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Diffusion in coulomb crystals can be important for the structure of neutron star crusts. We
determine diffusion constants D from molecular dynamics simulations. We find that D for coulomb
crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other
solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic
lattices, involves the exchange of ions in ring-like configurations. Here ions “hop” in unison without
the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects.
Finally, we find that diffusion, for an amorphous system rapidly quenched from coulomb parameter
I' = 175 to coulomb parameters up to I' = 1750, is fast enough so that the system starts to crystalize
during long simulation runs. These results strongly suggest that coulomb solids in cold white dwarf
stars, and the crust of neutron stars, will be crystalline and not amorphous.

PACS numbers: 66.30.-h 97.60.Jd 52.27.Lw

I. INTRODUCTION

Diffusion in coulomb plasma liquids has been well stud-
ied [1] and is important for sedimentation of impurities
in white dwarf (WD) [2-4] and neutron stars (NS) [5, 6].
Here ions, with a larger than average mass to charge
ratio, sink in a strong gravitational field. This releases
gravitational energy that can delay the cooling of metal
rich WD [7]. However, we are not aware of numerical
results for diffusion constants of coulomb crystals under
Astrophysical conditions. Often the diffusion constant
is simply assumed to be zero. This diffusion could be
important for sedimentation in solid WD interiors, over
long time scales, and for the structure of NS crusts.

Solid diffusion can depend dramatically on the form of
the interaction between particles and may be very slow
for hard-core systems. For example, the binary Lennard
Jones (LJ) system with a hard-core oc =12 interaction
forms a glass because of very slow diffusion [8]. In con-
trast, the coulomb plasma with a soft 1/r core should
have much faster diffusion. Therefore the Coulomb crys-
tal may provide an important model system where diffu-
sion is fast enough to be more easily studied by molecular
dynamics (MD) simulations.

In the laboratory, one can observe diffusion in complex
(or dusty) plasma crystals. Complex plasmas (CP) are
low temperature plasmas containing charged micropar-
ticles, for a review see Fortov et al. [9]. Often the mi-
croparticles are micron sized spheres that acquire large
electric charges and the strong coulomb interactions be-
tween microparticles can lead to crystallization. Indeed
plasma crystals were first observed in the laboratory in
1994 [10]. Complex plasmas typically differ from White
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Dwarf interiors and Neutron Star crusts in a number of
ways. First the microparticles feel additional fluctuating
and friction forces because of interactions with the back-
ground gas. Note that in stars, electron-ion interactions
are small because of the large electron degeneracy. Sec-
ond, the Debye screening length A, see Eq. 1 below, is
often smaller in the CP than in a star (when measured
in units of the lattice spacing). This changes the lat-
tice type from body-centered-cubic (bcc) as expected in
stars, to face-centered-cubic (fec) or other types in a CP.
Finally in a CP there is an overall confining potential,
and because of gravitational gradients it is often easier
to study two-dimensional CP crystals.

In two dimensions, one can have liquid, crystalline,
and semi-crystalline states. Anomalous diffusion in
semi-crystalline CP states has been observed at inter-
mediate times [11, 12]. In anomalous diffusion the
square of the displacement does not grow linearly with
time. Langevin-dynamics simulations [13] find that
microparticle-background gas interactions are important
for this diffusion.

The melting of colloidal crystal films has recently been
studied [14]. Thick films (> 4 layers) were observed to
melt at grain boundaries, while films 2 to 4 layers thick
melted from both grain boundaries and from within crys-
talline domains. We study diffusion at grain boundaries
in Sec. III B.

Three-dimensional CP crystals have been formed on-
board the International Space Station under micrograv-
ity conditions. Details of the experiment are presented
in ref. [15]. The structural properties of the crystal were
analyzed with bond angle metrics ¢4 and gg, see Section
I C. Microparticles were found in regions with fcc and
hexagonal-close packing (hcp) order [16, 17], in agree-
ment with MD simulations [16]. Khrapak et al. [18]
studied freezing and melting of these CP crystals and
found diffusion to be relatively fast so that the system
remained in equilibrium. Melting criteria for CP systems



were presented by Klumov [19].

We now focus on simple plasmas in three dimensions.
The diffusion mechanism is interesting. Astrophysical
systems are under great pressure that suppresses the for-
mation of vacancies. Therefore diffusion, in a nearly per-
fect crystal, should involve the exchange of neighboring
ions. These exchanges, while common in some quantum
systems, may be less common in classical systems. More
complicated coulomb solids can involve a variety of dislo-
cations, grain boundaries, and other imperfections. Dif-
fusion in these systems probably involves motion of the
imperfections, since this may be faster than particle ex-
changes. Determining the diffusion constant for a system
may help characterize the kinds and numbers of imper-
fections. Note that the coulomb plasma has especially
simple interactions. Therefore, it may be a very useful
model system to study diffusion in the presence of com-
plex imperfections.

