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The cubic-quintic Swift-Hohenberg equation (SH35) provides a convenient order parameter de-
scription of several convective systems with reflection symmetry in the layer midplane, including
binary fluid convection. We use SH35 with an additional quadratic term to determine the qual-
itative effects of breaking the midplane reflection symmetry on the properties of spatially local-
ized structures in these systems. Our results describe how the snakes-and-ladders organization of
localized structures in SH35 deforms with increasing symmetry breaking, and show that the de-
formation ultimately generates the snakes-and-ladders structure familiar from the quadratic-cubic
Swift-Hohenberg equation (SH23). Moreover in nonvariational systems like convection odd-parity
convectons necessarily drift when the reflection symmetry is broken, permitting collisions among
moving localized structures. Collisions between both identical and nonidentical traveling states are
described.

PACS numbers: 47.54.-r, 47.20.Ky
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I. INTRODUCTION

Recent studies of convection in binary fluids, both in bulk mixtures [1, 2] and in porous media [3], have identified
novel states of spatially localized convection that have been called convectons [4]. Related states are also present
in convection in a magnetic field [4, 5], in natural doubly diffusive convection [6, 7] and in Marangoni convection
[8]. These states are time-independent and may form bound states called multipulse convectons. In two-dimensional
systems with a midplane reflection symmetry such as binary fluid convection the midplane symmetry is responsible for
the presence of two types of convectons with opposite parity: even-parity convectons that are invariant with respect
to spatial reflection R : x → −x, and odd-parity convectons, invariant under R followed by a midplane reflection
κ : z → 1− z. Convectons of both types are present in a Rayleigh number regime called the snaking or pinning region
located in the subcritical regime of the bifurcation diagram in which spatially periodic convection coexists with the
conduction state. The term “snaking” refers to the back-and-forth oscillations of the convecton branches within this
region as the convectons grow in length by nucleating new cells at either end. This process is captured well by a
model partial differential equation on the real line, the Swift-Hohenberg equation, with competing cubic and quintic
nonlinearities (hereafter SH35):

ut = ru −
(

1 + ∂2

x

)2

u+ b3u
3 − u5. (1)

Here u(x, t) is a real-valued order parameter. The equation defines an intrinsic length scale, here 2π, and is completely
parametrized by the driving r and the cubic coefficient b3.
The SH35 has two symmetries, R : x → −x and κ : u → −u, completely analogous to the symmetries of two-

dimensional binary fluid convection. The equation has been studied by a number of authors [9–11] and it is known
that the snaking branches of even and odd-parity localized states are braided and connected by additional links called
rungs consisting of localized states with no parity. The resulting branch structure has been called the snakes-and-
ladders structure of the snaking or pinning region [10]. Within SH35 the asymmetric states are also equilibria. This
is a consequence of the variational (i.e., gradient) structure of the equation. However, all such asymmetric states are
known to be unstable [10].
In the corresponding convection system even-parity states are necessarily time-independent. This is a consequence

of their symmetry with respect to the symmetry R. In general, even-parity states of this type may undergo secondary
bifurcations with increasing amplitude that break this symmetry producing a pair of symmetry-related asymmetric
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states. In a translation-invariant system posed on the real line (or with periodic boundary conditions in x) these states
will in general travel, with the direction of travel and speed determined by the asymmetry. Bifurcations of this type are
referred to as parity-breaking bifurcations [12]. The bifurcations to the rung states are pitchfork bifurcations of this
type, implying that in nonvariational systems the rung states will in general travel, with a speed proportional to the
square root of the distance from the bifurcation. The odd-parity convectons also present in binary fluid convection
do not travel, however – these states are time-independent like the even-parity states. This is a consequence of
the symmetry κ ◦ R of these states which forces the drift speed to vanish. Thus odd-parity states also experience
parity-breaking bifurcations leading to drift, provided the marginally stable eigenfunction breaks the symmetry κ◦R.
These bifurcations are responsible for the termination of the rung states within the snaking region on the branch of
odd-parity states.
The above discussion implies that it is possible to make the odd-parity states drift by breaking the midplane

