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We present calculations of the relaxation of magnetic figdacsures that have the shape of particular knots
and links. A set of helical magnetic flux configurations is sidered, which we calh-foil knots of which
the trefoil knot is the most primitive member. We also coasitivo non-helical knots, namely the Borromean
rings as well as a single interlocked flux rope that also seagthe logo of the Inter-University Centre for
Astronomy and Astrophysics in Pune, India. The field decayatteristics of both configurations is investigated
and compared with previous calculations of helical and helical triple ring configurations. Unlike earlier
non-helical configurations, the present ones cannot bisvige reduced via flux annihilation to a single ring.
For then-foil knots the decay is described by power laws that rangefo 2/ to t~/2, which can be as
slow as the~'/3 behavior for helical triple-ring structures that was seeearlier work. The two non-helical
configurations decay like~!, which is somewhat slower than the previously obtainiet{? behavior in the
decay of interlocked rings with zero magnetic helicity. Werilute the difference to the creation of local
structures that contain magnetic helicity which inhibhe field decay due to the existence of a lower bound
imposed by the realizability condition. We show that net metig helicity can be produced resistively as a result
of a slight imbalance between mutually canceling helicatps as they are being driven apart. We speculate
that higher order topological invariants beyond magneticcity may also be responsible for slowing down the
decay of the two more complicated non-helical structurestioeed above.

PACS numbers: 52.65.Kj, 52.30.Cv, 52.35.Vd

I. INTRODUCTION this paper, however, this formula dosst apply to the case of
a single interlocked flux tube.

Magnetic helicity is an important quantity in dynamo the-  The presence of magnetic helicity constrains the decay of
ory [1, 2], astrophysics [3, 4] and plasma physics [5-8]. Inmagnetic energy [5, 9], due to the the realizability comaiti
the limit of high magnetic Reynolds numbers it is a conserved19], which imposes a lower bound on the spectral magnetic
quantity [9]. This conservation is responsible for an iseer €nergy if magnetic helicity is finite, i.e.
cascade which can be the cause for large-scale magneti field
as we observe them in astrophysical objects. The smak-scal M(k) = k|H (k)|/2p0, )

component of magnetic helicity is responsible for the ghenc

ing of dynamo action [10] and has to be shed in order to obtaiwhereM(g) an Ig(k) .ar?hmagnetlc energy ag_clz!thelthﬁy at
magnetic fields of equipartition strength and sizes larigent wavenumberz and i 1S the vacuum permeapiity. ese

i _ 2
the underlying turbulent eddies [11]. spectra are normalized such thaf/ (k) dk = (B?)/2u

Helical magnetic fields are observed on the Sun’s surfacgnde(k> dk = (A - B), where angular brackets denote

[12, 13]. Such fields are also produced in tokamak eXperiyolume averages. Note that the energy at each scale is bound

ments for nuclear fusion to contain the plasma [14]. It Couldseplaratel)é, Wh'Ch consgalns con]f:rS|onslfrolrr1t_large- wilsm
be shown that the helical structures on the Sun'’s surface aa%aefi)g{:: dv(;fa\i/r?rv?/ﬁh z%rr:)nth gugur()ct?wgnv?slgni?’\vtvﬁeasrsgsr?e
more likely to erupt in coronal mass ejections [15], which P : ’ P

: : g f a net flux, magnetic helicity would not be conserved
could imply that the Sun sheds magnetic helicity [16]. In][17 ence o .
it was shown that for a force-free magnetic field configura-[zﬁo’ ?[1]2,2but it would be produced at a constant rate bysthe
tion there exists an upper limit of the magnetic helicitydvel € _Tfﬁ [22]. . ith the toool f th fic field
which the system is in equilibrium. Exceeding this limitdsa € connection wi € topology of the magnetc fie

to coronal mass ejections which drag magnetic helicity from. akes the magnetic h_eI|C|ty a particularly Interestingrgua
the Sun. ity for studying relaxation processes. One could imagira t