We emphasize that the coulomb plasma has no hard
core interaction between ions, but only a relatively weak
1/r repulsion. Therefore, it may be possible for ions to
come relatively close to one another, if necessary for the
motion of defects. This may be different from conven-
tional condensed matter with hard cores. For example,
MD simulations of defect motion in Magnesium focused
on paths that involved only very small displacements of
Magnesium atoms [20]. Imperfections may move much
faster in a coulomb plasma.

The motion of imperfections is important for equili-
bration. For example, a coulomb liquid may freeze into
an imperfect crystal state involving an excess of defects.
There has been some work on nucleation in coulomb plas-
mas, see for example [21]. However present MD simula-
tions of nucleation may have limitations from important
finite size effects [22]. In this paper, we also study diffu-
sion in amorphous systems to see if it is fast enough to
allow crystallization.

We focus on one component plasmas (OCP). We plan
to study diffusion in multicomponent plasmas (MCP) in
the future. As we discuss below, this may help address
an important unsolved problem, the structure of MCP
crystals. This is important for the thermal and electrical
conductivity of NS crust [23]. Indeed X-ray observations
of rapid NS crust cooling, after extended periods of accre-
tion, strongly favor the formation of a crystalline rather
than amorphous crust and may set limits on impurities
[24-27]. In addition, pycnonuclear reactions, which are
driven by quantum zero point motion at high densities,
are exponentially sensitive to the structure of MCP crys-
tals and the spatial locations of reactants [28]. These
reactions may provide an important heat source in the
crust of accreting NS [29]. Finally the distribution of
dislocations, grain boundaries, impurities, and other im-
perfections are important for mechanical properties of
NS crust such as its breaking strain [30, 31]. The break-
ing strain helps determine the maximum sized mountains
that are possible on a NS, which are important for grav-
itational wave radiation [30, 32]. The breaking strain

also determines the maximum sized “star quake” that is
possible. Sudden changes, or glitches, in the rotational
period of pulsars [33] may involve crust breaking that
could trigger the motion of superfluid vortices. In ad-
dition Magnetar giant flares, extremely intense gamma
ray flares from very strongly magnetized NS [34], may
involve the catastrophic breaking of the crust because of
very large magnetic stresses [35].

In previous work we determined liquid-solid phase
equilibrium for a MCP system involving many ion species
[36], see also [37]. We performed a large scale MD sim-
ulation where both liquid and solid phases were present.
The solid phase in this simulation may have had a num-
ber of imperfections. A knowledge of diffusion constants
D may help determine the simulation time necessary for
these imperfections to come into equilibrium.

There have been previous calculations of D for coulomb
liquids, starting with the MD simulations of Hansen et
al. for the one component plasma (OCP) [1]. The one
component plasma consists of ions, with pure coulomb
interactions, and an inert neutralizing background charge
density. Diffusion in the OCP in a strong magnetic field
was considered by Bernu [38]. Hansen et al. have also
calculated diffusion for binary mixtures [39].

Diffusion for a Yukawa fluid has been simulated by
Robbins et al. [40] and Ohta et al. [41]. In a Yukawa
fluid ions interact via a screened coulomb potential v;;(r),

2
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for two ions with charges Z; and Z;, that are separated
by a distance r. The OCP is equivalent to a Yukawa
fluid, where all of the ions have the same charge and the
screening length A is very large.

The motion of ions in a WD or NS is largely classical
because of their large mass. However at great densities,
there could be quantum corrections that might increase
D. These have been estimated for a liquid by Daligault
and Murillo [42], and found to be very small.

In this paper, we present classical MD simulations of
one component crystals with Yukawa interactions in or-
der to determine diffusion coefficients D. In Section IT we
describe our MD formalism and present results for diffu-
sion coefficients in Section III. We conclude in Section
IVv.

II. FORMALISM

We describe our MD simulation formalism. This is
similar to what we used earlier to calculate D for liquid
mixtures of carbon, oxygen, and neon [4]. We consider a
one component system of oxygen ions where the ions are
assumed to interact via screened Yukawa interactions, see
Eq. 1. The Thomas Fermi screening length A, for cold
relativistic electrons, is

AL =201 2 kp it/ (2)



where the electron Fermi momentum kg is krp =
(372n.)"/% and «a is the fine structure constant. The
electron density m. is equal to the ion charge density,
ne = Zn, where n is the ion density and Z is the
ion charge. Our simulations are classical and we have
neglected the electron mass (extreme relativistic limit).
This is to be consistent with our previous work on neu-
tron stars. However, the electron mass is important at
lower densities in WD and this will decrease A. For rela-
tivistic electrons, the ratio of A to the ion sphere radius
a”

3 \1/3

“= (47rn) ’ (3)
depends only on the charge Z and is independent of den-
sity. For nonrelativistic electrons A/a can be somewhat
smaller. In Section III, we perform simulations for two
values of \/a.

