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A stochastic interpretation of spontaneous action potential initiation is developed for the Morris-
Lecar equations. Initiation of a spontaneous action potential can be interpreted as the escape from
one of the wells of a double well potential, and we develop an asymptotic approximation of the
mean exit time using a recently-developed quasi-stationary perturbation method. Using the fact
that the activating ionic channel’s random openings and closings are fast relative to other processes,
we derive an accurate estimate for the mean time to fire an action potential (MFT), which is valid
for a below-threshold applied current. Previous studies have found that for above-threshold applied
current, where there is only a single stable fixed point, a diffusion approximation can be used. We
also explore why different diffusion approximation techniques fail to estimate the MFT.

I. INTRODUCTION

Stochasticity plays an important role in many electro-
physiological contexts. The onset of pathological dynam-
ical behaviors such as epilepsy and cardiac fibrillation
are most likely the result of random fluctuations that
move an otherwise deterministic dynamical system from
one basin of attraction to another. For example, sponta-
neous release of calcium from the sarcoplasmic reticulum
of cardiac cells is thought to be related to delayed after-
depolarizations (DAD’s), which are in turn believed to
initiate fatal cardiac arrhythmias [1, 2]. Stochastic open-
ing and closing of high-conductance K-Ca channels is
thought to be responsible for the highly stochastic burst-
ing patterns of isolated pancreatic beta cells [3].

The Hodgkin-Huxley equations have been used suc-
cessfully to describe many important features of the
behavior of nerve cells. These equations, like most
conductance-based ionic models, calculate average ionic
currents using channel open probabilities. Although the
expectation is that because of the law of large num-
bers, average channel behavior gives adequate accuracy
in many situations, there are several questions that can-
not be answered by averaged equations. For example,
how often can an action potential be initiated sponta-
neously, i.e., without external stimulus? How big is big,
that is, at what channel density can stochastic effects
be ignored? Said another way, how fast do stochastic
equations of action potential dynamics converge to their
deterministic limit? What are the effects of stochastic
behavior on the stimulus threshold?

To answer these questions we must examine the role of
stochastic ion channel openings and closings on the ini-
tiation of an action potential. While this paper focuses
on the Morris-Lecar equations, the general problem can
be described as follows. Suppose the initial (upstroke)
dynamics of an action potential are described by a deter-
ministic bistable equation, say

dv

dt
= −Iion(v) + I(t), , (1.1)

where v is the transmembrane potential, I(t) is the ap-
plied stimulus current, and Iion(v) represents the ionic
currents and has three zeros, the smallest of which corre-
sponds to the stable resting potential, and the largest of
which corresponds to the excited state. Past studies have
proposed a stochastic differential equation (SDE) version
of (1.1), where the influence of stochastic ion channels is
modeled as a white noise [4]. This interpretation replaces
the deterministic model with a Langevin equation of the
form

dV = (−Iion(V ) + I(t))dt+ σ(V ) ∗ dW, (1.2)

where W (t) is the standard Wiener process and σ is the
noise amplitude. Note that we use the symbol ∗ to sig-
nify that the SDE is to be interpreted in the sense of
Stratonovich. This equation is paired with the Fokker-
Planck (FP) equation for the probability density for the
random variable V (t), which is a linear, second-order
parabolic PDE. In this context, if the applied current is
below the deterministic threshold, the bistable function
Iion(v) is viewed as the derivative of a double well po-
tential, and initiation of a spontaneous action potential
is viewed as the escape from the lower well to the upper
well. On the other hand, if the applied current is above
threshold, the minimum of the lower well vanishes, and
initiation of an action potential is simply the mean time
to reach the upper well. In either case, one can formu-
late the mean firing time (MFT) as a mean first passage
time problem [5]. However, before using a Langevin de-
scription, one must determine the amplitude of the noise
σ(V ) by careful consideration of the underlying kinetics
of the ion channels.
Channel noise arises from stochastic opening and clos-

ing of ion channels (see [6] for a review). A more realistic
stochastic version of (1.1) would account for the discrete
opening and closing events of the ion channels [4, 7–10].
This hybrid continuous/discrete process is given by

