8, where a crystal structure without domain
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FIG. 7. Snapshot of layer for α = 60o and η = 0.8

fragmentation is formed, showing that the ordering effect
arising from the magnetic enhancement of the interaction
overcomes the frustration induced by the boundary con-
dition. The variation of the lattice spacing b, the bulk
density n, the rhombic angle φ and the aspect ratio ν
are shown in Figs. 8-11, respectively, as a function of η
for various values of α. For the large angles α & 70o, the
lattice spacing increases and the density decreases as η in-
creases, because the magnetic dipole-dipole interaction is
repulsive and its anisotropy is not strong. For this range
of angles α, both the rhombic angle and aspect ratio of
the lattice increase somewhat as α decreases, as the mag-
netic interaction becomes less repulsive. For the small
angles, α = 45o and 50o, the lattice spacing decreases
as η increases, owing presumably to the dominance of
the attractive magnetic interaction, which significantly
weakens the electrostatic repulsion. At this low α angles
the system becomes unstable against aggregation, in the
sense discussed above, at intermediate η values. In the
true (T = 0) ground state, low α configurations are sta-
ble as long as b > req , however our simulations are run at
very low, but finite temperatures, where agglomeration
can start (causing the simulation to stop) due to thermal
energy fluctuations at long enough times. The η values
at which this occurs (η ≈ 0.3 ) are for this particular set
of simulation parameters, simulation time in particular.
During this time the system reaches only kinetically sta-
ble states, and not a thermodynamical equilibrium state.

This is illustrated in Fig. 12, where the total potential
due to the lattice particles, as experienced by a particle
in the center is shown. In the large α > αth case (a) the
potential energy U(r) surface exhibits a deep, well con-
fined potential minimum. This can be contrasted with
the case of a selected low α < αth value (b) where a min-
imum enclosed by a low potential barrier is formed along
the ±x directions around the vacant particle position at

r = (0, 0).
While the central density tends to increase somewhat

with η, both the rhombic angle and aspect ratio increase
rapidly, tending toward a rectangular configuration.
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At the intermediate angle α = 60o, there appears to
be non-monotonic characteristics of some of the lattice
parameters. When η is small, the trends follow those
described previously for small α, with b decreasing, and
φ and ν increasing, as η increases. However, at larger
η & 0.4 − 0.5, the lattice spacing b begins to some-
what increase, although still remaining below its value
at α = 90o. Meanwhile the central density decreases
significantly, which may indicate that the overall mag-
netic repulsion starts to overcome the complex effect of
the force anisotropy. This non-monotonic behavior may
be consistent with the trends pointed out in Fig. 5 in
[1], for intermediate magnetic field values, where it was
found that for small inter-grain distances, the total force
FE + FM from eqs. (2) and (4) was attractive, while at
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intermediate distances the total force was repulsive.
Overall, it can be seen from Figs. 8-11 that for these

parameters, it may be possible to tune the lattice spac-
ing and structure by changing η and α. The lattice spac-
ing could be tuned by a factor of about 2, with a corre-
sponding factor of ∼ 2 in the particle density and chang-
ing together with other lattice parameters. The lattice
structure could be tuned from triangular (hexagonal) to
almost rectangular; depending on η and α, the rhombic
angle can vary between 60 and 80 degrees, and the aspect
ratio between 1 and 2.

IV. INFINITE LATTICE

We have investigated the ground state energy at T = 0
(where T is the thermal energy of the dust grains) for an
infinite, isotropic lattice when α = 90o, by using the lat-
tice summation technique. This provides a reliable basis
with high accuracy for validation of our MD simulations.

FIG. 12. (color online) Total potential energy U(r) = UE(r)+
UM (r) of the lattice experienced by a test particle situated at
r = (0, 0). Lattice parameters are taken from the MD simu-
lations for (a) an α > αth and (b) an α < αth configuration.
The area plotted is restricted to y ≥ 0.

The lattice summation was performed by summing the
contribution of about 109 neighboring grains on a perfect
lattice characterized by the lattice spacing b, the aspect
ratio ν and the rhombic angle φ. In addition, in contrast
to our previous studies of structural phase transitions
in 2D complex plasma composed of ferromagnetic grains
with intrinsic magnetic dipole moments [17] where the
density was kept constant, in this case the pressure is
kept constant as η is varied. The pressure was computed
from the diagonal elements of the pressure tensor, which
in this case has the form:

pγ =
1

b

∑

rγ<0

rγ
|r|∇rU(r), (8)