the topological structure imposes limits on how magnetidfie
lines can evolve during magnetic relaxation. To test this it
has been studied whether the field topology alone can have
an effect on the decay process or if the presence of magnetic
helicity is needed [23]. The outcome was that even for topo-
logically non-trivial configurations the decay is only effed
by the magnetic helicity content. This was however ques-
Hy = / A-BdV =2n¢1¢s, (1) tioned [24] and a topological invariant was introduced \addfi
v line mapping which adds another constraint even in absence
where B is the magnetic flux density, expressed in terms ofof magnetic helicity. Further evidence for the importante o
the magnetic vector potentiagd via B = V x A and the extra constraints came from numerical simulations of lzaid
integral is taken over the whole volume. As we emphasize imagnetic field with zero magnetic helicity [25] where, at the

Magnetic helicity is connected with the linking of magnetic
field lines. For twoseparatemagnetic flux rings with mag-
netic flux ¢; and¢- it can be shown that magnetic helicity
is equal to twice the number of mutual linkingtimes the
product of the two fluxes [18]
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FIG. 1: (Color online) Braid representation of the 4—foilokn The
letters denote the starting position and the numbers ttesicigs.

-
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end of a complex cascade-like process, the system relataed in
an approximately force-free field state consisting of twa flu
tubes of oppositely-signed twist. Since the net magnetic he
licity is zero, the evolution of the field would not be govedne
by Taylor relaxation [5], but by extra constraints.

A serious shortcoming of some of the earlier work is that
the non-helical field configurations considered so far weite s F|G. 2: (Color online)zy-projection of the 4—foil knot. The numbers
too simple. For example, in the triple-ring of [23] it would denote the crossings while the colors (line styles) sepatiffierent
have been possible to rearrange freely one of the outer ringsarts of the curve. The letters denote the different stgupisitions
on top of the other one without crossing any other field linesfor the braid representation in Fig. 1. The arrow shows tinseef
The magnetic flux of these rings would annihilate to zero,the knot.
making this configuration trivially non-helical. Theregéomwe
construct in the present paper more complex non-helical mag
netic field configurations and study the decay of the magnetic

w
\
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field in a similar fashion as in our earlier work. Candidatas f B R e \\\\\\
suitable field configurations are the IUCAA logo [37] (which A
is a single non-helically interlocked flux rope that will ke r | A S ey
ferred to below as IUCAA knot) and the Borromean rings for Y \ - !
which Hy; = 0. The IUCAA knot is commonly name8i;s = oho i A I
in knot theory. Furthermore we test if eq. (1) is applicalole f < I Vv
configurations where there are no separated flux tubes while 1l ! PN o
magnetic helicity is finite. Therefore we investigate setup N N
where the magnetic field has the shape of a particular knot ol
which we calln—foil knot. [N N / f
332 -1 o0 1 2 3
x
Il. MODEL
A. Representation ofn—foil knots FIG. 3: (Color online) Projection of the 5—foil on the-plane. The

lines show the meaning of the distari€ewhich has to be larger than

In topology a knot or link can be described via the braid no-! {0 make sense.
tation [26], where the crossings are plotted sequentiatiiv
re_sults in a d|ag_ram which resembles a braid. Some CONves. .- meterization
nient starting points have to be chosen from where the line

are drawn in the direction according to the sense of the knot (C' + sin sny) sin[s(ne — 1)]
(Fig.1andFig. 2). _ _ _ x(s) = | (C+sinsng)cos[s(ng —1)] |, (3)
For each crossing either a capital or small letter is assigne D cos sng

depending on whether it is a positive or negative crossing.

For the trefoil knot the braid representation is simply AAA. where(C'—1) is some minimum distance from the origin,is
For each new foil a new starting point is needed, at the sama stretch factor in the-direction ands is the curve parameter
time the number of crossings for each line increases by ongsee Fig. 3).
This means that for the 4—foil knot the braid representaion  The strength of the magnetic field across the tube’s cross-
ABABABAB, for the 5—foil ABCABCABCABCABC, etc. section is constant and equal®y. In the following we shall

We construct an initial magnetic field configuration in the useB, as the unit of the magnetic field. Since we do not want
form of ann—foil knot with n¢ foils or leaves. First we con- the knot to touch with itself we sé&t = 1.6 andD = 2. The
struct its spine or backbone as a parameterized curve ia-threfull three-dimensional magnetic field is constructed riylia
dimensional space. In analogy to [27] we apply the convenienaround this curve (Fig. 4), where the thickness of the cross-



FIG. 6: Isosurface of the initial magnetic field energy foe tBor-

FIG. 4: Isosurface of the initial magnetic field energy foe th-foil . . )
romean rings configuration.

configuration.