V̇ = −Iion(V, S) + I(t), (1.3)

where S(t) describes the state of the population of ion
channels, and Iion(V, S) is the state-dependent ionic cur-
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rent. For example, suppose we haveN independent chan-
nels that can either be open or closed, with transitions be-
tween these two states described by the two-state Markov
process

C
α

−→
←−
β

O (1.4)

where the transition rates α and β are dependent on v.
Since there are N such channels, the overall state dia-
gram is

S0

Nα

−→
←−
β

S1

(N−1)α

−→
←−
2β

S2 · · ·SN−1

α

−→
←−
Nβ

SN (1.5)

where in state Sn there are n open channels. Notice that
this random process is discrete, whereas the Langevin
equation (1.2) assumes that the channel noise is con-
tinuous. Just as the Langevin equation is paired with
a FP equation, the coupled random processes V (t) and
S(t) are described by the probability density function
Prob{V (t) ∈ (v, v + dv), S(t) = n} = P (v, n, t)dv, which
satisfies a differential Chapman-Kolmogorov (CK) equa-
tion [5].
Using perturbation methods, one can reduce the CK

equation to a FP equation, which is a consistent and
accurate means of deriving a Langevin description of
the stochastic process. Collectively, these reductions are
known as diffusion approximations. There are a variety
of methods to derive diffusion approximations, divided
into two main categories: quasi-steady-state (QSS) meth-
ods that derive an equation for the marginal distribution
u(v, t) =

∑

n p(v, n, t) and system size expansion meth-
ods that replace the discrete noise with a continuous noise
by treating s = n/N as a continuous state. Each of these
formulations converge to the deterministic equation (1.1)
in the appropriate limit, that is, in the thermodynamic
limit N → ∞ and in the limit of fast channel switching.
The QSS methods exploit the fact that channels switch
between their open and closed states quickly compared
to changes in voltage, and results in the greatest reduc-
tion of complexity; the corresponding Langevin equation
has the form (1.2). The system-size expansion approach
can be applied to more complicated ion channel models,
such as the Hodgkin-Huxley model, and in the case of
Morris-Lecar dynamics the approach results in two cou-
pled SDEs

V̇ = −Iion(V, S) + I(t), (1.6)

dS =
1

τ(V )
(S∞(V )− S) dt+ σ(V )dW. (1.7)

Several previous studies have developed diffusion approx-
imations for the Hodgkin-Huxley model [4, 9, 11–13],
which use either the system-size expansion to obtain a
system of coupled SDEs like (1.6) or both methods in
succesion to obtain a single SDE like (1.2). In either
case, the goal is to reduce a discrete stochastic process
to an effective continuous process.

All of these approaches work well to approximate the
MFT if the applied current is above threshold and the
underlying deterministic system has only one stable fixed
point. However, for the case where the applied current is
below threshold and the deterministic system is bistable,
the approximations for the MFT have exponentially large
errors. As we show in this paper, both the QSS and
system-size expansion methods break down in this case
for the same reasons. This breakdown is indicative of
large deviation behavior and is closely related to the fail-
ure of asymptotic methods to resolve exponentially-small
terms [14–21].

In this paper we resolve the inaccuracy of previous
analytical- and simulation-based approximations of the
MFT when the stimulus current is below threshold. We
derive an accurate analytical approximation based on
methods developed previously for a model of molecular
motor transport [22, 23]. To explore the mathematical
issues involved, we also develop and compare diffusion
approximations based on QSS and system-size expan-
sion methods. Our results suggest that neurons are far
more responsive to subthreshold stimuli than predicted
by stochastic models that use a continuous approxima-
tion for the channel noise.