The simulations can be characterized by a coulomb
parameter I,

Z2e?
r= T (4)
Here T is the temperature. The system freezes near I' =
175 [43]. Note that this value of I' may depend slightly
on A [43, 44].

Time can be measured in our simulations in units of
one over the plasma frequency w,. Long wavelength fluc-
tuations in the charge density can undergo oscillations at
the plasma frequency. This depends on the ion charge Z
and mass M,

up = [EZT) )

The diffusion constant D can be calculated from the
velocity autocorrelation function Z(t),

(vi(to +1) - v;(to))
(vj(to) - v;(to))
where the average is over all ions j and over initial times

to. The velocity of the jth ion at time ¢ is v;(¢). The
diffusion constant is the time integral of Z(t),

Z(t) = (6)

T tmazx
D:Kié dtZ(t). 1)

This Eq. works well to calculate D for liquids. However
for crystals, D is smaller and the integral in Eq. 7 in-
volves sensitive cancelations between regions where Z(t)
is positive and negative. This makes Eq. 7 very difficult
to use.

Instead D can also be calculated from

(st + to) — 1;(t0)?)
S e (8)

where the diffusion constant D is the large time limit of
D(t),

D(t) =

D =1limy_0o D(t). (9)

Here r;(t) is the position of the jth ion at time ¢ and the
average in Eq. 8 is over all ions j and initial times ¢q. In
principle, Egs. 8,9 will have errors at large times ¢ from
the effects of periodic boundary conditions as |r;(t+to) —
r;j(to)| becomes comparable to the size of the simulation
volume. However diffusion is relatively slow so this is
often not a problem until very large ¢.

Note that D(t) can differ significantly from D for small
t. For example, an ion undergoing thermal oscillations
about an equilibrium lattice site will have r;(¢) — r;(0)
nonzero even though the ion remains near its original
lattice site and there is no net contribution to diffusion.
Therefore we define an alternative quantity D’(t) that
has no contribution from ions that remain near their orig-
inal lattice site,

(Ollr;(¢) —r;(to)] — Re]lr;(t) —x;(to)|*)
6t ’
(10)
with ¢ = t + tg. The cutoff radius R, is of order the
lattice spacing, and will be discussed in Section III. In
the limit of very large times all ions move significantly so
that D'(t) — D(t) as t — co. We observe that D’(t) is
approximately independent of ¢, even for moderate ¢, so
that

D'(t) =

D~ D'(t). (11)

We use this equation, at finite ¢, to calculate D in Section
I11.

The initial conditions are very important for determin-
ing D because the system may contain different distribu-
tions of defects and these distributions may take a very
long time to equilibrate. We consider three classes of ini-
tial conditions. The first class we call bee and starts the
ions with positions on a perfect body centered cubic (bce)
lattice and random thermal velocities. This may underes-
timate the role of defects if there is not enough simulation
time for thermal excitations to introduce an equilibrium
distribution of defects. The second class of initial condi-
tions we call imperfect crystal and starts the system from
a liquid configuration that is cooled by rescaling the ve-
locities until the system freezes. This may over estimate
the role of defects if the system freezes into a very im-
perfect state with more defects than would be present in
thermal equilibrium. Note that imperfect crystal initial
conditions may contain two or more micro-crystals with
different orientations. Finally, we consider amorphous
initial conditions where a liquid configuration is rapidly
quenched to a much lower temperature.

We evolve the system in time using the simple velocity
Verlet algorithm [45]. We approximately maintain the
system at constant temperature by simply rescaling the
velocities every ten time steps. In Section III we present
results for D.



III. RESULTS

We now present results for our MD simulations. We
begin with a few results insensitive to initial conditions
and then we discuss simulations with perfect lattice ini-
tial conditions in Section IIT A, imperfect crystal initial
conditions in Section III B, and amorphous initial condi-
tions in Section IITIC. We start with the velocity auto-
correlation function Z(t), see Eq. 6, that is shown in Fig.
1. There are only subtle differences in Z(t) between lig-
uid and solid phases. For the solid Z(¢) is slightly more
negative for 4 < tw, < 14. However this slight difference
leads to a much smaller D from the integral in Eq. 7.
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FIG. 1: (Color on line) Velocity autocorrelation function Z(t)
versus time ¢ in units of one over the plasma frequency w, for
N = 8192 ions at I' = 176 for both a liquid configuration (red
dashed line) and a solid configuration (black solid line).

