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We present calculations of the relaxation of magnetic field structures that have the shape of particular knots
and links. A set of helical magnetic flux configurations is considered, which we calln-foil knots of which
the trefoil knot is the most primitive member. We also consider two non-helical knots, namely the Borromean
rings as well as a single interlocked flux rope that also serves as the logo of the Inter-University Centre for
Astronomy and Astrophysics in Pune, India. The field decay characteristics of both configurations is investigated
and compared with previous calculations of helical and non-helical triple ring configurations. Unlike earlier
non-helical configurations, the present ones cannot trivially be reduced via flux annihilation to a single ring.
For then-foil knots the decay is described by power laws that range form t−2/3 to t−1/3, which can be as
slow as thet−1/3 behavior for helical triple-ring structures that was seen in earlier work. The two non-helical
configurations decay liket−1, which is somewhat slower than the previously obtainedt−3/2 behavior in the
decay of interlocked rings with zero magnetic helicity. We attribute the difference to the creation of local
structures that contain magnetic helicity which inhibits the field decay due to the existence of a lower bound
imposed by the realizability condition. We show that net magnetic helicity can be produced resistively as a result
of a slight imbalance between mutually canceling helical pieces as they are being driven apart. We speculate
that higher order topological invariants beyond magnetic helicity may also be responsible for slowing down the
decay of the two more complicated non-helical structures mentioned above.

PACS numbers: 52.65.Kj, 52.30.Cv, 52.35.Vd

I. INTRODUCTION

Magnetic helicity is an important quantity in dynamo the-
ory [1, 2], astrophysics [3, 4] and plasma physics [5–8]. In
the limit of high magnetic Reynolds numbers it is a conserved
quantity [9]. This conservation is responsible for an inverse
cascade which can be the cause for large-scale magnetic fields
as we observe them in astrophysical objects. The small-scale
component of magnetic helicity is responsible for the quench-
ing of dynamo action [10] and has to be shed in order to obtain
magnetic fields of equipartition strength and sizes larger then
the underlying turbulent eddies [11].

Helical magnetic fields are observed on the Sun’s surface
[12, 13]. Such fields are also produced in tokamak experi-
ments for nuclear fusion to contain the plasma [14]. It could
be shown that the helical structures on the Sun’s surface are
more likely to erupt in coronal mass ejections [15], which
could imply that the Sun sheds magnetic helicity [16]. In [17]
it was shown that for a force-free magnetic field configura-
tion there exists an upper limit of the magnetic helicity below
which the system is in equilibrium. Exceeding this limit leads
to coronal mass ejections which drag magnetic helicity from
the Sun.

Magnetic helicity is connected with the linking of magnetic
field lines. For twoseparatemagnetic flux rings with mag-
netic flux φ1 andφ2 it can be shown that magnetic helicity
is equal to twice the number of mutual linkingn times the
product of the two fluxes [18]

HM =

∫

V

A ·B dV = 2nφ1φ2, (1)

whereB is the magnetic flux density, expressed in terms of
the magnetic vector potentialA via B = ∇ × A and the
integral is taken over the whole volume. As we emphasize in

this paper, however, this formula doesnotapply to the case of
a single interlocked flux tube.

The presence of magnetic helicity constrains the decay of
magnetic energy [5, 9], due to the the realizability condition
[19], which imposes a lower bound on the spectral magnetic
energy if magnetic helicity is finite, i.e.

M(k) ≥ k|H(k)|/2µ0, (2)

whereM(k) andH(k) are magnetic energy and helicity at
wavenumberk and µ0 is the vacuum permeability. These
spectra are normalized such that

∫

M(k) dk = 〈B2〉/2µ0

and
∫

H(k) dk = 〈A · B〉, where angular brackets denote
volume averages. Note that the energy at each scale is bound
separately, which constrains conversions from large- to small-
scales and vice versa. For most of our calculations we assume
a periodic domain with zero net flux. Otherwise, in the pres-
ence of a net flux, magnetic helicity would not be conserved
[20, 21], but it would be produced at a constant rate by theα
effect [22].