The organization of the paper is as follows. First, in
Section II we develop the stochastic Morris-Lecar model
and derive the CK equation for its probability density
function. For below-threshold stimuli, we derive a quasi-
stationary approximation of the MFT in Section III.
Then, in Section IV we use the QSS analysis to reduce the
CK equation to an effective FP equation and compute the
MFT for a spontaneous action potential, which disagrees
with the quasi-stationary approximation by several or-
ders of magnitude. To fully explore the issues involved
in the breakdown of different diffusion approximations,
we also apply the system-size expansion to the model in
Section V to obtain a two-dimensional FP equation. We
then apply a QSS analysis to further reduce the FP equa-
tion to one dimension and show that the result is iden-
tical to that obtained from the QSS analysis of the full
model, which means that for above-threshold stimulus
both diffusion approximation techniques are consistent.
However, we also apply the quasi-stationary analysis to
the result of the system-size expansion and find the MFT
exhibit the same errors as the QSS diffusion approxima-
tion. We conclude that for spontaneous action potential
generation, the fully discrete channel noise model must
be used to obtain an accurate estimate of the MFT. Fi-
nally, in Section VI results are illustrated with strength-
duration curves and firing probabilities after a stimulus
of fixed duration.
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II. THE STOCHASTIC MORRIS-LECAR

MODEL

The Morris-Lecar equations are

Cm
dv

dt
= gNam∞(v)(vNa − v) + gKw(v)(vK − v)

+ gL(vL − v) + I(t),
(2.1)

dw

dt
=
φ

τ
(w∞(v)− w), (2.2)

where

m∞(v) = 0.5

(

1 + tanh

(

v − v1
v2

))

, (2.3)

w∞(v) = 0.5

(

1 + tanh

(

v − v3
v4

))

, (2.4)

τ−1 = cosh

(

v − v3
2v4

)

. (2.5)

Parameter values are specified in Table I.
Because our goal is to study action potential initiation,

we set the slow variable w to its initial value w(0) = 0.27.
This is a standard method for studying deterministic ac-
tion potential initiation, and a key assumption in our
stochastic model is that because w is a slow variable,
any fluctuations in the Sodium channel conductance will
have a small effect on the value of w until the voltage
increases past threshold. Once this happens, the slow
dynamics of w reset the system back to the resting volt-
age. For simplicity, we also assume a constant stimulus
current I(t) ≡ I > 0. We can then reduce equations (2.1)
to

Cm
dv

dt
= m∞(v)f(v) − g(v), (2.6)

where f(v) = gNa(vNa − v) represents the gated (i.e.
Sodium) current, g(v) = −geff(veff − v) − I represents
ungated currents, and

veff =
gKw(0)vK + gLvL
gKw(0) + gL

, geff = gKw(0) + gL. (2.7)

vNa = 120mV gNa = 4.4mS/cm2

vK = −84mV gK = 8mS/cm2

vL = −60mV gL = 2mS/cm2

veff = −62.3mV geff = 2.2mS/cm2

v1 = −1.2mV v2 = 18mV

v3 = 2mV v4 = 30mV

Cm = 20µF/cm2 φ = 0.04ms−1

TABLE I. Parameter values for the Morris-Lecar equations
[24].

Note that gNa > geff . We now introduce the SDE for the
random variable V (t) given by

V̇ =
1

N

∑

Xi(t)f(V )− g(V ), (2.8)

where each of the random variablesXi(t) is either zero or
one, depending on whether the ith ionic channel is closed
(0) or open (1). Individual channels are taken to be in-
dependent; they transition to the open state at the rate
α(v), and for simplicity we assume that the rate of tran-
sition, β, to the closed state is independent of voltage.
The transition rates are chosen so that the steady state
fraction of open channels, a(v), satisfies

a(v) ≡
α(v)

α(v) + β
= m∞(v), (2.9)

which is true if

α(v) = β exp

[

2

v2
(v − v1)

]

. (2.10)

It follows that the random variable S(t) =
∑

Xi(t) is
determined by a birth/death process, with a finite num-
ber of states; that is, S ∈ {0, 1, · · · , N}. The transitions
between each state are given by (1.5).
The differential Chapman-Kolmogorov (CK) equation

for the probability density function p(v, n, t|v0, n0, 0)dv ≡
Prob{V (t) ∈ (v, v + dv), S(t) = n|V (0) = v0, S(0) = n0}
is

∂p

∂t
= −

∂

∂v

(( n

N
f(v)− g(v)

)

p
)

+ (N − n+ 1)α(v)p(v, n− 1, t)

− ((N − n)α(v) + nβ)p(v, n, t)

+ (n+ 1)βp(v, n+ 1, t),

(2.11)

for n = 0, 1, · · · , N . The initial condition is

p(v, n, 0) = δ(v − v0)δn,n0 . (2.12)

