
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Accumulation of beneficial mutations in one dimension
Jakub Otwinowski and Stefan Boettcher

Phys. Rev. E 84, 011925 — Published 27 July 2011
DOI: 10.1103/PhysRevE.84.011925

http://dx.doi.org/10.1103/PhysRevE.84.011925


Accumulation of beneficial mutations in one dimension

Jakub Otwinowski∗ and Stefan Boettcher†
Physics Department, Emory University, Atlanta, Georgia 30322

When beneficial mutations are relatively common, competition between multiple unfixed mu-
tations can reduce the rate of fixation in well-mixed asexual populations. We introduce a one-
dimensional model with a steady accumulation of beneficial mutations. We find a transition between
periodic selection and multiple-mutation regimes. In the multiple-mutation regime, the increase of
fitness along the lattice bears a striking similarity to surface growth phenomena, with power law
growth and saturation of the interface width. We also find significant differences compared to the
well-mixed model. In our lattice model, the transition between regimes happens at a much lower
mutation rate due to slower fixation times in one dimension. Also the rate of fixation is reduced with
increasing mutation rate due to the more intense competition, and it saturates with large population
size.

I. INTRODUCTION

In population genetics, the study of the rate at which
mutations are generated and incorporated into popula-
tions has been largely a theoretical activity due to the
difficulty of measuring changes in organisms over many
generations. The simplest case is called periodic se-
lection, when beneficial mutations are rare such that
each mutation has ample time to spread to the whole
population before the next mutation arrives. We assume
conditions such that harmful mutations die out quickly
and survive at a negligible rate, so we only consider ben-
eficial mutations. In this regime the rate of fixation is
limited by the rate at which mutations appear in the
population.

However, recent experiments in microbes suggest that
beneficial mutations may be more common than previ-
ously thought [1]. The competition between multiple un-
fixed beneficial mutations is termed clonal interference
[2] (Fig 1a). In this picture some good mutations must
be wasted because only one of them ultimately fixates,
which reduces the average probability of fixation, and re-
duces the rate of fixation. Larger mutations are more
likely to survive competition, eliminating mutations of
weak effect, and biasing the distribution of fixated muta-
tional effects. Sexual organisms may alleviate this prob-
lem by recombining mutations, known as the Fisher-
Muller hypothesis [3, 4], An analogue of clonal in-
terference when mutations are linked is known as the
Hill-Robertson effect [5, 6]. Since our goal is to
focus on the effects of spatial structure, we avoid com-
plications associated with sexual reproduction and study
only asexual organisms.

The original clonal interference model neglected the
possibility that an individual may acquire multiple ben-
eficial mutations. Assuming mutations are additive, an
additional mutation improves the chances of fixation of
the first mutation instead of suppressing it, and the si-
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Figure 1: All mutations shown are assumed to be beneficial
compared to the wild-type. (a) Clonal interference: mutation
A has to compete with mutations B, C, and D, reducing its
chances of fixation compared to the case when there is only
one mutation. If mutation A fixates, mutations B, C, and D
are “wasted”, slowing down the rate of fixation . (b) Multiple-
mutation effect: Mutation AB arises in a population with
Mutation A, increasing mutation A’s chances of fixation.

multaneous fixation of multiple mutations becomes possi-
ble (Fig 1b) [7–11]. Current research concerns a complete
description that takes into account both aspects [12] (for
a review see [1, 13]). Generally, research in clonal inter-
ference and multiple mutations find the rate of adapta-
tion, or speed of evolution, to be slower than periodic
selection. Clonal interference analysis finds fixation to
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occur in isolated instances, as in the periodic selection
regime. In contrast, multiple mutation analysis finds fix-
ation occurs in clusters, and because of the stacking of
mutations, no mutation ever dominates the entire pop-
ulation. Simulation studies have found that the relative
importance of either effect depends on the distribution of
beneficial mutations effects [11, 14]. If the distribution
has a heavy tail, and large effects are relatively common,
then clonal interference can dominate. If the distribution
has a sharp cutoff, and large effects are relatively rare,
then effects from multiple mutations can be more impor-
tant. Unfortunately, we do not know what distributions
are found in nature, and it may depend on the level of
adaptation to the environment [15, 16].