The connection with the topology of the magnetic field
makes the magnetic helicity a particularly interesting quan-
tity for studying relaxation processes. One could imagine that
the topological structure imposes limits on how magnetic field
lines can evolve during magnetic relaxation. To test this it
has been studied whether the field topology alone can have
an effect on the decay process or if the presence of magnetic
helicity is needed [23]. The outcome was that even for topo-
logically non-trivial configurations the decay is only effected
by the magnetic helicity content. This was however ques-
tioned [24] and a topological invariant was introduced via field
line mapping which adds another constraint even in absence
of magnetic helicity. Further evidence for the importance of
extra constraints came from numerical simulations of braided
magnetic field with zero magnetic helicity [25] where, at the
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FIG. 1: (Color online) Braid representation of the 4–foil knot. The
letters denote the starting position and the numbers the crossings.

end of a complex cascade-like process, the system relaxed into
an approximately force-free field state consisting of two flux
tubes of oppositely-signed twist. Since the net magnetic he-
licity is zero, the evolution of the field would not be governed
by Taylor relaxation [5], but by extra constraints.

A serious shortcoming of some of the earlier work is that
the non-helical field configurations considered so far were still
too simple. For example, in the triple-ring of [23] it would
have been possible to rearrange freely one of the outer rings
on top of the other one without crossing any other field lines.
The magnetic flux of these rings would annihilate to zero,
making this configuration trivially non-helical. Therefore, we
construct in the present paper more complex non-helical mag-
netic field configurations and study the decay of the magnetic
field in a similar fashion as in our earlier work. Candidates for
suitable field configurations are the IUCAA logo [37] (which
is a single non-helically interlocked flux rope that will be re-
ferred to below as IUCAA knot) and the Borromean rings for
whichHM = 0. The IUCAA knot is commonly named818
in knot theory. Furthermore we test if eq. (1) is applicable for
configurations where there are no separated flux tubes while
magnetic helicity is finite. Therefore we investigate setups
where the magnetic field has the shape of a particular knot
which we calln–foil knot.

II. MODEL

A. Representation ofn–foil knots

In topology a knot or link can be described via the braid no-
tation [26], where the crossings are plotted sequentially which
results in a diagram which resembles a braid. Some conve-
nient starting points have to be chosen from where the lines
are drawn in the direction according to the sense of the knot
(Fig. 1 and Fig. 2).

For each crossing either a capital or small letter is assigned
depending on whether it is a positive or negative crossing.

For the trefoil knot the braid representation is simply AAA.
For each new foil a new starting point is needed, at the same
time the number of crossings for each line increases by one.
This means that for the 4–foil knot the braid representationis
ABABABAB, for the 5–foil ABCABCABCABCABC, etc.

We construct an initial magnetic field configuration in the
form of ann–foil knot with nf foils or leaves. First we con-
struct its spine or backbone as a parameterized curve in three-
dimensional space. In analogy to [27] we apply the convenient

�3 �2 �1 0 1 2 3
x

�3

�2

�1

0

1

2

3

y A B C

1

2

3

4

5

6

7

8

FIG. 2: (Color online)xy-projection of the 4–foil knot. The numbers
denote the crossings while the colors (line styles) separate different
parts of the curve. The letters denote the different starting positions
for the braid representation in Fig. 1. The arrow shows the sense of
the knot.
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FIG. 3: (Color online) Projection of the 5–foil on thexy-plane. The
lines show the meaning of the distanceC, which has to be larger than
1 to make sense.

parameterization

x(s) =





(C + sin snf) sin[s(nf − 1)]
(C + sin snf) cos[s(nf − 1)]

D cos snf



 , (3)

where(C−1) is some minimum distance from the origin,D is
a stretch factor in thez-direction ands is the curve parameter
(see Fig. 3).

The strength of the magnetic field across the tube’s cross-
section is constant and equal toB0. In the following we shall
useB0 as the unit of the magnetic field. Since we do not want
the knot to touch with itself we setC = 1.6 andD = 2. The
full three-dimensional magnetic field is constructed radially
around this curve (Fig. 4), where the thickness of the cross-



3

FIG. 4: Isosurface of the initial magnetic field energy for the 4–foil
configuration.