Because the RHS of (2.8) is negative for large V and
positive for small V , there is an interval to which the
voltage is confined. Define va to be that value of v for
which V̇ = 0 when there are no open channels (n = 0),
i.e., g(va) = 0, and define vb to be that value of v for

which V̇ = 0 with all the channels open (n = N), i.e.,
f(vb) − g(vb) = 0. Then, since veff < vNa, if V < va
(V > vb) then V̇ > 0 (V̇ < 0) for all n = 0, · · · , N .
Thus, once the voltage is in the interval (va, vb), where

va = veff −
I

geff
, vb =

I + gNavNa − geffveff
gNa − geff

, (2.13)

the voltage remains in this interval for all time. Fur-
thermore, p(v, t) → 0 as t → ∞ for all v outside this
interval, and if p(v, 0) = δ(v − v0), with v0 ∈ (va, vb),
then p(v, t) = 0 for all v ∈ (−∞, va] ∪ [vb,∞) and t ≥ 0.
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Nondimensionalize the equations with the rescaling

v →
v − veff

Γ
, I →

I

Γgeff
, t→

tgeff
Cm

, (2.14)

where

Γ =
gNavNa − geffveff

gNa − geff
− veff . (2.15)

The voltage Γ is positive provided that

vNa − veff >
gNa − geff

gNa
. (2.16)

Then, the interval (va, vb) → (ϑa, ϑb) where

ϑa = −I, ϑb = 1 +
I

gNa/geff − 1
. (2.17)

Finally, we define the nondimensional voltage threshold
to be

ϑ1 = (v1 − veff)/Γ. (2.18)

It is convenient to rewrite the above CK equation in
matrix form by defining the probability vector p(v, t),
having entries pn(v, t) = p(v, n, t). We define the tridi-
agonal matrix A(v) to be the transition-rate matrix for
the Markov process, with entries

An,n−1 = (N − n+ 1)α, An,n = −(N − n)α− nβ,

An,n+1 = (n+ 1)β, (2.19)

for n = 0, 1, · · · , N . We also define the diagonal matrix
F (v) and the vector f(v) as having entries

Fn,n = fn =
n

N
f(v)− g(v), n = 0, 1, · · · , N. (2.20)

The vector f represents the total current as a function of
the number of open channels n. Note that for notational
convenience, the explicit dependence of vectors and ma-
trices on the voltage v may be suppressed.
If the transitions between discrete states are fast com-

pared to the time scale of change of v, then the ele-
ments of A are typically much larger than the elements
of F . This difference in time scale can be emphasized by
rescaling the matrix A by the dimensionless parameter
ǫ = geff/(Cmβ) the ratio of typical time scales, which we
assume to be small, with ǫA → A. The rescaled transi-
tion rates are now β = 1 and

α(v) = exp [θ1v − θ2] , (2.21)

with the nondimensional parameters

θ1 =
2Γ

v2
, θ2 = 2

(

veff − v1
v2

)

. (2.22)

Our goal is to take advantage of this time scale difference
to approximate the average time to a spontaneous action

potential. The CK equation (2.11) can now be written
as

∂p

∂t
= −

∂

∂v
(Fp) +

1

ǫ
Ap. (2.23)

Since A is a transition matrix, it must be that its col-
umn sums are zero, and all its nonzero eigenvalues are
negative. It follows that A has a zero eigenvalue with a
positive right eigenvector ρ and left eigenvector 1 with
entries 1n = 1. We normalize ρ so that 1Tρ = 1. In our
case, we can determine the nullvector explicitly. We find
that ρ is the vector with components

ρn =

(

N

n

)

a(v)nb(v)N−n, (2.24)

where a(v) is defined above in (2.9) and b(v) = 1− a(v).
Notice that ρ is a positive vector that is normalized to
sum to one, which means that it is a discrete probabil-
ity distribution. Indeed, the distribution function for the
voltage-clamped process (i.e. the discrete process with
v fixed) evolves to ρ in the limit t → ∞, and we refer
to ρ as the steady-state distribution. One can immedi-
ately define the mean of the vector f with respect to this
distribution as