reflection symmetry κ of the system. This can be achieved, for example, by using different boundary conditions at
the top and bottom of the layer (on the velocity or temperature), or by incorporating non-Boussinesq effects into
the description of the problem. These effects include temperature and concentration dependence of the transport
coefficients or a quadratic dependence of the density on the temperature or concentration. One may also anticipate
that the breaking of the symmetry κ should eliminate the distinction between the asymmetric rung states and the odd-
parity states. Breaking the symmetry κ does not destabilize the even states and implies that in systems with broken κ
symmetry one may study collisions among almost odd-parity states, or among such states and the even-parity states
which remain stationary. The present paper is devoted to an exploration of these issues using Swift-Hohenberg-like
model equations, to serve as a guide for future studies of traveling convectons in binary fluid convection and related
systems.
We study two systems with this property, the equation

ut = ru −
(

1 + ∂2

x

)2

u+ b3u
3 − u5 + ǫu2, (2)

and the equation

ut = ru −
(

1 + ∂2

x

)2

u+ b3u
3 − u5 + ǫ (∂xu)

2
. (3)

Both equations contain a quadratic term that breaks the symmetry κ but respects the symmetry R; only one such
term is included, the dominant one in powers of the amplitude, since its effects are believed to capture the essence
of the breaking of the κ symmetry. Equation (2) continues to possess variational structure implying that both the
R-symmetric states and the asymmetric states that result will continue to be stationary. This fact has numerous
advantages for tracing out the effects of the symmetry-breaking term. However, in order to study the associated drifts
alluded to above we also study Eq. (3). We anticipate, and our computations confirm, that the replacement of the
term ǫu2 by the nonvariational term ǫu2

x has qualitatively similar consequences.
Throughout this work we set b3 = 2 and solve the problem on a large domain with Neumann boundary conditions

instead of solving it on an infinite domain. The results are found to be independent of the size of the domain provided
the observed pattern is located in the center of the domain, far from the boundaries. All solutions are computed on
the full domain, despite the fact that even solutions can be computed on the half domain and then reflected in x = 0
to find the solution on the full domain.
The usual snakes-and-ladders picture for SH35, Eq. (1), is shown in figure 1. There are three basic components

to this figure: a snaking branch representing even-parity solutions, i.e. , solutions invariant with respect to R, a
snaking branch representing odd-parity solutions invariant with respect to κ ◦ R, and the rung states. The rung
states connect the two snaking branches, arising in pitchfork bifurcations close to the saddle-node bifurcations on the
snaking branches. Moving up the snake, the saddle-nodes themselves converge exponentially rapidly to fixed values
of the parameter r and do so from the same side at both boundaries of the snaking region [13, 14]. At the same time
the pitchfork bifurcations leading to the rung states converge exponentially rapidly to the saddle-node bifurcations
[15, 16].
Owing to the symmetry κ each snaking branch represents two distinct solutions related by κ. We refer to even

solutions with a maximum (minimum) in the center as L0 (Lπ). Likewise we refer to odd solutions with a negative
(positive) slope in the center as Lπ/2 (L3π/2). In addition each rung in the figure represents 4 distinct asymmetric
states [11]. These facts will prove useful in what follows.
The solution amplitude is defined in terms of its normalized L2 norm,

A =

(

1

L

∫ L

0

u2(x)dx

)1/2

. (4)

The normalization is included in order to compare the amplitude of localized states with that of the periodic state
(which would otherwise have infinite amplitude as L → ∞). However, because of the normalization A vanishes for
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FIG. 1: The snakes-and-ladders structure of the pinning region −0.713 < r < −0.626 in SH35, Eq. (1), with b3 = 2, ǫ = 0.

localized states on an infinite domain. To avoid this problem, all solution amplitudes quoted in the next two sections
have been calculated on a domain of length 40π, i.e., 20 wavelengths of the basic pattern.

II. NUMERICAL STUDY OF EQ. (2)

A. Small symmetry breaking

Equation (2) is variational, like Eq. (1), and has a Lyapunov functional or free energy given by

F [u(x)] =
1

L

∫ L

0

(

−
1

2
ru2 +

1

2

[(

1 + ∂2

x

)

u
]2

−
1

3
ǫu3 −

1

4
b3u

4 +
1

6
u6

)

dx. (5)