FIG. 5: Isosurface of the initial magnetic field energy for the IUCAA
knot seen from the top (left panel) and slightly from the side(right
panel).

section is set to0.48.

B. The IUCAA knot

A prominent example of a single non-helically interlocked
flux rope is the IUCAA knot. For the IUCAA knot we apply a
very similar parameterization as for then–foil knots. We have
to consider the faster variation inz-direction which yields

x(s) =





(C + sin 4s) sin 3s
(C + sin 4s) cos 3s
D cos (8s− ϕ)



 , (4)

whereC and D have the same meaning as for then–foil
knots andϕ is a phase shift of thez-variation. The full three-
dimensional magnetic field is constructed radially around this
curve (Fig. 5), where the thickness of the cross-section is set
to 0.48.

C. Borromean rings

The Borromean rings are constructed with three ellipses
whose surface normals point in the direction of the unit vec-
tors (Fig. 6).

FIG. 6: Isosurface of the initial magnetic field energy for the Bor-
romean rings configuration.

The major and minor axes are set to2.5 and1, respectively,
and the thickness of the cross-section is set to0.6. If any
one of the three rings were removed, the remaining 2 rings
would no longer be interlocked. This means that there is no
mutual linking and hence no magnetic helicity. One should
however not consider this configuration as topologically triv-
ial, since the rings cannot be separated, which is reflected in a
non-vanishing third order topological invariant [28].

D. Numerical setup

We solve the resistive magnetohydrodynamical (MHD)
equations for an isothermal compressible gas, where the gas
pressure is given byp = ρc2S , with the densityρ and isother-
mal sound speedcS . Instead of solving for the magnetic field
B we solve for its vector potentialA and choose the resistive
gauge, since it is numerically well behaved [29]. The equa-
tions we solve are

∂A

∂t
= U ×B + η∇2

A (5)

DU

Dt
= −c2S∇ ln ρ+ J ×B/ρ+ F visc (6)

D ln ρ

Dt
= −∇ ·U , (7)

whereU is the velocity field,η the magnetic diffusivity,
J = ∇ × B/µ0 the current density,F visc = ρ−1

∇ · 2νρS
the viscous force, with the traceless rate of strain tensorS

with componentsSij = 1
2
(ui,j + uj,i) −

1
3
δij∇ · U , ν is the

kinematic viscosity, andD/Dt = ∂/∂t+U · ∇ is the advec-
tive time derivative. We perform simulations in a box of size
(2π)3 with fully periodic boundary conditions for all quanti-
ties. To test how boundary effects play a role we also perform
simulations with perfect conductor boundary conditions, i.e.
the component of the magnetic field perpendicular to the sur-
face vanishes. In both choices of boundary conditions mag-
netic helicity is gauge invariant and a conserved quantity in
ideal MHD, i.e.η = 0. As a convenient parameter we use the
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Lundquist number Lu= UAL/η, whereUA is the Alfvén ve-
locity andL is a typical length scale of the system. The value
of the viscosity is characterized by the magnetic Prandtl num-
ber PrM = ν/η. However, in all cases discussed below we use
PrM = 1. To facilitate comparison of different setups it is con-
venient to normalize time by the resistive timetres = r2π/η,
wherer is the radius of the cross section of the flux tube.

We solve Eqs. (5)–(7) with the Pencil Code [30]
(http://pencil-code.googlecode.com), which
employs sixth-order finite differences in space and a third-
order time stepping scheme. As in our earlier work [23],
we use2563 meshpoints for all our calculations. We recall
that we use explicit viscosity and magnetic diffusivity. Their
values are dominant over numerical contributions associated
with discretization errors of the scheme [38].

III. RESULTS

A. Helicity of n–foil knots

We test equation (1) for then–foil knots in order to see how
the number of foilsnf relates to the number of mutual linking
n for the separated flux tubes. From our simulations we know
the magnetic helicityHM and the magnetic fluxφ through the
tube. Solving (1) forn will lead to an apparent self-linking
number which we callnapp. It turns out thatnapp is much
larger thennf and increases faster (Fig. 7).