In this paper we will investigate the accumulation of
beneficial mutations of a population with spatial struc-
ture. While the fixation probability of a mutant on a
spatially structured population is usually the same as in
a well-mixed population [17, 18], the time scales can be
much slower [19–21]. In a well-mixed population every
individual competes with each other, but with spatial
structure the spread of a mutant is restricted by space.
Nothing happens inside a domain where the fitnesses are
all the same. The only changes are at the boundaries
which are defined by fitness differences. Gordo and Cam-
pos [22] studied the speed of evolution on a 2D lattice.
They found the speed to be slower, and the time to fix-
ation to be longer, than in a well-mixed population, and
their results were supported by experiments with bacte-
ria [23]. Others have studied the loss of genetic variation
in 1D stepping stone models to describe the boundary
of an expanding bacterial colony [24–27]. Starting with
multiple alleles, they found that over time the popula-
tion segregates into domains of single alleles. The effects
of drift and selection change significantly, since they act
only on the domain boundaries. The timescale of seg-
regation was found to be slower than in the well-mixed
case (algebraic instead of exponential).

We chose to study a one-dimensional spatial structure
because it is the simplest structure where we would ex-
pect the most deviation from well-mixed models. While
Hallatschek and Nelson also studied the accumulation of
beneficial mutations in an expanding frontier in the non-
interacting regime [26], we will study a model where mu-
tations are common enough to interfere with each other.
In section II, we will introduce a Wright-Fisher model
on a 1D lattice and study the dependence on the rate of
beneficial mutations, and the size of the population. Our
model has three timescales that are not well separated:
selection, mutation and stochasticity (drift). Such three-
timescale models are difficult to analyze analytically and
we must resort to simulations for most of our insights.
In section III we discuss the similarity to surface growth
phenomena, and in section IV we discuss how our re-
sults remain qualitatively the same under more general
conditions.

II. 1-D MODEL WITH MUTATIONS AND
SELECTION

Our model consists of a 1-D lattice withN sites and pe-
riodic boundary conditions. Unlike stepping stone mod-
els with sub-populations or demes, there is only one asex-
ual haploid individual at every site. Time is discrete and
represents each generation (parallel updates), and the to-
tal population N stays constant. Each generation dies
and is replaced by its offspring which inherit the fitness
of their single parent. The major change from well-mixed
models is that we specify a spatial neighborhood which
limits where parents may have their children. For sim-
plicity we chose the smallest possible neighborhood of size
2. An organism at site i and time t may have children at
time t + 1 at sites i and i + 1 when t is odd and sites i
and i−1 when t is even. The new generation is chosen so
the number of children of each parent is proportional to
its fitness relative to its neighbors’ fitness. In simulation
this amounts to each child “choosing” its parent weighted
by their fitnesses. For each child at site i, the fitness is
copied from parent site i with probability fi/(fi + fi±1)
or from site i± 1 with probability fi±1/(fi + fi±1).

Every generation, the number of mutations is deter-
mined by a Poisson random number with mean UN . The
effect of a mutation is to increase the fitness, fi, multi-
plicatively as f ′i = fi(1 + s), where s is a small constant
[37]. In the multiplicative fitness model the fitness of a
new mutation relative to its neighbors remains the same
since common factors in the fitness drop out. The bal-
ance of mutation and selection leads to a steady state
in the variance of the log fitnesses. The fitness averaged
over the population, f̄(t) will increase exponentially as a
function of time, and the speed of evolution is the rate
constant defined as:

v = lim
t→∞

〈ln f̄(t)〉
t

, (1)

where brackets indicate the ensemble average. Since s is
constant, v is related to the rate of fixation R, simply as
R = v/s.

In the competing mutation regime, after an initial tran-
sient phase a progressing interface forms in log-fitness
space reminiscent of surface growth phenomena (figure
2). The interface of the logarithm of the fitness has a
distribution that fits extremely well to a traveling Gaus-
sian wave with a speed v and a standard deviation σ. In
general, these quantities depend on U and N . The ad-
ditive increases in log-fitness and spreading of mutations
parallel the addition of particles and smoothing of the
interface in surface growth. From the simulation it was
determined that the system reaches a steady state after
∼ 100N generations.