The evolution of the system thus follows ut = −LδF/δu and as a result all solutions evolve as t → ∞ towards local
minima of the energy functional F , i.e., to a time-independent state.
Figure 2 shows the solution branches in the snaking region when the symmetry κ of the problem is broken through

setting ǫ = 0.03 and compares the result with the snaking curves corresponding to the κ-symmetric case (ǫ = 0),
shown dashed. A number of changes can be seen.
The even solutions continue to snake but are split into two continuous branches. On the L0 branch the solution

profiles continue to have maxima in the center. Sample profiles, at locations labeled (a)’-(d)’ in figure 2, are shown
in figure 3. On the Lπ branch the solution profiles have minima in the center. Sample profiles, labeled (a)-(d) in
figure 2, are also shown in figure 3. In contrast, the breaking of the κ symmetry destroys the odd parity of the states
Lπ/2, L3π/2, producing two distinct asymmetric states A±. Each of these states comes as a pair of states, related
by the unbroken symmetry R, giving four asymmetric states altogether. As a result the odd-parity branch does not
split when ǫ 6= 0 but instead breaks up into disconnected parts. In view of their shapes we refer to these disconnected
branches as S-branches or Z-branches. We first describe the even states in more detail, before discussing the S and
Z-branches.
When ǫ = 0 the two even branches, L0 and Lπ, coincide and the corresponding profiles are related by symmetry κ.

This symmetry is broken when ǫ 6= 0 and results in the splitting of the L0 and Lπ branches. For |ǫ| ≪ 1 the splitting
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FIG. 2: As for figure 1 but with broken κ symmetry, ǫ = 0.03. The snakes-and-ladders structure in the κ-symmetric case,
ǫ = 0, is shown dashed. Solution profiles at the labeled saddle-nodes are shown in figures 3 and 4.
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FIG. 3: Solution profiles u(x) at the saddle-nodes of figure 2. The profiles (a)-(d) are from the Lπ branch while (a)’-(d)’ are
from the L0 branch.



6

is of order |ǫ|1/2 (cf. [17]) and is most visible at each saddle-node. As a result of the splitting every second saddle-node
on the L0 branch moves outward relative to the ǫ = 0 branch while the corresponding saddle-nodes on the Lπ branch
move inwards. The opposite occurs at the saddle-nodes in between. This behavior takes place along both the left
and right boundaries of the snaking region. As a result, there are now four values of r at which the folds on these
branches accumulate, r = −0.7274 and r = −0.6987 on the left and r = −0.6293 and r = −0.6231 on the right. Thus
the broken κ symmetry leads to an increase in the overall width of the snaking region. Moreover, since the solutions
on the L0, Lπ branches remain even, the parity-breaking bifurcations near each saddle-node remain pitchforks and
continue to be responsible for the bifurcation of spatially asymmetric states from these branches. Thus each rung in
the diagram is split into two branches, one of which forms a part of an S-branch while the other forms a part of a
Z-branch, each of which continues to represent a pair of asymmetric localized states related by the symmetry R.
Specifically, the solution labeled (a) at the right boundary of the snaking region is an Lπ solution that results from

an outward displacement of the saddle-node, while the next saddle-node on the right, labeled (c), is displaced inward.
The solution (c) has a pair of extra downcells on either side, implying that the fronts in (c) are mirror images of
those in (a). It is necessary therefore to proceed one more “wavelength” up the snake before one recovers a solution
resembling (a) but with a full extra wavelength on either side of the structure. Similar evolution takes place along
the L0 branch. We see that the L0 solution (a)’ is displaced inward, while the next L0 state above, labeled (c)’, is
displaced outward. This time proceeding up the L0 branch from state (a)’ to state (c)’ results in the addition of a pair
of upcells, one on each side, while the downcells saturate in amplitude. In proceeding from (c)’ to (e)’, not shown,
the structure adds a pair of downcells on either side while the existing upcells saturate.
These observations can be interpreted in terms of nucleation of new cells, either upcells or downcells, at the front

and back of the localized structure as one follows each branch. This nucleation takes place at the left boundary of the
snaking region, where the cells bounding the localized structure are weakest. For example, a downcell is nucleated
at (b)’ on the outside of a reduced strength upcell, while an upcell is nucleated at (d)’ on the outside of a reduced
strength downcell; by the time one reaches the right boundary at (c)’ the reduced strength upcells have grown to
full strength, and the new downcells to half strength. Because of the weakness of the cells in the nucleation region
this region is affected the most by the symmetry-breaking and hence exhibits the largest splitting. Which way a
branch shifts depends on whether one is adding cells that are favored by the symmetry-breaking, in which case the
saddle-node shifts outwards, or cells that are opposed by the symmetry-breaking, in which case the saddle-node shifts
inwards. For sufficiently small ǫ the resulting shifts are equal and opposite for the L0, Lπ branches. Similar discussion
applies at the right boundary although the magnitude of the shift is reduced. This is a consequence of the fact that
the symmetry-breaking has a smaller effect on fully developed cells. All shifts are reversed when the sign of ǫ is
reversed.
Figure 4 shows the solution profiles at saddle-nodes on the disconnected S and Z-branches. As already mentioned,