The major and minor axes are setté and1, respectively,
and the thickness of the cross-section is sef.to If any
one of the three rings were removed, the remaining 2 rings
would no longer be interlocked. This means that there is no
mutual linking and hence no magnetic helicity. One should
however not consider this configuration as topologicaliy tr
ial, since the rings cannot be separated, which is reflentad i
non-vanishing third order topological invariant [28].

D. Numerical setup

FIG. 5: Isosurface of the initial magnetic field energy fae ttt CAA
knot seen from the top (left panel) and slightly from the idght We solve the resistive magnetohydrodynamical (MHD)
panel). equations for an isothermal compressible gas, where the gas
pressure is given by = pc%, with the densityp and isother-
mal sound speeds. Instead of solving for the magnetic field
section is set t0.48. B we solve for its vector potentiad and choose the resistive
gauge, since it is numerically well behaved [29]. The equa-
tions we solve are
0A

- = 2
- =UxB+1V’A (5)

B. The IUCAA knot

A prominent example of a single non-helically interlocked
flux rope is the IUCAA knot. For the IUCAA knot we apply a
very similar parameterization as for thefoil knots. We have DU

_— = — 2 Ta
to consider the faster variation indirection which yields Dt sVInp+JxB/p+ Fue (©)

(C +sinds) sin 3s
xz(s) = | (C+sinds)cos3s |, 4)
D cos (8s — ¢)

Dlnp
= — . 7
2o v.u, ™

_ _ where U is the velocity field,n the magnetic diffusivity,
where C and D have the same meaning as for thefoil J = V x B/ug the current densityF' ;s = p~'V - 2vpS

knots andp is a phase shift of the-variation. The full three-  the viscous force, with the traceless rate of strain te$sor
dimensional magnetic field is constructed radially arounisl t  ith components;; = %(ui,j + uj ) — %&.jv .U, visthe
curve (Fig. 5), where the thickness of the cross-sectioetis s kinematic viscosity, anid /Dt = 9/t + U - V is the advec-
10 0.48. tive time derivative. We perform simulations in a box of size
(27)3 with fully periodic boundary conditions for all quanti-
) ties. To test how boundary effects play a role we also perform
C. Borromean rings simulations with perfect conductor boundary conditiones, i
the component of the magnetic field perpendicular to the sur-
The Borromean rings are constructed with three ellipse$ace vanishes. In both choices of boundary conditions mag-
whose surface normals point in the direction of the unit vecnetic helicity is gauge invariant and a conserved quantity i
tors (Fig. 6). ideal MHD, i.e.n = 0. As a convenient parameter we use the




Lundquist number Lu= Ua L /7, whereU, is the Alfvén ve-
locity and L is a typical length scale of the system. The value 45
of the viscosity is characterized by the magnetic Prandti-nu

ber Pg; = v/n. However, in all cases discussed below we use 40
Pny = 1. To facilitate comparison of different setups it is con- 35¢
venient to normalize time by the resistive timg, = %7 /7, 30t

wherer is the radius of the cross section of the flux tube.
We solve Egs. (5)—(7) with the Pencil Code [30]  &727

(http:// pencil -code. googl ecode. con), which S 20p

employs sixth-order finite differences in space and a third- 15t

order time stepping scheme. As in our earlier work [23],

we use256% meshpoints for all our calculations. We recall 1o

that we use explicit viscosity and magnetic diffusivity. €lih 5r

values are dominant over numerical contributions assetiat 0 ‘ ‘ ‘

with discretization errors of the scheme [38]. 3 4 3 ﬂff 7 8 K

Ill. RESULTS
A. Helicity of n—foil knots

We test equation (1) for the-foil knots in order to see how
the number of foilsy; relates to the number of mutual linking
n for the separated flux tubes. From our simulations we know
the magnetic helicity?y; and the magnetic flux through the % 30 20 60 80 100
tube. Solving (1) fom will lead to an apparent self-linking nyg
number which we calh,p,. It turns out thatn,y, is much
larger them; and increases faster (Fig. 7).