Next, Fig. 2 shows histograms of displacements |r; (¢ +
to) — r;j(to)| after a time ¢ = 21000/w,. These are com-
puted by simply counting the number of ions that have
moved a given distance. Figure 2 shows a large peak at
small distances that corresponds to ions which remain
near their original lattice site. The width of this peak
corresponds to thermal oscillations. The amplitude of
these oscillations are relatively large because the system
is warm and near the melting temperature. Figure 2 also
shows smaller peaks at larger distances that correspond
to ions which have “hopped” one lattice site, two lattice
sites, etc. Diffusion is seen to be larger for a system that
started from imperfect crystal initial condition compared
to a system that started from a perfect bcc lattice ini-
tial condition. We start by presenting additional results
for perfect body centered cubic lattice initial conditions
and then we will present results for imperfect crystal and
amorphous initial conditions.

A. Body centered cubic lattice initial conditions

How do the ions actually move (hop) from one lattice
site to the next? This is nontrivial because the system is
under high pressure and vacancy formation is suppressed.
Thus there are very few empty sites for the ions to hop
into. Instead the ions can exchange with their neighbors.
In Figure 3 we show the final configuration for a small
3456 ion system that was prepared from perfect bce lat-
tice initial conditions. Most ions remain near their origi-
nal lattice site and are shown as small brown dots. These
ions show oscillations about the lattice sites. However for
this example, there were 24 ions that moved more than
1.34a during the finial simulation time of ¢t = 236/wy,.
These ions are shown as larger black disks and are seen
to be in a ring configuration where ions “hop” to lattice
sites vacated by other hopping ions.
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FIG. 2: (Color on line) Histogram of displacements |r;(t +
to) — rj(to)| in units of the ion sphere radius a after a time
t = 21000/w,. The simulations use N = 8192 ions and are
at I' = 176. The black solid line is the average of 800 con-
figurations (initial times to) for a system that started from a
perfect body centered cubic (bce) lattice initial configuration
while the dashed red line is the average of 8000 configurations
for a system that started from an imperfect crystal initial con-
figuration.

We now present results for the diffusion constant D
using Eq. 10 with a cutoff parameter R, chosen as the
location of the minimum in the histograms in Fig. 2 at,

R.=1.07a. (12)

Small changes in this value only lead to slight changes
in D. To minimize finite size effects we also introduce a
cutoff range Ryt in the Yukawa interaction so that Eq.
1 becomes

e_T/A e_}%cut/A
Uij = Zi Zj 62 |: —
r

Rcut

[O(Ra =1 (13)
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FIG. 3: (Color on line) Sample configuration of 3456 ions at
I' = 175. Ions that have moved less than 1.34a in a time
t = 236/w, are small brown dots. Ions that have moved more
than 1.34a are shown as larger black disks and are seen to
be in a ring configuration where ions “hop” to lattice sites
vacated by other hopping ions. This system started from a
perfect bec lattice. Figure plotted with VMD [46].

and the potential is zero for r > Rcys.

We first consider bec lattice initial conditions. Table I
presents results for D for different values of A\, molecular
dynamics time step At, number of ions IV, and elapsed
time ¢ used in Eq. 10. We express D in units of w,a?.
We find that D increases with decreasing A. For a large
value of A = 2.70a there are large finite size effects and
D increases with increasing N. However the increase in
D in going from N = 27648 to the largest system size
93312 is small.

Finite size effects are smaller for the smaller A = 1.82a
value. Now there is good agreement for N = 27648 and
93312 and D is only slightly smaller for N = 8192. We
do not find strong sensitivity to At or ¢. Furthermore,
imposing a cutoff on the interaction at large distances
Reut = 8.91) has only a very small effect on D. For A =
1.82a and large systems, we find D/w,a® = 1.0 x 1075.
As we discuss below, this value, for the solid near the
melting point I' = 175, is about 200 times smaller than
D for the liquid phase at the same I.

Diffusion in the solid may involve an energy barrier AE
since it may be necessary for an ion to pass close to its
neighbors. This would lead to a temperature dependance
D x Exp(—AE/T) = Exp(—dT") with d a constant. In
Table II we present results for D as a function of I'. For

TABLE I: Diffusion constant D for MD simulations starting
from perfect body centered cubic lattice initial conditions at
I' = 175. Here D is in units of wpa® with w, the plasma
frequency and a the ion sphere radius, N is the number of
ions, A the screening length, Rcy: the cutoff radius in the
interaction, At the MD time step, ¢ the elapsed time, and
Neonf the number of configurations used to average over the
inital time to.