the odd-parity branch does not split when ǫ 6= 0 but instead breaks up into disconnected parts. This is a direct
consequence of the fact that once ǫ 6= 0 the resulting states have no parity. As a result, the pitchfork bifurcations
present near each saddle-node when ǫ = 0 are unfolded, resulting in a continuous transition between states resembling
Lπ/2,3π/2 and one or other of the states A± on the former rung states. Figure 2 shows that these reconnections result
in two types of branches of asymmetric states, S-branches (eg., (b)-(ii)-(iii)-(c)), and Z-branches (eg., (a)-(i)’-(ii)’-
(b)’). The S-branches provide connections from an L0, or Lπ, branch back to itself, while the Z-branches provide
interconnections between the L0 and Lπ branches. The folds on these branches all align with the inner folds on the
L0, Lπ branches, i.e. , at r = −0.6987 and r = −0.6293. In contrast to the even branches, all folds on the Lπ/2 and
L3π/2 branches are displaced slightly inwards when ǫ 6= 0, and this is so both at the left and right boundaries of
the snaking region. This is because adding an upcell at one end of an odd-parity state and a downcell at the other
generates an intermediate saddle-node displacement.
States on the S and Z-branches, such as (i) and (i)’, are related by approximate κ symmetry. Comparison of the

profile (i) in figure 4 with the image of (iii) under R shows that, in proceeding upward from one S-branch to the next,
one upcell and one downcell are added to the solution profile, i.e., one extra wavelength. The same process occurs for
the Z-branches, for example, between (i)’ and the image of (iii)’ under R. Figures 3 and 4 also allow us to trace the
evolution of the profiles along the S and Z-branches. For example, in proceeding from profile (b) to profile (c) along
the connecting S-branch we see that between (b) and (ii) the up and downcells at the left shrink while those at the
right both grow. Between (ii) and (iii) the cells at both ends grow, while between (iii) and (c) the cells at the left
grow while those at the right shrink. The net effect of these changes is to increase the amplitude of the cells at either
end, without changing the internal structure of the solution. In contrast, when proceeding from (a) to (b)’ along a
Z-branch we see that between (a) and (i)’ the cells at the left grow while those at the right shrink. Both sets grow
between (i)’ and (ii)’ while between (ii)’ and (b)’ the cells at the left continue to grow while those at the right slightly
shrink. The net effect of these changes is to add one wavelength to the structure, thereby turning an Lπ state into
an L0 state.
In all cases the length of the localized structure changes by one wavelength as one proceeds up the snaking structure
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FIG. 4: Solution profiles u(x) at the saddle-nodes of the disconnected branches in figure 2. The profiles (i)-(iv) are from
S-branches while (i)’-(iv)’ are from Z-branches.
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FIG. 5: (Color online) Evolution of a Z-branch with ǫ. The central segment of each Z-branch is stable while the upper and
lower segments each have one real unstable eigenvalue.

in figure 2 from one fold to the next like fold.

B. Increased symmetry breaking

Figure 5 shows the effect of increasing the strength ǫ of the symmetry-breaking term on the width and shape of a
particular Z-branch of asymmetric states. The end points of each curve correspond to its termination on the L0 and
Lπ branches. Thus the end-points are proxies for the location of the outermost saddle-node bifurcations while the
saddle-nodes define the boundaries of the inner snaking region. As shown in figure 5, as ǫ increases the saddle-nodes
annihilate each other and so gradually straighten the Z shape into a monotonic curve.
The stability of the Z-branch carries over from the ǫ = 0 case. The upper and lower segments are unstable with one

positive real eigenvalue, a consequence of the instability of the rung states when ǫ = 0. However, the central segment
is stable (when it exists) since this part of the curve is always the remnant of a stable segment of an Lπ/2 (L3π/2)
branch.
As ǫ is increased, the S-branches shrink in size as shown in figure 6, and disappear for ǫ > 0.2. All solution profiles

on S-branches are unstable. As before the upper and lower segments have a single real unstable eigenvalue but this
time the central segment has two real unstable eigenvalues. This is a consequence of the fact that these segments are
created from unstable segments of the Lπ/2 (L3π/2) branch when ǫ = 0.
Stability properties along the snaking branches L0, Lπ also carry over from the ǫ = 0 case: the segments of either

branch sloping up from left to right are stable while the remaining segments are unstable. The cumulative effect of
these changes is shown in figures 7 and 8.