We note that (1) does not apply to this setup of flux tubes

: ; FIG. 7: (Color online) The apparent self-linking number feffoil
and propose therefore a different formula for the magnegic h knots with respect tas (upper panel). The fitis obtained by equating

licity, (1) and (8). The length of a—foil knot is plotted with respect to
Hy = (ng— 2)nf¢2/2. ®) ;Lfngg;v:r panel), which can be fitted almost perfectly by a Imea
In Fig. 7 we plot the apparent linking number together with a
fit which uses equation (8). 1 t
Equation (8) can be motivated via the number of crossings, | — S
The flux tube is projected onto thg-plane such that the num- | + + — | —
ber of crossings is minimal. The linking number can be de-
termined by adding all positive crossings and subtractihg a
negative crossings according to Fig. 8.
The linking number is then simply given as [31] FIG. 8: (Color online) Schematic representation illustgthe sign
of a crossing. Each crossing has a handedness which carhke eit
Ninking = (N4 —n_)/2, 9) positive or negative. The sum of the crossings gives the eurab

linking and eventually the magnetic helicity content viaiation (8).
wheren,. andn_ correspond to positive and negative cross-
ings respectively. If we setinking = napp then we easily
see the validation of (8). Each new foil creates a new ring of; = 7. The rather slow decay is surprising in view of earlier
crossings and adds up one crossing in each ring (see Fig. 9gsults that for turbulent magnetic fields the magnetic gner
which explains the quadratic increase. decays liket~! in the absence of magnetic helicity and like
t—1/2 with magnetic helicity [32]. Whether or not the decay
seen in Fig. 10 really does follow a power law with such an
B. Magnetic energy decay fom—foil knots exponent remains therefore open.
The different power laws for a given number of foils are
Next, we plot in Fig. 10 the magnetic energy decay”fer unexpected because the setups differ only in their magnetic
foil knots with ng = 3 up ton; = 7 for periodic boundary helicity and magnetic energy content, and not in the qualita
conditions. It turns out that at later times the decay slowdive nature of the knot. Indeed, one might have speculated
down asi increases. The decay of the magnetic energy obeythat the fastet—2/3 decay applies to the case with larggg
an approximateé—2/3 law for n; = 3 and at~'/3 law for  because this structure is more complex and involves sharper
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FIG. 9: (Color online) The isosurface for the 4—foil knot fielonfig-

uration. The sign of the crossing is always negative. Thgsrshow

the different areas where crossings occur. FIG. 11: (Color online) Time dependence of the quotient fribie
realizability condition (2) fork = 2. It is clear that for largen: the
energy approaches its minimum faster.

10°

— =T

1073 102 10?
t/t

107 10

t/tres
FIG. 10: (Color online) Time dependence of the normalizedma
netic energy for a given number of foils with periodic boundeon-
ditions. The power law for the energy decay varies betwegp3
for ns = 3 (solid/blue line) and-1/3 for n; = 7 (solid/black).

FIG. 12: (Color online) Time dependence of the normalized}ma
netic helicity for a given number of foils with periodic badary
conditions.

gradients. On the other hand, a larger valugahcreases the nent. Indeed the decay éfy; shows approximately the same
total helicity, making the resulting knot more strongly ka@.  behavior for alln¢ (Fig. 12). We must therefore expect that
This can be verified by noting that the magnetic helicity in-the different decay laws are described only approximatgly b
creases quadratically withy while the magnetic energy in- power laws.