N Aa

Reut /N Atw,  twy Neonfig D/wpa®

3456 1.82 oo 0.047 35000 700 6.2 x 1077
3456  2.70 oo 0.047 47200 200 0

8192 1.82 891 0.12 170000 800 7.7%x107°
8192 2.70 oo 0.12 106000 800 3.4 %1077
27648 1.82 891  0.12 59000 500 1.0 x 107°
27648 1.82 oo 0.12 59000 1200 1.0x107°
27648 2.70 oo 0.06 23600 89 4.9 x 1076
27648 2.70 oo 0.06 668500 396 4.5x107°
27648 2.70 oo 0.06 23600 300 5.1x107°
27648 2.70 oo 0.12 59000 500 4.2 x 1076
27648 2.70 oo 0.12 23600 800 4.5x107°
27648 2.70 oo 0.12 23600 800 4.8 x107°
27648 2.70 oo 0.24 23600 300 4.9 %1076
93312 1.82 891 0.12 59000 350 1.0 x 107°
93312 2.70 oo 0.12 59000 350 5.6 x 107°

%This is a continuation of the run described in the line above.
However, it is at constant energy instead of being at (approxi-
mately) constant temperature.

TABLE II: Diffusion constant D versus I' for MD simulations
using N = 27648 ions and starting from perfect body centered
cubic lattice initial conditions. The screening length is A, Rcut
is the cutoff radius for the interaction, the MD time step is
Atw, = 0.12 and ¢ = 59000/w,.

I' Ma Rcut/A\ D/wpa2

165 1.82 891 3.3x107°
175 1.82 891 1.05x 107°
185 1.82 891 3.3x107°
200 1.82 891 3.9x1077
165 2.70 oo 1.3x107°
175 2.70 oo 4.1 x107¢
185 2.70 oo 1.6 x 1079
200 2.70 oo 1.5 x 1077

I' < 185, Table II results are approximately

D
~ 6100 Exp(—-0.115T 14
. xp(~0.115T) (14
for A = 1.82a and
D 1400 Exp(—0.112T") (15)
~ xp(—0.
wpa? P

for A\ = 2.70a. Note that AE (or d ~ 0.11) appears to
be almost independent of A. This would follow if AE is
dominated by particle interactions at short distances.
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FIG. 4: (Color on line) Diffusion constant D versus I' for
both the liquid and solid phases. Liquid results are from ref.
[4] while the solid results are for A = 1.82a and assume per-
fect bce lattice initial conditions. The dotted red line shows
metastable (super cooled) liquid results while the blue dashed
line shows metastable (super heated) solid results. The sys-
tem is assumed to melt at I' = 175.

In Fig. 4 we plot D as a function of I" for both the
liquid and solid phases. We see that D drops by a large
factor as the system crystalizes and that D decreases
much more rapidly, with increasing I, in the solid phase
compared to the behavior of D in the liquid phase.

Most of our simulations are at (approximately) con-
stant temperature where velocities are rescaled every ten
time steps to keep the kinetic energy fixed. To test the
sensitivity of our results to this procedure, we have also
performed a few runs at constant energy, instead of at
constant temperature, see for example Table I. We find
that D is unchanged within statistics.

B. Imperfect crystal initial conditions

We now consider imperfect crystal initial conditions.
We prepare a liquid initial condition by starting the ions
off at random positions, with a Maxwell velocity distri-
bution, and evolving the system at a series of increasing
T" values. The system is observed to equilibrate in a lig-
uid phase. However as I is increased further the system
is observed to supercool for I' > 175 and then eventually
freeze. However, often the system freezes into an imper-
fect crystal with many defects. For example, there can
be two micro-crystals of different orientations. Once the
system has frozen, I' is decreased back to I' = 175 and
the system is evolved for a long time at this I' value and
the diffusion constant is calculated from Eq. 10.

Figure 5 shows a configuration of 27648 ions with im-
perfect crystal initial conditions. Here ions, that have

moved less than three lattice spacings during the simu-
lation, are plotted as small gray points while ions, that
have moved more than three lattice spacings, are plotted
as large blue spheres. The system froze into two micro-
crystals of different orientation and the diffusing ions are
seen to be clustered near the grain boundaries. This sug-
gests that diffusion in imperfect crystals may be domi-
nated by motion of the defects rather than by hopping
of ion chains, such as that shown in Fig. 3.

FIG. 5: (Color on line) Configuration of 27648 ions starting
from imperfect crystal initial conditions. Ions that move only
a small distance are small gray points. Ions that have moved
over three lattice spacings, during the simulation time of t =
59000/wy, are shown as large blue spheres. These are seen to
be clustered at the grain boundaries. The initial conditions
included two micro-crystals of different orientation. Figure
plotted using VMD [46].