III. NUMERICAL STUDY OF EQ. (3)

In this section we examine the corresponding properties of the nonvariational system (3). As the solutions may
now drift, we seek stationary solutions in a moving frame, i.e. , u(x, t) = u(ξ) with ξ = x− ct, and solve

0 = ru−
(

1 + ∂2

ξ

)2

u+ b3u
3 − u5 + ǫ (∂ξu)

2
+ c∂ξu, (6)
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where c is treated as a (nonlinear) eigenvalue and is calculated as part of the solution. The symmetry R takes solutions
u(ξ; c) into solutions u(−ξ;−c).
Figures 9-12 show that the symmetry-breaking has essentially the same effect on the ǫ = 0 snaking branches as in

the variational case, and that with increasing ǫ the S-branches of asymmetric states gradually disappear while the
Z-branches gradually straighten. The net outcome of this behavior is thus to eliminate every second saddle-node,
both at the left and the right boundaries of the snaking region, and replacing the single snaking branch of even-parity
states by a pair of braided L0, Lπ branches.
As in the variational case, solution stability carries over from SH35. As a result, the parts of the snaking curves

sloping upwards from left to right are stable while all other solutions are unstable. No oscillatory bifurcations have
been found, although for ǫ = 0.3 complex conjugate pairs of L0,π eigenvalues approach the imaginary axis close
to the saddle-nodes. We mention that in the generic situation the interaction of a saddle-node bifurcation with a
parity-breaking bifurcation is expected to generate oscillations [18] and such oscillations are indeed present in the
Swift-Hohenberg equation with sufficiently large nonvariational terms [19].
Figure 13 shows the S and Z-branches of asymmetric states extracted from figure 9 for ǫ = 0.01. As before the end

points are proxies for the outermost saddle-nodes within the snaking region while the interval between the saddle-
nodes defines the inner snaking region in figure 9. The branches are drawn using distinct line types to facilitate
comparison with figure 14 showing the drift speed c along these branches. Comparison of the figures reveals that the
drift speed passes through zero along the S-branches but remains of one sign along the Z-branches. The reason for this
is simple to understand. When proceeding from a left saddle-node upward to a right saddle-node, the cells at either
end of the localized structure strengthen, thereby increasing monotonically the drift speed. However, along segments
that extend upward from a right saddle-node to a left saddle-node the incipient nucleation counteracts the drift as the
asymmetry of the structure starts to reverse, and the drift must pass through zero before it starts building up past
the left saddle-node. Thus the speed c changes sign along any branch that follows a segment of odd-parity states with
a negative slope, i.e., on S-branches. In contrast, the speed will be monotonic on any branch involving a segment with
positive slope, i.e., Z-branches. Drift speeds are expected to decrease with increasing length of the localized state as
the cells at either end that produce the drift become a smaller and smaller fraction of the state. This prediction is
consistent with the computed maximum drift speeds in figure 14, eg., the red (solid) and blue (dashed) curves in the
figure.
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FIG. 9: Snaking region for Eq. (3) when ǫ = 0.01, including all S and Z-branches.
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FIG. 10: Snaking region for Eq. (3) when ǫ = 0.03, including all S and Z-branches, for comparison with figure 2, also computed
for ǫ = 0.03.
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FIG. 13: (Color online) S and Z-branches of asymmetric states from figure 9 for ǫ = 0.01.

-0.0004

-0.0002

0.0000

0.0002

0.0004

-0.74 -0.72 -0.70 -0.68 -0.66 -0.64 -0.62 -0.60

D
rif

t s
pe

ed
, c

Forcing, r

FIG. 14: (Color online) Drift speeds along the S and Z-branches shown in figure 13. Line styles are consistent between these
figures. The speeds reverse along S-branches but are monotonic along Z-branches.