creases only linearly. This is because the energy is propor- For periodic boundary conditions it is possible that the flux
tional to the length of the tube which, in turn, is proporabn tube reconnects over the domain boundaries which could lead
ton¢ (Fig. 7). Therefore we expect that for the highgicases to additional magnetic field destruction. To exclude suah-co
the realizability condition should play a more significanler ~ plications we compare simulations with perfectly conduct-
at early times. This can be seen in Fig. 11, where we ploing or closed boundaries with periodic boundary conditions
the ratio2M (k)/k|H (k)| forns = 3tons = 7for k = 2. (Fig.13). Since there is no difference in the two cases we can
Since the magnetic helicity relative to the magnetic enésgy exclude the significance of boundary effects for the magneti
higher for larger values afy, it plays a more significant role energy decay.

for highn¢. This would explain a different onset of the power In all cases the magnetic helicity can only decay on a resis-
law decay, although it would not explain a change in the expotive time scale (Fig. 12). This means that during faster dyna
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FIG. 13: (Color online) Time dependence of the normalizedma
netic energy for the trefoil and 4—foil knot with periodiccaperfect
conductor boundary (PC) conditions. There is no significhifér-
ence in the energy decay for the different boundary conditio

ical processes, like magnetic reconnection, magneticibeli
is approximately conserved. To show this we plot the mag-
netic field lines for the trefoil knot at different times (Fit4).
Since magnetic helicity does not change significantly, éffe s
linking is transformed into a twisting of the flux tube which i
topologically equivalent to linking. Such a process has als
been mentioned in connection with Fig. 1 of Ref. [33], while
the opposite process of the conversion of twist into linkaae
been seen in Ref. [34]. We can also see that the reconnection
process, which transforms the trefoil knot into a twistetyri
does not aid the decay of magnetic helicity.

FIG. 14: (Color online) Magnetic field lines for the trefoihét at
timet = 0 (upper panel) and = 7.76 x 102 t,cs (lower panel).
Both images were taken from the same viewing position to make
C. Decay of the IUCAA knot comparisons easier. The Lundquist number was chosen 1608e

The colors indicate the field strength.

For the non-helical triple ring configuration of Ref. [23] it
was found that the topological structure gets destroyest aft ) o )
only 10 Alfvén times. The destruction was attributed to the SPeculate that higher order topological invariants coutst p
absence of magnetic helicity whose conservation would poséde an appropriate tool to characterize the emergenceobf su
constraints on the relaxation process. Looking at the miigne & “bi-helical” structure from an initially non-helical one
field lines of the IUCAA knot at different times (Fig. 15), we  Note that there is a net increase of magnetic helicity over
see that the field remains structured and that some hel@al fethe full volume. Furthermore, the initial magnetic helcit
tures emerge above and below the- 0 plane. These local- is not exactly zero either, but this is probably a conseqeenc
ized helical patches could then locally impose constraints of discretization errors associated with the initializati The
the magnetic field decay. subsequent increase of magnetic helicity can only occur on

The asymmetry of the IUCAA knot in the-direction leads the longer resistive time scales, since magnetic helisitpin-

to different signs of magnetic helicity above and below theserved on dynamical time scales. Note, however, that the in-
z = 0 plane. This is shown in Figs. 16 and 17 where wecrease of magnetic helicity is exaggerated because weedivid
plot the magnetic helicity for the upper and lower parts forby the mean magnetic energy density which is decreasing with
two different values ofp; see Eq. (4). In the plot, we refer time.

to the upper and lower parts as north and south, respectively In Fig. 18 we plot thery-averaged magnetic helicity as a
These plots show that there is a tendency of magnetic helicitfunction of z and¢. This shows that the asymmetry between
of opposite sign to emerge above and below#he 0 plane.  upper and lower parts increases with time which we attribute
Given that the magnetic helicity was initially zero, one mayto the Lorentz forces through which the knot shrinks and com-
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FIG. 16: (Color online) Normalized magnetic helicity in therth-
ern (green/dashed line) and southern (red/dotted line)adommalf
together with the total magnetic helicity (blue/solid ljrfer the 1U-
CAA knot with Lu = 2000 andy = 4/3.
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FIG. 15: (Color online) Magnetic field lines for the IUCAA khat

t = 0.108 t,s (upper panel) and at= 0.216 ¢.s (lower panel) for  F|G. 17: (Color online) Normalized magnetic helicity in therth-

Lu = 1000 andep = 4/3. ern (green/dashed line) and southern (red/dotted line)aitomalf
together with the total magnetic helicity (blue/solid ljrfer the 1U-
CAA knot with Lu = 2000 andy = (4/3 + 0.2)7.

presses its interior. This is followed by the ejection of mag

netic field.