We note that (1) does not apply to this setup of flux tubes
and propose therefore a different formula for the magnetic he-
licity,

HM = (nf − 2)nfφ
2/2. (8)

In Fig. 7 we plot the apparent linking number together with a
fit which uses equation (8).

Equation (8) can be motivated via the number of crossings.
The flux tube is projected onto thexy-plane such that the num-
ber of crossings is minimal. The linking number can be de-
termined by adding all positive crossings and subtracting all
negative crossings according to Fig. 8.

The linking number is then simply given as [31]

nlinking = (n+ − n
−
)/2, (9)

wheren+ andn
−

correspond to positive and negative cross-
ings respectively. If we setnlinking = napp then we easily
see the validation of (8). Each new foil creates a new ring of
crossings and adds up one crossing in each ring (see Fig. 9),
which explains the quadratic increase.

B. Magnetic energy decay forn–foil knots

Next, we plot in Fig. 10 the magnetic energy decay forn–
foil knots with nf = 3 up tonf = 7 for periodic boundary
conditions. It turns out that at later times the decay slows
down asnf increases. The decay of the magnetic energy obeys
an approximatet−2/3 law for nf = 3 and at−1/3 law for
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FIG. 7: (Color online) The apparent self-linking number forn–foil
knots with respect tonf (upper panel). The fit is obtained by equating
(1) and (8). The length of an–foil knot is plotted with respect to
nf (lower panel), which can be fitted almost perfectly by a linear
function.

++ − −

FIG. 8: (Color online) Schematic representation illustrating the sign
of a crossing. Each crossing has a handedness which can be either
positive or negative. The sum of the crossings gives the number of
linking and eventually the magnetic helicity content via equation (8).

nf = 7. The rather slow decay is surprising in view of earlier
results that for turbulent magnetic fields the magnetic energy
decays liket−1 in the absence of magnetic helicity and like
t−1/2 with magnetic helicity [32]. Whether or not the decay
seen in Fig. 10 really does follow a power law with such an
exponent remains therefore open.

The different power laws for a given number of foilsnf are
unexpected because the setups differ only in their magnetic
helicity and magnetic energy content, and not in the qualita-
tive nature of the knot. Indeed, one might have speculated
that the fastert−2/3 decay applies to the case with largernf ,
because this structure is more complex and involves sharper
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FIG. 9: (Color online) The isosurface for the 4–foil knot field config-
uration. The sign of the crossing is always negative. The rings show
the different areas where crossings occur.
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FIG. 10: (Color online) Time dependence of the normalized mag-
netic energy for a given number of foils with periodic boundary con-
ditions. The power law for the energy decay varies between−2/3
for nf = 3 (solid/blue line) and−1/3 for nf = 7 (solid/black).

gradients. On the other hand, a larger value ofnf increases the
total helicity, making the resulting knot more strongly packed.
This can be verified by noting that the magnetic helicity in-
creases quadratically withnf while the magnetic energy in-
creases only linearly. This is because the energy is propor-
tional to the length of the tube which, in turn, is proportional
tonf (Fig. 7). Therefore we expect that for the highernf cases
the realizability condition should play a more significant role
at early times. This can be seen in Fig. 11, where we plot
the ratio2M(k)/k|H(k)| for nf = 3 to nf = 7 for k = 2.
Since the magnetic helicity relative to the magnetic energyis
higher for larger values ofnf , it plays a more significant role
for highnf . This would explain a different onset of the power
law decay, although it would not explain a change in the expo-
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FIG. 11: (Color online) Time dependence of the quotient fromthe
realizability condition (2) fork = 2. It is clear that for largernf the
energy approaches its minimum faster.
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FIG. 12: (Color online) Time dependence of the normalized mag-
netic helicity for a given number of foils with periodic boundary
conditions.

nent. Indeed the decay ofHM shows approximately the same
behavior for allnf (Fig. 12). We must therefore expect that
the different decay laws are described only approximately by
power laws.