ν(v) ≡ fTρ = a(v)f(v) − g(v), (2.25)

which is the deterministic limit of the total current and
plays an important role throughout the analysis in this
paper.
The key quantity that we wish to estimate with this

model is the mean time to fire an action potential (MFT)
as a function of the stimulus current; that is, the average
time for the voltage to evolve from its resting potential
v0 (at zero applied current) to the deterministic voltage
threshold v1.
In Fig. 1a, the antiderivative of the RHS of (2.6) with

respect to v is plotted for different values of constant
stimulus current I. This curve can be interpreted as an
effective stability landscape, and the minima and max-
ima correspond to fixed points. For I < I∗, there are
three fixed points, consisting of two stable fixed points
(minima) separated by an unstable saddle point (maxi-
mum). The stable fixed point to the left of the saddle
corresponds to the stable resting state, and the stable
fixed point to the right corresponds to the excited state.
As I → I∗ there is a saddle-node bifurcation, and the sta-
ble resting state vanishes. Once the voltage reaches the
excited state, the slow w dynamics from the Potassium
channels return the system to the resting voltage.
In the deterministic model, the stimulus current must

excede the deterministic threshold I∗ before an action
potential can be initiated, and the MFT is infinite for
I < I∗, but for the stochastic model this time is finite for
all values of stimulus current. Thus, there is a qualitative
difference in the MFT depending on whether I < I∗ or
I > I∗. In the former case, fluctuations in the states
of the ion channels must push the voltage away from
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FIG. 1. Deterministic fast dynamics of the Morris-Lecar
model (2.6). The double-well potential obtained from inte-
grating a(v)f(v)− g(v) (the RHS of (2.6)) over v for different
values of stimulus current I .

the stable resting fixed point to the unstable fixed point,
which is much like escape of a diffusing particle from the
left to the right well in a double well potential—a classical
problem in physics. In the latter case, there is no stable
resting fixed point, and the channel noise causes the firing
time to fluctuate about the deterministic limit. Each case
requires a different analysis to accurately approximate
the MFT.

III. QUASI-STATIONARY APPROXIMATION

To approximate the mean time to fire an action poten-
tial for the case where I < I∗, we use a quasi-stationary
approximation. The stability landscape (see Fig. 1a)
contains two wells corresponding to the two stable fixed
points of the system. The process begins in the left well
at the stable resting voltage, v0, and on short time scales
the solution rapidly converges to the stationary distribu-
tion that sees only the left well; that is, all probability
is contained in the left well. Then, on a longer time
scale probability slowly leaks into the right well until
the full stationary solution is reached. To estimate the
time scale of transition from the left to the right well,
we place an absorbing boundary at the unstable fixed
point, v∗, instead of v1, because the time to reach v1
once v∗ is reached is insignificant compared to the time
to reach v∗ from the stable fixed point v0. Note that v0
depends on the applied current, and we assume that the
process starts at the resting voltage with no applied cur-
rent. However, as is shown in this section, there is little
distinction between different starting positions inside the
well, and the initial conditions can be chosen from the
stationary distribution of the left well.
Let T be the random variable equal to the time at

which the particle reaches v∗ for the first time, given that
it started at v0. Our goal is to approximate the proba-
bility density for T , which is related to the solution of
(2.23) combined with the absorbing boundary condition

pn(v∗, t) = 0, for n = 0, · · · , k − 1, (3.1)

where 0 < k < N is the number of negative components
of f at the boundary satisfying Na(v∗) < k < Na(v∗)+1,
so that

k = ceil(Na(v∗)). (3.2)

Recall that the elements of the vector f are increasing
with n, and that there is always at least one negative
component for all v ∈ (ϑa, ϑb) (see (2.13)).
To see how the addition of the absorbing boundary

sets up the first exit time problem, define the survival
probability

S(t) ≡
N
∑

n=0

∫ v∗

ϑa

pn(v, t)dv (3.3)

to be the probability the voltage has not yet reached the
absorbing barrier at time t. By integrating (2.23) over
the domain (ϑa, v∗) and summing over the discrete states
we find that

dS

dt
= −fTp(v∗, t), (3.4)

where we have used the fact that p(v, t) → 0 as v → ϑa.
The distribution function for the first-passage time T is
Prob{t > T } = −S(t), and the corresponding density
function is given by F(t) ≡ −∂S