In Table ITT we present results for D for imperfect crys-
tal initial conditions. Note that lines 3 and 4 in Table ITI
and lines 5 and 6 correspond to independently prepared
initial conditions. There is some variation in results for
different simulations. This may reflect differences in the
number and kind of defects present in the initial condi-
tions. We see that D for imperfect crystal initial condi-
tions is two to four times larger than D for perfect bee
lattice initial conditions. We also see that D may be less
sensitive to the screening length for imperfect crystal ini-
tial conditions.

It is possible that D will evolve slowly with simula-
tion time ¢y for these imperfect crystal simulations. Note
that we do not find rapid variation of D with ¢to. How-
ever, we have not attempted to determine how D might
evolve over long times by continuing an imperfect crystal
simulation for very long times.

The final simulation listed in Table III was prepared
by very slowly cooling a liquid configuration that started



TABLE III: Diffusion constant D for MD simulations starting
from imperfect crystal initial conditions at I' = 175. Here D
is in units of wpa2 with wp, the plasma frequency and a the ion
sphere radius, IV is the number of ions, A the screening length,
Recut the cutoff radius in the interaction, At the MD time step,
t the elapsed time, and Nconsig the number of configurations
used to average over the initial time to.

N Aa  Rew/) Atw, twp  Neonfig D/wpa?

3456 2.70 oo 0.047 4700 380 4.9x107°
8192 270 oo 0.12 9600 8000 1.4x107°
27648 2.70 oo 0.12 59000 400 89 x 107
27648 2.70 oo 0.12 59000 400 8.8 x10°°
27648 2.70 oo 0.12 59000 800 1.9x107°
27648 1.82 891  0.12 59000 500 2.3 x 107°
27648 1.82 oo 0.06 472000 401 1.1 x107°

%This is a continuation of the run described in the line above.
However it is at constant energy instead of being at (approximately)
constant temperature.

TABLE IV: Diffusion constant D versus I" for MD simulations
using N = 27648 ions and starting from a single imperfect
crystal initial condition. The screening length is A, Rcut is
the cutoff radius for the interaction, the MD time step is
Atwp = 0.12 and t = 59000w,,.

I' MAa Rew/X Djwpa®

175 1.82 891 2.3 x107°
185 1.82 891 7.2x 1076
200 1.82 891 2.1x 1076
225 1.82 891 35x1077
250 1.82 891 5.8 x 1077

at I' = 175, at a rate of d'/dt = 2.1 x 10~ %w,, until the
configuration froze at I' = 283. The resulting solid config-
uration was then heated back up to I' = 175. Finally, the
system was evolved at I" = 175 for a time ¢y = 59000/w,,
before taking D data. This system was observed to be a
nearly perfect bee lattice, and the value for D in Table
IIT agrees with our results for nearly perfect bce lattices
in Section ITT A. This strongly suggests that white dwarf
and neutron star plasmas will freeze into nearly perfect
bce crystals, since any astrophysical cooling time scale is
likely very much longer than this MD cooling time scale.
This is also consistent with our results in Section IIIC
for amorphous systems, see below.

In Table IV we present results for D versus I' for a
single imperfect crystal initial condition. Here D was
calculated at T' = 175. Next the velocities of the final
I" = 175 configuration were rescaled to I' = 185 and the
system was equilibrate at I' = 185 and D determined.
This process was repeated for larger I'. We see that D
decreases with increasing I" far more slowly than does D
for a bec lattice. This suggests that D is dominated by
the motion of defects and that these defects continue to
move even at low temperatures where the ion hopping
shown in Fig. 3 is very unlikely. Note that we expect

TABLE V: Approximate time to for amorphous systems
to crystalize, after the systems have been instantaneously
quenched from I' = 175 to different I" values, see text. The
number of ions is V.

N I t()wp

8192 500 24,000

8192 600 47,000

8192 700 142,000

8192 1000 240,000

8192 1500 390,000

8192 1750 > 25,000,000
27648 500 400,000
27648 1000 > 6,000,000

some variation in these results for D depending on the
number and kind of defects present in the initial condi-
tions.