For periodic boundary conditions it is possible that the flux
tube reconnects over the domain boundaries which could lead
to additional magnetic field destruction. To exclude such com-
plications we compare simulations with perfectly conduct-
ing or closed boundaries with periodic boundary conditions
(Fig.13). Since there is no difference in the two cases we can
exclude the significance of boundary effects for the magnetic
energy decay.

In all cases the magnetic helicity can only decay on a resis-
tive time scale (Fig. 12). This means that during faster dynam-
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FIG. 13: (Color online) Time dependence of the normalized mag-
netic energy for the trefoil and 4–foil knot with periodic and perfect
conductor boundary (PC) conditions. There is no significantdiffer-
ence in the energy decay for the different boundary conditions.

ical processes, like magnetic reconnection, magnetic helicity
is approximately conserved. To show this we plot the mag-
netic field lines for the trefoil knot at different times (Fig. 14).
Since magnetic helicity does not change significantly, the self-
linking is transformed into a twisting of the flux tube which is
topologically equivalent to linking. Such a process has also
been mentioned in connection with Fig. 1 of Ref. [33], while
the opposite process of the conversion of twist into linkagehas
been seen in Ref. [34]. We can also see that the reconnection
process, which transforms the trefoil knot into a twisted ring,
does not aid the decay of magnetic helicity.

C. Decay of the IUCAA knot

For the non-helical triple ring configuration of Ref. [23] it
was found that the topological structure gets destroyed after
only 10 Alfvén times. The destruction was attributed to the
absence of magnetic helicity whose conservation would pose
constraints on the relaxation process. Looking at the magnetic
field lines of the IUCAA knot at different times (Fig. 15), we
see that the field remains structured and that some helical fea-
tures emerge above and below thez = 0 plane. These local-
ized helical patches could then locally impose constraintson
the magnetic field decay.

The asymmetry of the IUCAA knot in thez-direction leads
to different signs of magnetic helicity above and below the
z = 0 plane. This is shown in Figs. 16 and 17 where we
plot the magnetic helicity for the upper and lower parts for
two different values ofϕ; see Eq. (4). In the plot, we refer
to the upper and lower parts as north and south, respectively.
These plots show that there is a tendency of magnetic helicity
of opposite sign to emerge above and below thez = 0 plane.
Given that the magnetic helicity was initially zero, one may

FIG. 14: (Color online) Magnetic field lines for the trefoil knot at
time t = 0 (upper panel) andt = 7.76 × 10−2 tres (lower panel).
Both images were taken from the same viewing position to make
comparisons easier. The Lundquist number was chosen to be1000.
The colors indicate the field strength.

speculate that higher order topological invariants could pro-
vide an appropriate tool to characterize the emergence of such
a “bi-helical” structure from an initially non-helical one.

Note that there is a net increase of magnetic helicity over
the full volume. Furthermore, the initial magnetic helicity
is not exactly zero either, but this is probably a consequence
of discretization errors associated with the initialization. The
subsequent increase of magnetic helicity can only occur on
the longer resistive time scales, since magnetic helicity is con-
served on dynamical time scales. Note, however, that the in-
crease of magnetic helicity is exaggerated because we divide
by the mean magnetic energy density which is decreasing with
time.

In Fig. 18 we plot thexy-averaged magnetic helicity as a
function ofz andt. This shows that the asymmetry between
upper and lower parts increases with time which we attribute
to the Lorentz forces through which the knot shrinks and com-



7

FIG. 15: (Color online) Magnetic field lines for the IUCAA knot at
t = 0.108 tres (upper panel) and att = 0.216 tres (lower panel) for
Lu = 1000 andϕ = 4/3π.

presses its interior. This is followed by the ejection of mag-
netic field.

To clarify this we plot slices of the magnetic energy density
in thexz-plane for different times (Fig. 19). The slices are set
in the center of the domain.