∂t . It is useful to interpret
the density function for T as the probability flux at the
absorbing boundary, which is defined by J ≡ fTp and
satisfies

N
∑

n=0

∂pn
∂t

= −
∂J

∂v
. (3.5)

We can approximate this flux using a spectral projec-
tion method [18]. Consider an eigenfunction expansion
of the time-dependent solution

p(v, t) =

∞
∑

j=0

cje
−λjtφj(v), (3.6)

where the eigenfunctions satisfy the equation

Lφj ≡
d

dv
(Fφj)−

1

ǫ
Aφj = λjφj (3.7)

and the boundary condition

(φj)n(v∗) = 0, for n = 0, · · · , k − 1. (3.8)

The presence of an absorbing boundary has two impor-
tant implications for the eigenfunction expansion (3.6).
First, we note that if we replace the absorbing boundary
by a reflecting boundary then the principle eigenvalue
is λ0 = 0, which means that after appropriate normal-
ization, the eigenfunction φ0 is the stationary density.
With the absorbing boundary, the principal eigenvalue
is exponentially small compared to the remaining eigen-
values. That is, λ0 = O(e−C/ǫ) for some C > 0, and
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Cj = O(1), j = 1, 2, · · · , which means that all other
eigenmodes decay to zero much faster than the perturbed
stationary density. Because of the assumed separation of
timescales, we can estimate the long-time behavior of the
solution with

p(v, t) ∼ φ0(v)e
−λ0t. (3.9)

With the approximation (3.9), it follows from (3.4) that
the first exit time density is

F(t) ∼ λ0e
−λ0t, λ1t≫ 1, (3.10)

so that the density function is asymptotically exponen-
tial. Furthermore, the mean exit time is simply given
by

T1 ∼
1

λ0
, (3.11)

so that the eigenvalue λ0 is the approximate firing rate of
the neuron. Our goal is then to compute an approxima-
tion for the principle eigenvalue λ0 and the eigenfunction
φ0, satisfying (3.7).

A. Eigenfunction approximation

We begin by using the WKB method [14] to compute
an approximation, φǫ ∼ φ0 that does not satisfy the
absorbing boundary condition. That is, we seek an ap-
proximate solution of Lφǫ = 0 of the form

φǫ(v) = r(v) exp

[

−
1

ǫ
Φ(v)

]

, (3.12)

where r is a (N +1)-vector and Φ(v) is a scalar function.
Substituting (3.12) into (3.7) yields an equation for Φ
and r

(A+Φ′F )r = ǫ(Fr)′ + λ0r. (3.13)

Now substitute the asymptotic expansions r ∼ r0 + ǫr1
and Φ′ ∼ Φ′0 + ǫΦ′1. Since, λ0 = O(e−C/ǫ), the leading
order equation is

Ar0 = −Φ′0Fr0, (3.14)

For fixed v, this is equivalent to the generalized eigen-
value problem

Aψ = µFψ, (3.15)

where ψ is an eigenvector and µ is the corresponding
eigenvalue. Indeed, we can define the eigenpair to be
functions of v by requiring that they satisfy (3.15) for all
v ∈ (ϑa, v∗). Then, after setting r0 = ψ and Φ′0 = µ,
we have a solution to (3.13). Note that the generalized
eigenvalue problem is equivalent to the standard eigen-
value problem

F−1Aψ = µψ, (3.16)

so long as F is nonsingular, which is true for almost every
v ∈ (ϑa, ϑb).
The matrices A andM share the same nullspace, which

is spanned by the nullvector ρ given by (2.24). We there-
fore set µ0 = 0 and ψ0 = ρ. Recall, that the nullvector
ρ is positive and we define it to be the voltage-clamped
steady-state distribution by normalizing it so that it sums
to unity. For consistency, we assume that all of the right
eigenvectors are similarly normalized. It can be shown
[23] that there is one other positive eigenvector, which
we define as ψ1. The corresponding eigenvalue, µ1, is
nonzero for all values of v ∈ (ϑa, ϑb) except for the de-
terministic fixed points v0 and v∗. Furthermore, the sign
of µ1 is such that