C. Amorphous initial conditions

In this subsection, we present results for amorphous
initial conditions. The imperfect crystal initial condi-
tions in Subsection III B involved a small amount of su-
percooling, until a configuration froze. We now consider
much greater supercooling. We start with a liquid config-
uration of N=8192 ions, that is equilibrated at I' = 175.
The screening length is A = 1.82a, R.y,; = 8.91)\, and the
time step is Atw, = 0.12. We quench the system instan-
taneously to a large I' value by rescaling the velocities,
and then we evolve the resulting amorphous system at
(approximately) constant temperature until the system
largely crystalizes. Note that quenched initial configu-
rations for different I' values were prepared by rescaling
the velocities of the same I' = 175 liquid configuration.
Table V lists the time needed to crystalize for different I"
values. This time increases with increasing I' (amount of
supercooling). However, this time only increases approx-
imately linearly with I" for I' < 1500. This suggests that
diffusion is relatively fast in the amorphous system, and
that the amorphous to crystal transition does not involve
a large energy barrier. We find that the system is able to
crystalize, even at I' = 1500 where the temperature is 8.6
times lower than the melting temperature. However a fi-
nal run that was quenched to I' = 1750 was not observed
to crystalize before a time 25,000,000/w,. We refer to
these quenched systems as amorphous. However, it may
be more appropriate to call them polycrystalline because
they are observed to have many small crystal domains
of different orientation. These polycrystalline states are
observed to undergo rapid transitions to single crystals
except at the largest T', see below.

To study finite size effects we now consider larger sys-
tems with IV = 27648 ions. We start with a liquid config-
uration equilibrated at I' = 175, and quench the system
instantaneously to I' = 500. Figure 6 shows D versus



simulation time tg. The diffusion constant D first de-
creases rapidly with time as the quenched system an-
neals. Next D remains more or less constant for a long
time. Suddenly near ¢y = 400,000/w, there is a large
spike in D. We calculate D with both ¢ = 59000/w, and
4720/w,. The larger ¢ gives D with less statistical noise,
while the smaller ¢ gives better time resolution and shows
that the event near to = 400,000/w), is very rapid.
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FIG. 6: (Color on line) Diffusion constant D versus simulation
time %o, see Eq. 10, for an amorphous system of N = 27648
ions at I' = 500. The diffusion constant D is calculated using
a time difference of ¢t = 59,000/w, (solid black line) and t =
4720/wy (dotted red line) in Eq. 10. The sample was prepared
by instantaneously quenching a liquid from I' = 175 to I' =
500.

The configuration of the system just before the event is
shown in Fig. 7. The system is seen to be in a polycrys-
talline state with many small crystal domains. Figure
8 shows the configuration of the system just after the
event. Now the system is an imperfect single crystal.
This demonstrates that diffusion is fast enough, at least
at I' = 500, for the system to crystalize. Finally in Fig.
9, we show D as a function of simulation time ¢, for an
N = 27648 ion system quenched to I' = 1000. Again D
starts off large and decreases rapidly as the system starts
to equilibrate. Three large peaks are observed in D near
to = 150,000, 400, 000, and 5 x 106/wp. These correspond
to events where small micro-crystals rearrange and grow
and the bond angle metric QJg increases, as we discuss
below, see Fig. 10. However the system is still polycrys-
talline after the events.

To quantify the crystalline order in these simulations,
we consider a metric based on bond angles [47-49], see
also [50]. Ion 4 is said to be bonded to ion j if it is within
a distance b = 2.44a that corresponds to a minimum
in the radial distribution function g(r). This distance is
chosen to include the eight nearest neighbors and six next
nearest neighbors in a perfect body centered cubic lattice.
Let 6;; and ¢;; be the polar and azimuthal angles of the

radius from ion ¢ to ion j. We calculate the spherical
harmonic,

le (rlj )

and average over all ~
ration,

Yim (85, i), (16)

14N bounds for a given configu-

Qum = (Qum (745)) - (17)

This quantity depends on the orientation of a crystal lat-
tice with respect to the simulation volume. Therefore, we
calculate the rotationally invariant quantity @; [47, 49],

Q=[5 Z \QM (18)

This provides a measure of the crystalline order of a con-
figuration. In general, @; is small for a liquid or amor-
phous configuration and @ is large for a perfect crystal.
Our calculations of @, for a range of even [, show that
Q¢ is most sensitive to crystalline order. We find that

Qs = 0.51069 (19)

for a perfect bee lattice and Qg = 0.57452 for a per-
fect face centered cubic lattice, see also [49]. Note that
@; is small for odd I. In Fig. 10 we show Qg versus
simulation time tg. In general, Q¢ grows with to. How-
ever, the amount of time necessary for Qg to grow can
increase strongly with increasing system size N or I'. A
plateau near Q¢ ~ 0.17 is seen for all four systems in
Fig. 10. This suggests a possible metastable intermedi-
ate state. The simulations with N = 27648 at I' = 500
and N = 8192 at I' = 1500 show a rapid rise in Q)g, near
to = 4 x 10°/w,, during transitions to single crystals.
For N = 27648 at I' = 1000 and N = 8192 at I' = 1750,
Q¢ is increasing with time. These systems have not yet
evolved to single crystals. However, the continued rise of
Q¢ with time strongly suggests that these systems will
evolve to single crystals at later times. In summary, the
continued rise of QY with time, as shown in Fig. 10,
demonstrates that these quenched systems are evolving
with time towards single crystals, and that they are un-
likely to remain amorphous.