Due to the rose-like shape, our representation of the IU-
CAA knot is not quite symmetric and turns out to be narrower
in the lower half (negativez) than in the upper half (positive
z), which is shown in Fig. 5 (right panel). When the knot
contracts due to the Lorentz force, it begins to touch the inner
parts which creates motions in the positivez-direction which,
in turn, drag the magnetic field away from the center (Fig. 19).
The pushing of material can however be decreased when the
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FIG. 16: (Color online) Normalized magnetic helicity in thenorth-
ern (green/dashed line) and southern (red/dotted line) domain half
together with the total magnetic helicity (blue/solid line) for the IU-
CAA knot with Lu = 2000 andϕ = 4/3π.
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FIG. 17: (Color online) Normalized magnetic helicity in thenorth-
ern (green/dashed line) and southern (red/dotted line) domain half
together with the total magnetic helicity (blue/solid line) for the IU-
CAA knot with Lu = 2000 andϕ = (4/3 + 0.2)π.

phaseϕ is changed. Forϕ = (4/3 + 0.2)π there is no such
upward motion visible and the configuration stays nearly sym-
metric (Fig. 20).

In Fig. 21 the decay behavior of the magnetic energy is
compared with previous work [23]. We note in passing that
the power law oft−1 is expected for non-helical turbulence
[32], but it is different from the helical (t−1/2) and non-helical
(t−3/2) triple ring configurations studied earlier. A possible
explanation is the conservation of magnetic structures forthe
IUCAA knot, whereas the non-helical triple-ring configura-
tion loses its structure.
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FIG. 18: (Color online)xy-averaged magnetic helicity density pro-
file in z-direction for the IUCAA knot with Lu= 2000 andϕ =
4/3π. There is an apparent asymmetry in the distribution amongst
the hemispheres.

D. Borromean rings

Previous calculations showed a significant difference in the
decay process of three interlocked flux rings in the helical and
non-helical case [23]. In Fig. 21 we compare the magnetic
energy decay found from previous calculations using triple
ring configurations with the IUCAA knot and the Borromean
rings.

The Borromean rings show a similar behavior as the IU-
CAA knot where the magnetic energy decays liket−1. Sim-
ilarly to the IUCAA knot we expect some structure which
is conserved during the relaxation process and causes the
relatively slow energy decay compared to other non-helical
configurations. We plot the magnetic field lines at times
t = 0.248 tres and t = 0.276 tres; see Figs. 22 and 23, re-
spectively. Att = 0.248 tres there are two interlocked flux
rings in the lower left corner, while in the opposite half of the
simulation domain a clearly twisted flux ring becomes visible.
The interlocked rings reconnect att = 0.276 tres and merge
into one flux tube with a twist opposite to the other flux ring.
The magnetic helicity stays zero during the reconnection, but
changes locally, which then imposes a constraint on the mag-
netic energy decay and could explain the power law that we
see in Fig. 21. This finding is similar to that of Ruzmaikin &
Akhmetiev [28] who propose that after reconnection the Bor-
romean rings configuration transforms first into a trefoil knot
and three 8-form flux tubes and after subsequent reconnection
into two untwisted flux rings, so-called unknots, and six 8-
form flux tubes. We can partly reproduce this behavior, but
instead of a trefoil knot we obtain two interlocked flux rings
and instead of the 8-form flux tubes we obtain internal twist
in the flux rings.
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FIG. 19: (Color online) Magnetic energy density in thexz-plane for
y = 0 at t = 0 (upper panel) andt = 5.58× 10−2 tres (lower panel)
for the IUCAA knot with Lu= 2000 andϕ = 4/3π.

IV. CONCLUSIONS

In this paper we have analyzed for the first time the decay of
complex helical and non-helical magnetic flux configurations.
A particularly remarkable one is the IUCAA knot for which
the linking number is zero, and nevertheless, some finite mag-
netic helicity is gradually emerging from the system on a re-
sistive time scale. It turns out that both the IUCAA knot and
the Borromean rings develop regions of opposite magnetic he-
licity above and below the midplane, so the net magnetic he-
licity remains approximately zero. In that process, any slight
imbalance can then lead to the amplification of the ratio of
magnetic helicity to magnetic energy—even though the mag-
netic field on the whole is decaying. This clearly illustrates
the potential of non-helical configurations to exhibit nontriv-
ial behavior, and thus the need for studying the evolution of
higher order invariants that might capture such processes.