14

IV. COLLISIONS OF TRAVELING LOCALIZED STATES

In this section we explore the dynamics associated with the interaction between localized states of Eq. (3). All states
are taken from stable sections of the solution branches at r = −0.65 and ǫ = 0.1. We study in turn the interaction
between two identical localized states traveling in opposite directions (head-on collision), and the interaction between
two different localized structures selected from different Z-branches but at the same value of r. When considering
collisions between different structures we describe separately the case in which the structures are moving in the same
direction and the case in which they move in opposite directions. We also consider collisions between an asymmetric
traveling localized state and an even-parity stationary state.
We start with a head-on collision between an asymmetric state and its image under R, initially far apart, treated

as an initial value problem. Far apart the drift speed of each state is c = 4.2× 10−3. The collision generates a steady
localized structure of even parity whose length exceeds the sum of the lengths of the individual traveling pulses.
Figure 15(a) shows the details of the collision in a space-time plot, while panel (b) shows the amplitude A, computed
over the domain length L = 80π, as a function of time. The evolution is nonmonotonic as the approaching pulses
alternately reinforce one another and suppress one another. The coalescence is very rapid and accompanied by a
noticeable overshoot before the solution relaxes to the final steady state.
In figure 16 we show an asymmetrical collision starting from two different asymmetric states, both at r = −0.65

and with opposite speeds. The longer state has drift speed 3.1 × 10−3, i.e., although it has larger amplitude it is in
fact slower. Despite its asymmetry the collision once again creates an even-parity stationary state that is wider than
the sum of the lengths of the individual pulses. As in the preceding example this appears to be a result of constructive
interference wherein each pulse provides a sufficient perturbation to its neighbor to bump the smaller interior peaks
up to the amplitude of the competing periodic state.
Figure 17 shows a collision between the two pulses in figure 16 but this time traveling in the same direction. The

final state is an asymmetric traveling state whose length is larger than the sum of the individual lengths and whose
speed is therefore much less than the individual speeds.
Figure 18 shows the two possible results when an asymmetric state collides with a stationary symmetric solution.

In each case the resulting state is longer than the sum of the initial profiles, with a pair of extra peaks formed in the
center. Two possible outcomes have been identified, depending on the outermost fronts, i.e. , the fronts not involved
in the collision. When these fronts are alike (i.e. , related by an approximate R symmetry) the final state is stationary
and even (figure 18(b)). In contrast, when these fronts are unlike (i.e. , related by an approximate κ ◦ R symmetry)
the final state is asymmetric and continues to drift (figure 18(a)).

V. DISCUSSION AND CONCLUSIONS

Homoclinic snaking in systems with the reflection symmetry κ differs in a fundamental way from that present
in nonsymmetric systems [11]. As shown in figure 19, the L0,π, Lπ/2,3π/2 branches in the symmetric case snake
with double the frequency of the L0,π branches in the nonsymmetric case. This is a consequence of the fact that
in symmetric systems the solutions add half a wavelength on either side in passing from a saddle-node to the next
saddle-node above, while in nonsymmetric systems a full wavelength is added on either side during a similar oscillation.
Thus when the symmetry κ is broken the resulting deformation of the snakes-and-ladders structure in figure 1 must
be such as to (i) create two distinct, braided branches of even states from the original even snaking branch, (ii)
eliminate every second back-and-forth oscillation of the branch together with the corresponding rung states, and
(iii) replace the snaking odd-parity states and the remaining rung states by monotonic branches connecting the two
braided even-parity branches.
In this paper we have studied this process in the Swift-Hohenberg equation with competing cubic-quintic nonlin-

earities (SH35). Our computations reveal that breaking the symmetry κ splits the branch of even states L0,π into
two branches by shifting consecutive L0 saddle-nodes alternately inwards and outwards relative to the κ-symmetric
case, and likewise for Lπ but out of phase with the L0 saddle-nodes. At the same time the Lπ/2,3π/2 saddle-nodes
are all shifted inwards and the odd-parity states reconnect with the asymmetric states on the rungs in the snakes-
and-ladders structure owing to the destruction of the parity-breaking bifurcations on the Lπ/2,3π/2 branch. These
reconnections result in two different disconnected branches of asymmetric states. Of these the S-branches provide con-
nections from one even-parity branch (L0 or Lπ) to itself, while the Z-shaped branches provide connections between
L0 and Lπ. With increasing asymmetry the S-shaped connections shrink to zero, while the Z-shaped connections
gradually straighten out and produce monotonic, rung-like, connections between L0 and Lπ. Thus for sufficiently
large symmetry breaking the snakes-and-ladders structure resembles that familiar from the Swift-Hohenberg equation
with competing quadratic-cubic nonlinearities (SH23) [17]. The above process is independent of the nature of the
symmetry-breaking term used, and represents one of three types of snaking behavior identified in [15] on the basis of