µ1(v) > 0, for ϑa < v < v0 (3.17)

µ1(v) < 0, for v0 < v < v∗. (3.18)

As we verify in Appendix A, the eigenvector ψ1 is

(ψ1)n = f−N

(

N

n

)

hN−ngn, (3.19)

and the eigenvalue is

µ1 =
N(af − g)

bgh
, (3.20)

where h(v) = f(v)− g(v). We refer to the function Φ0 as
the stability landscape, which is

Φ0(v) = −

∫ v

v∗

µ1(y)dy (3.21)

=
N

g′
α(ϑa)

(

Ei(
2

v2
(v − ϑa))− Ei(

2

v2
(v∗ − ϑa))

)

−
N

h′
(log(ϑb − v)− log(ϑb − v∗)) ,

where α(v) is defined by (2.21) and Ei(x) is the expo-
nential integral function defined as the Cauchy principle
value integral

Ei(x) =

∫ x

−∞

t−1etdt, x 6= 0. (3.22)

Collecting terms of O(ǫ) in (3.13) yields

(A+Φ′0F )r1 = (Fr0)
′ − Φ′1Fr0. (3.23)

Since r0 = ψ1 and Φ′0 = −µ1 we get

Φ′1 =
ηT
1 (Fψ1)

′

ηT
1 Fψ1

, (3.24)

where η1 is the left nullvector of (A−µ1F ) with compo-
nents

(η1)n =

(

a(f − g)

bg

)N−n

. (3.25)
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After some calculation we find that

Φ′1(v) = (N − 1)H(v)−
Nf ′

f(v)
+

g′

g(v)
+

h′

h(v)
, (3.26)

H(v) ≡
a(v)h(v)h′ + b(v)g(v)g′

a(v)h(v)2 + b(v)g(v)2
. (3.27)

In jump Markov processes of this type, the function Φ1(v)
is small and can usually be ignored. However, a unique
feature of the current model is that Φ1 is N dependent
and thus can contribute significantly to the solution. We
note that Φ′1(v) is independent of N at v = v0, v∗, with

lim
v→v0,v∗

Φ′1(v) =

[

a(v)2h′ + b(v)2g′

a(v)b(v)f(v)

]

v=v0,v∗

. (3.28)

Define

ω(v) ≡ exp

[

−

∫ v

v∗

Φ1(y)dy

]

. (3.29)

Combining these results, the approximation of the eigen-
function, to leading order in ǫ, is

φǫ(v) = Nω(v) exp

[

−
1

ǫ
Φ0(v)

]

ψ1(v), (3.30)

where N is an unknown normalization factor.
If we think of this eigenfunction as a perturbation of

the stationary distribution, when there is a reflecting
boundary condition at v∗ so that λ0 = 0, then the scale
factor, N , can be set by normalizing φǫ(v) so that it in-
tegrates to unity. We can also think of this as enforcing
conservation of probability with a modified initial con-
dition. Notice that by integrating the initial condition
(2.12) we have that

N
∑

n=0

∫ v∗

ϑa

pn(v, 0)dv = 1. (3.31)

Initially, the exact solution must have some probability
contained within the other eigenfunctions, which means
the approximation is not valid for small times. To ensure
the approximate solution is valid for long time scales,
we must modify the true initial condition (2.12) so that
the approximation conserves probability correctly; that
is, we must have that at t = 0, the probability that an
action potential has not yet been initiated is unity. By
setting t = 0 in (3.9), we see that this requirement also
applies to the eigenfunction. This is equivilant to modi-
fying the initial conditions so that the process starts on
the stationary distribution, which generates a small er-
ror because convergence to the stationary distribution is
fast compared to initiation of an action potential. The
normalization constant is then

N =

[∫ v∗

ϑa

ω(v) exp

[

−
1

ǫ
Φ0(v)

]

dv

]−1

, (3.32)

which can be approximated using Laplace’s method [25],
to get

N ∼
1

ω(v0)

√

|µ′1(v0)|

2πǫ
exp

[

−
1

ǫ
Φ0(v0)

]

. (3.33)