The role of resistivity in producing magnetic helicity from
a non-helical initial state has recently been emphasized [35],
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FIG. 20: (Color online) Magnetic energy density in thexz-plane for
y = 0 at t = 0 (upper panel) andt = 5.58× 10−2 tres (lower panel)
for the IUCAA knot with Lu= 2000 andϕ = (4/3 + 0.2)π. The
magnetic field stays centered.

but it remained puzzling how a resistive decay can increase the
topological complexity of the field, as measured by the mag-
netic helicity. Our results now shed some light on this. Indeed,
the initial field in our examples has topological complexity
that is not captured by the magnetic helicity as a quadratic
invariant. This is because of mutual cancellations that can
gradually undo themselves during the resistive decay process,
leading thus to finite magnetic helicity of opposite sign in spa-
tially separated locations. We recall in this context that the
magnetic helicity over the periodic domains considered here
is gauge invariant and should thus agree with any other defini-
tion, including the new absolute helicity defined in Ref. [35].

Contrary to our own work on a non-helical interlocked flux
configuration [23], which was reducible to a single flux ring
after mutual annihilation of two rings, the configurations stud-
ied here are non-reducible even when mutual annihilation is
taken into account.

For the helicaln–foil knot, we have shown that the mag-
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FIG. 21: (Color online) Magnetic energy versus time for the different
initial field configurations together with power laws which serve as a
guide. The decay speed of the IUCAA knot and Borromean rings lies
well in between the helical and non-helical triple ring configuration.

FIG. 22: (Color online) Magnetic field lines att = 0.248 tres for
the Borromean rings configuration for Lu= 1000. In the lower left
corner the interlocked flux rings are clearly visible which differs from
the proposed trefoil knot [28]. The flux ring in the opposite corner
has an internal twist which makes it helical. The colors denote the
strength of the field, where the scale goes from red over greento
blue.

netic helicity increases quadratically withn. Furthermore,
their decay exhibits different power laws of magnetic energy
which lie betweent−2/3 for the 3–foil knot andt−1/3 for the
7–foil knot. The latter case corresponds well with the previ-
ously discussed case of three interlocked flux rings that are
interlocked in a helical fashion. The appearance of different
power laws seems surprising since we first expected a uni-
form power law in all helical cases in the regime where the
magnetic helicity is so large that the realizability condition
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FIG. 23: (Color online) Magnetic field lines att = 0.276 tres for the
Borromean rings configuration for Lu= 1000. The two flux rings
in the corners both have an internal twist which makes them helical.
The twist is however of opposite sign which means that the whole
configuration does not contain magnetic helicity. The colors denote
the strength of the field, where the scale goes from red over green to
blue.

plays a role. This makes us speculate whether there are other
quantities that are different for the various knots and constrain
magnetic energy decay. Such quantities would be higher order
topological invariants [28], which are so far only defined for
spatially separated flux tubes. In order to investigate their role
they need to be generalized such that they can be computed
for any magnetic field configuration, similar to the integralfor

the magnetic helicity.
The power law oft−1 in the decay of the magnetic energy

for the IUCAA knot and the Borromean rings is different from
thet−3/2 behavior found earlier for the non-helical triple ring
configuration. The observed decay rate can be attributed to the
creation of local helical structures that constrain the decay of
the local magnetic field. But we cannot exclude higher order
invariants [28] whose conservation would then constrain the
energy decay.

The Borromean rings showed clearly that local helical
structures can be generated without forcing the system. These
can then impose constraints on the field decay. We suggest
that spatial variations should be taken into account to refor-
mulate the realizability condition (2), which would increase
the lower bound for the magnetic energy. For astrophysical
systems local magnetic helicity variations have to be consid-
ered to give a more precise description of both relaxation and
reconnection processes.

Both the IUCAA logo and the Borromean rings do not stay
stable during the simulation time and split up into two sepa-
rated helical magnetic structures. On the other hand we see
that the helicaln–foil knots stay stable. A similar behav-
ior was seen in [36], where magnetic fields in bubbles inside
galaxy clusters were simulated. In the case of a helical initial
magnetic field the field decays into a confined structure, while
for low enough initial magnetic helicity, separated structures
of opposite magnetic helicity seem more preferable.
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