where γ denotes the Cartesian coordinates (x or y), r

is the distance between the particle at the origin (0,0)
and another lattice particle. Summation is performed
for particles located on a half-plane. U(r) is the inter-
particle pair potential energy, including electrostatic and
magnetic contributions. In the calculations the lattice is
oriented along the x-axes, but due to the force isotropy of
a perfect hexagonal lattice, the calculated pressure value
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does not depend on the lattice orientation. More graphi-
cally this is the force per unit length acting on a fictitious
line of particles inserted at x = 0 (or y = 0) interacting
with all particles on one side only.
The configuration with the minimal total energy was

sought. The initial lattice parameters were adopted from
the η = 0 MD simulation (λD ≡ 1, ν = 1, φ = 60o,
b = 0.81) and the initial pressure value, which was kept
constant during the subsequent η > 0 calculation, was
evaluated for this initial lattice. The results are shown
in Fig. 13, which compares the lattice spacing as a func-
tion of η for the infinite lattice with the MD simulation
results for the finite system. Note that in the finite case,
the lattice spacing is an average over the central part of
the particle cloud. The comparison shows good agree-
ment for the lower magnetization (η < 0.4) cases, where
the deformation of the finite dust cloud is not too large
(∆b/b = 10%) and confinement can be approximated by
the constant pressure condition.
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V. POSSIBLE EXPERIMENTAL PARAMETERS

To aid in the design of a possible experimental realiza-
tion of ground state structures studied in this paper, we
estimate a range of possible plasma and dust parameters
necessary to observe such effects. The quantity η is a
figure-of-merit, which characterizes the relative strength
of the magnetic dipole-dipole to electrostatic interaction
between neighboring grains. Assuming that the grain is
spherical, with radius R, and that it can be character-
ized by a magnetic permeability µ, its induced magnetic
dipole moment can be expressed as [2]

M =
µ0

4π
R3

(

µ− 1

µ+ 2

)

B. (9)

Expressing the magnitude of the grain charge as q =
R|φs| where φs is the grain surface potential, we have

that

η =
√
µ0ε0

M

qλD

∼ 0.03
R2(µm)B(G)

φs(V )λD(µm)

(

µ− 1

µ+ 2

)

. (10)

For example, consider a plasma with Te ∼ 2 eV and
ni ∼ 108 cm−3 so that the effective Debye length in the
sheath, given approximately by the ion Debye length with
Ti ∼ Te, is about λD ∼ 1 mm. Assuming that µ = 4,
R = 5 µm, B = 5000 G, φs = 2 V, we obtain η ∼ 0.94.
Thus for these dust and plasma parameters, varying the
external magnetic field from 0 to 5000 G can vary η from
0 to about 1. Another possibility is a denser plasma, with
Te ∼ 2 eV and ni ∼ 1010 cm−3, and the other parameters
the same as in the last example. In this case, varying
the magnetic field from 0 to 500 G can vary η from 0
to about 1. Thus it seems that there could be a range
of reasonable experimental parameters for observing the
variation of lattice parameters and structures predicted
in this paper.
It is expected that an external magnetic field can af-

fect the properties of the background gas discharge as
well [18]. Electrons and possibly ions can become magne-
tized at higher magnetic fields, and the transport of these
charged particles can result in variations in the charging
process and the effective confinement potential experi-
enced by the dust particles. Furthermore, new types
of instabilities may arise. It is well beyond the scope
of this paper to discuss the possible experimental chal-
lenges. However, it would be very interesting to see under
what conditions the tendency of alignment of the lattice
structure, as depicted in Figs. 6 and 7, would be pro-
nounced enough to overcome the possible rotation of the
dust cloud due to an ion drag force in the case where the
ions are magnetized (see e.g. [19]).

VI. SUMMARY

The ground state configuration of a 2D dusty plasma
crystal composed of super-paramagnetic grains immersed
in an external magnetic field has been investigated using
MD simulations with parameters that may be close to
realizable experimental conditions. Since the magnetic
dipole moments of the grains are induced by the exter-
nal magnetic field, the dipole moments of the grains all
lie in the same direction. This study determined the de-
pendence of the lattice parameters and structure on the
parameter η (which characterizes the relative strength of
the magnetic dipole-dipole to electrostatic interactions)
and α (the angle between the direction of the magnetic
dipole moment and the lattice plane). It was found that,
for a given set of dust and plasma parameters, it may
be possible to vary the lattice spacing within a factor of
about 2 by changing the magnitude of the external mag-
netic field or the direction of the field with respect to the
dust layer. Correspondingly, the particle density can be
varied by about a factor of 2. Moreover, the lattice struc-
ture can be tuned from triangular (hexagonal) to almost
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rectangular; depending on η and α, the rhombic angle
can vary between 60 and 80 degrees, and the aspect ratio
between 1 and 2. It was shown that there could be sets
of reasonable experimental parameters for observing the
effects discussed in this paper.
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