To clarify this we plot slices of the magnetic energy densityphasey is changed. Fop = (4/3 + 0.2)7 there is no such
in thezz-plane for different times (Fig. 19). The slices are setupward motion visible and the configuration stays nearly-sym
in the center of the domain. metric (Fig. 20).

Due to the rose-like shape, our representation of the IU- In Fig. 21 the decay behavior of the magnetic energy is
CAA knot is not quite symmetric and turns out to be narrowercompared with previous work [23]. We note in passing that
in the lower half (negative) than in the upper half (positive the power law oft~! is expected for non-helical turbulence
z), which is shown in Fig. 5 (right panel). When the knot [32], but it s different from the helicat¢'/2) and non-helical
contracts due to the Lorentz force, it begins to touch therinn (¢t—/2) triple ring configurations studied earlier. A possible
parts which creates motions in the positbsdirection which,  explanation is the conservation of magnetic structuresifer
in turn, drag the magnetic field away from the center (Fig. 19) IUCAA knot, whereas the non-helical triple-ring configura-
The pushing of material can however be decreased when thion loses its structure.
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FIG. 18: (Color onlinexy-averaged magnetic helicity density pro-
file in z-direction for the [IUCAA knot with Lu= 2000 andy =
4/3w. There is an apparent asymmetry in the distribution amongs
the hemispheres.

D. Borromean rings

Previous calculations showed a significant differenceén th
decay process of three interlocked flux rings in the helindl a
non-helical case [23]. In Fig. 21 we compare the magnetic
energy decay found from previous calculations using triple
ring configurations with the IUCAA knot and the Borromean
rings.

The Borromean rings show a similar behavior as the IU_FIG. 19: (Color online) Magnetic energy density in the-plane for

-2
_CAA knot where the magnetic energy decays like. Sim—_ %’or tlf?ealtLiC A(,)A(Erﬁ)gtevrviriﬁ?i):aggoo 5ar? j;:l04 /31::5 (lower panel)
ilarly to the IUCAA knot we expect some structure which
is conserved during the relaxation process and causes the
relatively slow energy decay compared to other non-helical
configurations. We plot the magnetic field lines at times
t = 0.248t,s andt = 0.276 t,.s; See Figs. 22 and 23, re-
spectively. Att = 0.248t,. there are two interlocked flux In this paper we have analyzed for the first time the decay of
rings in the lower left corner, while in the opposite halfbét ~ complex helical and non-helical magnetic flux configuragion
simulation domain a clearly twisted flux ring becomes visibl A particularly remarkable one is the [IUCAA knot for which
The interlocked rings reconnectéat= 0.276¢,., and merge the linking number is zero, and nevertheless, some finite mag
into one flux tube with a twist opposite to the other flux ring. netic helicity is gradually emerging from the system on a re-
The magnetic helicity stays zero during the reconnectiah, b Sistive time scale. It turns out that both the [IUCAA knot and
changes locally, which then imposes a constraint on the maghe Borromean rings develop regions of opposite magnetic he
netic energy decay and could explain the power law that wéicity above and below the midplane, so the net magnetic he-
see in Fig. 21. This finding is similar to that of Ruzmaikin & licity remains approximately zero. In that process, angtgli
Akhmetiev [28] who propose that after reconnection the Borimbalance can then lead to the amplification of the ratio of
romean rings configuration transforms first into a trefoibkn magnetic helicity to magnetic energy—even though the mag-
and three 8-form flux tubes and after subsequent reconmectidetic field on the whole is decaying. This clearly illustsate
into two untwisted flux rings, so-called unknots, and six 8-the potential of non-helical configurations to exhibit mont
form flux tubes. We can partly reproduce this behavior, buial behavior, and thus the need for studying the evolution of
instead of a trefoil knot we obtain two interlocked flux rings higher order invariants that might capture such processes.
and instead of the 8-form flux tubes we obtain internal twist The role of resistivity in producing magnetic helicity from
in the flux rings. a non-helical initial state has recently been emphasizgj [3