As in the original multiple-mutations model, the popu-
lation has a moving distribution of fitnesses with a steady
width. This is in contrast to the original clonal interfer-
ence model where the distribution of fitnesses varied and
dropped to zero when fixation occurred.
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Figure 2: The logarithm of the fitness varies in spatial posi-
tion. This interface moves with velocity v and has a standard
deviation σ. N = 1000, U = 10−3, s = 0.01. Shown are
snapshots separated by 10000 generations

The multiple-mutation regime occurs when the fixation
time is approximately equal to or greater than the time
for mutations to appear and establish themselves:

tfix & tmut (2)

The fixation probability, π, for a single mutation happens
to be the same as in the well-mixed model [18], π = 2s
for large Ns and small s [28]. The average time between
fixating mutations is

tmut ≈
1

2sUN
. (3)

In the periodic selection regime, each mutation has time
to spread to the whole population before the next mu-
tation arrives, or tfix � tmut, and the rate of fixation is
mutation limited:

Rs =
1

tmut
= 2sUN. (4)

The transition to the multiple-mutation regime occurs
when tmut ∼ tfix. The fixation time for a single mutant
can be formulated as a first passage problem. The fixa-
tion time is the mean time for a stochastic particle (rep-
resenting the size of the mutant domain) to first reach
position N without ever reaching position 0. The largest
contributing term to the fixation time (when N is not
too small) is simply the size of the system divided by the
drift velocity, or

tfix =
2N

s
. (5)

This is confirmed with simulations in figure 3, although
some deviation is present from terms of order s−2.

The transition between the regimes is obtained by
equating (3) and (5) which results in: Utr ∼ 1/(4N2).
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Figure 3: Fixation times were determined by planting single
mutations with s = 0.01 (circles), s = 0.025 (squares), and
s = 0.05 (x’s), averaged over 100 fixations. Lines indicate
tfix = 2N/s

Figure 4 shows that the fixation rate follows (4) in the
periodic selection regime As U approaches 1, every site
receives a mutation at every generation on average, and
no mutation has a relative fitness advantage. Therefore
the rate of fixation approaches the neutral fixation rate,
R = U (figure 4a, dashed line). Between the two ex-
tremes we observe a transition.

We also simulate the standard well-mixed Wright-
Fisher model with constant s according to [13]. Since
the fixation time is tfix = 2 ln(N)/s , the transition hap-
pens at U ∼ 1/(4N lnN). Figure 4a shows that the
transition happens at much higher U in the well-mixed
model, and the gap separating the two transitions grows
with system size. The difference is more clearly seen by
dividing R with U , shown in figure 4b. The fixation
rate approaches the neutral fixation rate as a power law
∼ Uγ , with γ = 0.3− 0.4

The fixation rate is always higher in the well-mixed
model than in one dimension. The difference in R be-
tween the models may seem small, however it is a log-
arithmic plot, and more importantly the difference de-
pends on the system size N . Figure 5 shows that R be-
comes independent of N at large N , while the well-mixed
model has a sub-linear dependence on N . The saturation
of R with system size is not intuitive. Mutations must
either fixate or be lost, so one may write down a conser-
vation relation:

UN = R+D, (6)

where D is the loss rate. In the case where R does not
depend on N (U � 1/(4N2)), the loss rate must increase
with system size to balance the increase in mutations. D
must take the form:

D ≈ UN
(

1− A

N

)
, (7)
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Figure 4: (a) Fixation rate R versus mutation rate U with
N = 512 and s = 0.01 averaged over 103 fixations for the 1D
model (circles) and well-mixed model (squares). The dotted
line indicates the transition between the single-fixation regime
and the multiple-mutation regime for the spatial model, and
the dot-dashed line indicates the transition for the well-mixed
wright-fisher model. The solid line is the non-interfering fixa-
tion rate (4), and the dashed line is the neutral fixation rate,
Rn = U . (b) The difference between the 1D model (circles)
and the well-mixed model (squares) is clearer with R/U − 1,
which approaches zero as R approaches the neutral fixation
rate Rn = U . As guides, the dashed and dotted lines indicate
power law relations with exponents -0.25, and -0.3 respec-
tively.

where A is some function of s and U . Solving for A yields:

A = R/U, (8)

which is shown in figure 4b, valid only in the multiple-
mutation regime U � 1/(4N2). Presumably, A is a
power law of U , and an unknown function of s.