We conclude that an amorphous solid will not form
even with large amounts of super cooling, where the tem-
perature is rapidly quenched by up to a factor of 10 be-
low the melting temperature. Instead, diffusion is fast
enough so that the system will form a regular crystal.
Our results strongly suggest that Coulomb solids in the
interior of cold white dwarf stars and the crust of neu-
tron stars will be crystalline and not amorphous. This
is consistent with observations of rapid crust cooling of
neutron stars following extended periods of accretion [24—
27]. This rapid cooling implies a high crust thermal con-
ductivity, that agrees with the conductivity of a regular
crystal, and is larger than the conductivity expected for
an amorphous solid.



FIG. 7: (Color on line) Configuration of 27648 ions at I' = 500
after a simulation time to = 350,000/w,. The sample was
prepared by instantaneously quenching a liquid from I' = 175
to I' = 500. Figure plotted using VMD [46].

FIG. 8: (Color on line) Configuration of 27648 ions at I' = 500
after a simulation time to = 450,000/w,. The sample was
prepared by instantaneously quenching a liquid from I' = 175
to I' = 500. Figure plotted using VMD [46].

IV. CONCLUSIONS

Diffusion in coulomb crystals can be important for the
structure of the crust of neutron stars. In this paper,
we perform molecular dynamics simulations of one com-
ponent coulomb crystals to study the diffusion constant
D. We find that D is non-zero, at least near the melt-
ing temperature, and that D for Coulomb crystals with
relatively soft-core 1/r interactions is in general larger
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FIG. 9: (Color on line) Diffusion constant D versus simu-
lation time to for a 27648 ion system at I' = 1000, using
t = 59000/wp. The vertical lines mark diffusion features that
are also indicated in Fig. 10. The system was prepared by
instantaneously quenching a liquid from I' = 175 to I' = 1000.

than D for Lennard-Jones or other solids with harder-
core (more singular) interactions.

We find that diffusion, for simulations that start from
a perfect body-centered-cubic lattice, involves the ex-
change of ions in ring-like configurations. Here ions
“hop” in unison with one ion replacing another with-
out the formation of long lived vacancies. This may be
true because vacancy formation is strongly suppressed
because of the large pressure. The diffusion constant
D decreases rapidly, for temperatures below the melt-
ing point, suggesting that these ring-like configurations
have a high activation energy.

We also calculate diffusion for simulations that start
from imperfect crystal initial conditions. Here a lig-
uid configuration, at a temperature somewhat below the
melting point, spontaneously freezes to an (in general)
imperfect crystal that may contain defects such as dis-
locations and grain boundaries. Note that these con-
figurations involve one or more micro-crystals and are
not amorphous. For these systems, D is larger than D
for perfect bee lattice configurations and decreases more
slowly with decreasing temperature. This suggests that
D for imperfect crystals is dominated by the motion of
the crystal defects rather than the hopping of ions in a
perfect crystal. Therefore, observations of D may help
characterize the imperfections in a Coulomb crystal.

Finally, we studied diffusion in “amorphous” systems
where the temperature was instantaneously quenched to
much lower values. We find that D is large. Indeed most
of our amorphous simulations are observed to sponta-
neously transform to either a single crystal or a small
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FIG. 10: (Color on line) Bond angle metric Qg, see Egs.
16,17,18, versus simulation time to for amorphous systems
that were instantaneously quenched from a I' = 175 liquid
at to = 0. The number of ions in the simulation N and
coulomb parameter I' are indicated. The vertical red lines,
for I' = 1000 and N = 27648, indicate diffusion features that
are seen in Fig. 9.
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number of crystal domains. This strongly suggests that
Coulomb solids in white dwarf and neutron stars are crys-
talline, rather than amorphous. This is in agreement with
X-ray observations of rapid neutron star crust cooling
that imply a large thermal conductivity.

It is an important open problem to determine the equi-
librium distribution of defects in a Coulomb crystal. It
may be difficult to determine this directly from molecu-
lar dynamics simulations because it can take a very long
time for defects to equilibrate. However, we find that
diffusion is relatively fast. This suggests that astrophysi-
cal coulomb solids will have had plenty of time to anneal
to nearly perfect crystals with relatively few defects. Fi-
nally, the diffusion constant that we find for a pure bcc
lattice may provide a lower limit on D for an equilibrated
system. This is because the presence of defects is only
expected to increase D over that for a perfect crystal.
In future work we plan to study D for multicomponent
Coulomb solids. For a given species i, we expect a rich
behavior for the diffusion constant D; depending on how
the charge of an ion Z; compares to the average charge
of the ions that make up the crystal lattice.
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