IV. CONCLUSIONS
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FIG. 21: (Color online) Magnetic energy versus time for tifeedent
0.056 initial field configurations together with power laws whigrge as a
guide. The decay speed of the IUCAA knot and Borromean riiegs |
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FIG. 20: (Color online) Magnetic energy density in the-plane for
y = 0 att = 0 (upper panel) and = 5.58 x 102 t,.. (lower panel)
for the IUCAA knot with Lu= 2000 andy = (4/3 + 0.2)7. The
magnetic field stays centered.

but it remained puzzling how a resistive decay can incrdese t

topological complexity of the field, as measured by the magFIG. 22: (Color online) Magnetic field lines at= 0.248 s for
netic helicity. Our results now shed some light on this. kdle the Borromean rings configuration for Lt 1000. In the lower left
the initial field in our examples has topological complexity corner the interlocked flux rings are clearly visible whidffieds from
that is not captured by the magnetic helicity as a quadrati¢h® Proposed trefoil knot [28]. The flux ring in the oppositereer
invariant. This is because of mutual cancellations that caff2s an interal twist which makes it helical. The colors dernbe
gradually undo themselves during the resistive decay gsyce Ehrfength of the field, where the scale goes from red over gieen
leading thus to finite magnetic helicity of opposite signpas '

tially separated locations. We recall in this context thns t

magnetic helicity over the periodic domains considerea hernetic helicity increases quadratically with Furthermore,

is gauge invariant and should thus agree with any other definy, o jecay exhibits different power laws of magnetic egerg

tion, including the new absolute helicity defined in Ref.]J[35 \\ hich lie betweeri—2/3 for the 3—foil knot and—1/3 for the
Contrary to our own work on a non-helical interlocked flux 7_oil knot. The latter case corresponds well with the previ

configuration [23], which was reducible to a single flux ring ously discussed case of three interlocked flux rings that are

after mutual annihilation of two rings, the configurationss  interlocked in a helical fashion. The appearance of differe

ied here are non-reducible even when mutual annihilation igower laws seems surprising since we first expected a uni-

taken into account. form power law in all helical cases in the regime where the
For the helicaln—foil knot, we have shown that the mag- magnetic helicity is so large that the realizability coruait
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the magnetic helicity.

The power law ot ! in the decay of the magnetic energy
for the IUCAA knot and the Borromean rings is different from
thet—3/2 behavior found earlier for the non-helical triple ring
configuration. The observed decay rate can be attributéakto t
creation of local helical structures that constrain theageaf
the local magnetic field. But we cannot exclude higher order
invariants [28] whose conservation would then constra@ th
energy decay.

The Borromean rings showed clearly that local helical
structures can be generated without forcing the systensélhe
can then impose constraints on the field decay. We suggest
that spatial variations should be taken into account torrefo
mulate the realizability condition (2), which would inceea
the lower bound for the magnetic energy. For astrophysical
systems local magnetic helicity variations have to be abnsi
ered to give a more precise description of both relaxati@ah an
reconnection processes.

Both the IUCAA logo and the Borromean rings do not stay
stable during the simulation time and split up into two sepa-
rated helical magnetic structures. On the other hand we see
that the helicaln—foil knots stay stable. A similar behav-
ior was seen in [36], where magnetic fields in bubbles inside
galaxy clusters were simulated. In the case of a helicaalnit
magnetic field the field decays into a confined structure,avhil
FIG. 23: (Color online) Magnetic field lines at= 0.276 t..s forthe  for low enough initial magnetic helicity, separated stuies

Borromean rings configuration for Le- 1000. The two flux rings  of opposite magnetic helicity seem more preferable.
in the corners both have an internal twist which makes thelindie

The twist is however of opposite sign which means that thelevho
configuration does not contain magnetic helicity. The cotbenote
the strength of the field, where the scale goes from red oeamgto
blue.
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