III. SIMILARITY TO SURFACE GROWTH

It is illustrative to exploit the similarity between our
model and surface growth. In surface growth phenomena,
the width or standard deviation of the interface grows ini-
tially in time as σ ∼ tβ , where β is the growth exponent,
then reaches a steady state when the correlation length
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Figure 5: Fixation rate, R, versus system size for the 1D
model (circles) and the well-mixed model (squares) with U =
10−5. v quickly saturates in 1D but diverges for the well-
mixed model. Solid line is the non-interfering fixation rate
(4).
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Figure 6: Time evolution of the standard deviation of the
fitnesses σ with N = 512, s = 0.01 and U = 10−3 (circles),
U = 10−4 (squares), and U = 10−5 (crosses). The dashed
lines are ∼ t1/2 The width approaches a stationary value as a
power law with time σ ∼ tβ , where β is the growth exponent.
β is approximately 1/2 for high U , and increases slightly as
U gets smaller.

reaches the size of the system [29, 30]. In the steady state
σ ∼ Nα where α is the saturation exponent. We found
the width or standard deviation of the distribution of fit-
nesses also follows power-laws with critical exponents as
a function of N and U .

By averaging over many simulations we found the tran-
sient values of σ in figure 6. The width increased as
σ ∼ tβ , although β was slightly dependent on U . At
high U , β was close to one half.

From the simulation we also found the scaling of the
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Figure 7: Top: Stationary standard deviation limt→∞ σ(t)
versus mutation rate U with N = 512 and s = 0.01 averaged
over 105 mutations. The dashed line is ∼ U1/3 Bottom: width
increases with system size as a power law with a characteristic
exponent, with U = 10−5. The dashed line is ∼ N0.45.

steady-state width. In the single-fixation regime we
would expect σ to be small since most of the time the
system has uniform fitness. Figure 7 shows σ in multiple-
mutation regime to be a power law: σ ∼ Uη with
η = 0.3− 0.4. The width is also shown to go as σ ∼ Nα

and α is close to 1/2.
Our model has a growth exponent close to 1/2, which

differs from the linear Edwards-Wilkinson universality
class (β = 1/4) and the non-linear KPZ universality class
(β = 1/3) [29]. However, we found that the growth of
the width changes for larger system sizes and longer time
scales, which will be described in future work.

IV. DISCUSSION

The model we study is restricted to one organism per
site, as in [22], in contrast to more detailed models di-
vide a population into islands or demes, each with a finite

well-mixed population. However, the one organism per
site model may be approximated as a deme model with
some restrictions by grouping together sites into demes
[27]. The number of organisms per site affects the speed
of the genetic wave that sweeps each mutation to fixa-
tion. Since genetic stochasticity is strong when there is
one organism per site, the speed of the genetic wave front
is vF ∼ s, as in [31],[32]. In the weak noise limit, when
population in the demes are relatively large and genetic
drift is small, the genetic wave front moves with the speed
vF ∼

√
s [33]. Also, we have not included a measure of

the spatial dispersal of organisms after reproduction. In
any case, changing the genetic wave speed would change
tfix, and therefore change the transition at which interfer-
ence occurs. Notably if vF ∼

√
s, then Utr would depend

on s. However, the fixation time dependence on the total
system size would not change since each island must be
visited sequentially regardless of wave speed. Therefore
we expect our main result that R saturates with large
N will not change. Similarly, generalizing s to a distri-
bution of beneficial effects, would affect the time-scale of
fixation, but we still expect R to saturate with large N .
We confirmed this with an exponential distribution of s
(not shown).

We have shown that spatial structure significantly af-
fects the rate of fixation in our model. In the multiple-
mutation regime, the rate of fixation is reduced and be-
comes independent of N for large N , similar to neutral
fixations. Since beneficial mutations do not have an over-
whelming advantage over neutral and deleterious muta-
tions, it would be interesting to study a more general
distribution of fitness effects. It is possible for harmful
mutations alone to accumulate in one dimension when
they are common enough [26].

One dimensional populations have been used to model
the frontiers of expanding bacterial colonies, when the
organisms at the frontier reproduce faster than those in
the interior [27], although there are complications with
boundary instabilities and boundary growth. We hope
that similar experiments could test our prediction that
the rate of fixation is independent of N .

A 2D version of our model could be representative of
waves of spreading mutations in an immobilized popula-
tion. This would be interesting to study since differences
from the well-mixed model have already been observed
in simulation and experiment [22, 23, 34–36], and system
size dependence has not been investigated.
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