15

10000

5000

0

 0  50  100  150  200  250

tim
e,

 t

position, x

0.36

0.37

0.38

0.39

0.40

0.41

0.42

 5000  5500  6000  6500  7000  7500  8000

so
lu

tio
n 

am
pl

itu
de

, A
(t

)

time, t

FIG. 15: (a) A head-on collision between two identical localized states, u and Ru, at r = −0.65, ǫ = 0.1, shown in the form of a
space-time plot. When far apart each pulse drifts with speed 4.2× 10−3. Solution profiles are separated by 500 time units. (b)
Evolution of the solution amplitude A, computed on the full domain of length 80π. The final state is a stationary even-parity
localized state.
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FIG. 16: (a) Interaction of two different localized states at r = −0.65, ǫ = 0.1, taken from the stable region of neighboring
Z-branches in a space-time plot. Solution profiles are separated by 500 time units. (b) Evolution of the solution amplitude A,
computed on the full domain of length 80π. The final state is a stationary even-parity localized state.
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FIG. 17: As for figure 16 but now with both localized states traveling in the same direction, with the faster pulse behind the
slower pulse. The resulting state is asymmetric and as a result continues to travel albeit at a much slower speed. Successive
solution profiles are separated by 2000 time units. (b) Evolution of the solution amplitude A, computed on the full domain of
length 80π.
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3, and (b) SH35, Eq. (1), together with sample L0 profiles. The figure shows that to generate a localized
state of a given length the L0 branch executes twice as many back-and-forth oscillations in case (b) than in case (a). Parameters:
(a) b2 = 1.8, (b) b3 = 2. Reproduced with permission from [25].

geometrical arguments. Its presence here is an inevitable consequence of the breaking of the κ symmetry, a fact that
sheds new light on the occurrence of this process in physical systems.
We have emphasized that the breaking of the symmetry κ via nonvariational terms results in general in localized

structures that drift. These structures are asymmetric, and arise both from asymmetric rung states and from odd-
parity states where the odd parity has been broken. Since the interaction between localized structures falls off
exponentially with their separation almost any nonvariational symmetry-breaking perturbation will destroy a bound
state of odd-parity localized structures, and lead to drift of the individual pulses. We have examined various types of
collisions of such pulses. These collisions lead in general to structures whose length exceeds the sum of the individual
lengths (amalgamation), and these may be either stationary or drifting depending on the profiles (and speeds) of the
individual pulses. Since short structures travel faster than long ones, the resulting collisions differ qualitatively from
those common in systems supporting solitary waves in which the large amplitude wave usually travels faster than a
small amplitude wave. In our case the shorter, faster pulses do not have enough “momentum” to destroy the longer,
slower pulse, in contrast, for example, to pulses described by coupled complex Ginzburg-Landau equations [20, 21].
When the symmetry R is broken instead of κ the snakes-and-ladders structure is also destroyed. Burke et al. [22]

show, using SH23, that in this case the snakes-and-ladders structure breaks up into a stack of figure-eight isolas. Each
isola consists of asymmetric states with a particular length, and all such states drift. Outside of the pinning region
nucleation of new cells competes with the drift of the structure leading to asymmetric nucleation. In the present
problem similar behavior is associated with convectons that drift because of the broken κ symmetry, and once again
asymmetric nucleation is the result. However, to the right of the pinning region repeated nucleation leads to longer
and longer structures with a corresponding decrease in drift speed. Thus the asymmetry between the nucleation fore
and aft gradually decreases with increasing time. The opposite occurs to the left of the pinning region where cells are
destroyed asymmetrically, and the asymmetry gradually increases with time.
We mention that S-shaped and Z-shaped secondary and tertiary branches are common in snaking scenarios. For

example, such branches are generated in SH35 when periodic boundary conditions are replaced by Neumann or
Dirichlet boundary conditions [23], a fact likely due to the loss of discrete translation symmetries. Such branches are
also present in the snaking of multipulse states in systems with midplane reflection symmetry [3] since the presence of
a second pulse breaks the κ symmetry of the first pulse. Finally, similar structures, with identical stability properties,
are associated with two-dimensional structures in SH35 as well [24].
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0908102.
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