B. Eigenvalue approximation

To estimate the eigenvalue, λ0, we project using the
adjoint eigenfunction ξ0, which satisfies

L∗ξ0 ≡ −F
dξ0
dv

−AT ξ0 = λ0ξ0, (3.34)

(ξ0)n(v∗) = 0, for n = k, · · · , N. (3.35)

Consider the identity

〈φ0, L
∗ξ0〉 = λ0 〈φ0, ξ0〉 , (3.36)

where the inner product is defined by

〈u,w〉 ≡

∫ v∗

ϑa

u(v)Tw(v)dv. (3.37)

To leading order in ǫ we have that φ0 ∼ φǫ and Lφǫ = 0.
Substituting this approximation into (3.36) and applying
integration by parts yields

λ0 ∼ −
ξ0(v∗)

TF (v∗)φǫ(v∗)

〈ξ0,φǫ〉

∼ −Nξ0(v∗)
TF (v∗)ψ1(v∗). (3.38)

In the absence of an absorbing boundary condition the
left eigenfunction is ξ0 = 1; however, substitution into
(3.38) yields λ0 = 0 since neither approximation accounts
for the boundary condition. Thus, we must construct an
approximation for ξ0 which satisfies (3.35).
Since λ0 is exponentially small, we seek an approxima-

tion to ξ0, ξǫ say, which satisfies

ǫF
dξǫ
dv

+AT ξǫ = 0, (3.39)

the boundary condition (3.35), and

lim
ǫ→0

ξǫ(v) = 1 (3.40)

for v ∈ (ϑa, v∗).
In general, the solution of (3.39) can be approxi-

mated by a superposition of eigenvectors, ηj , of the ma-
trix F−1AT , wich have corresponding eigenvalues µj ,
j = 0, · · · , N . We remind the reader that all of these
quantities depend on the voltage v. Consider a solution
to (3.35) of the form

ξǫ(v) = cj(v)ηj(v). (3.41)

Substitution into (3.35) yields

(ǫc′j + µjcj)Fηj + ǫcjFη
′
j = 0. (3.42)

This can be thought of as a way of generalizing the WKB
method used above to approximate the eigenfunction φ0.
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The approximate solution (3.41) will be accurate, to lead-
ing order in ǫ, if we require the function cj(v) to satisfies
the linear equation

ǫc′j + µj(v)cj = 0. (3.43)

Recall there is always one zero eigenvalue given by µ0 =
0, with eigenvector η0 = 1, so that

ǫc0(v)
′ = 0, (3.44)

implying a constant solution. A full solution can then be
written as

ξǫ(v) = c01+ c1(v)η1(v) +

N
∑

n=2

cj(v)ηj(v). (3.45)

However, not all eigenvectors will result in bounded so-
lutions. We expect that away from the absorbing bound-
ary the solution should be very close to 1, which means
that we are interested in the solutions in the vicinity of
v ≤ v∗. For j ≥ 2, the only bounded solutions are those
for which µj(v∗) has negative real part. It can be shown
[23] that the sign of the real part of the eigenvalues is de-
termined by the number of negative components of f(v∗)
(recall that we have defined k (3.2) to be this number).
In particular, at the absorbing boundary, v = v∗, there
are N − k eigenvalues of F (v∗)

−1A(v∗)
T with negative

real part. These we denote by µj , j = 2, · · · , N − k + 1.
The remaining k − 1 eigenvalues have positive real part.
Thus, we take cj = 0 for j = N − k + 2, · · · , N , and

cj(v) = Cj exp

[

µj(v∗)(v − v∗)

ǫ

]

, (3.46)

for j = 2, · · · , N − k + 1.
To leading order in ǫ, the equation for c1(v) is similar,

namely

ǫc′1 + µ1c1 = 0, (3.47)

however, since µ1(v∗) = 0 (see Eqn. (3.20)) its behavior
in the vicinity of v∗ is not exponential, but rather

c1(v) = C1 exp

[

−µ′1(v∗)(v − v∗)
2

2ǫ

]

. (3.48)

Note that since µ′1(v∗) > 0, this is is exponentially small
away from the boundary.
At first (3.45) would seem to be a plausible approx-

imation to the eigenfunction, but a hidden assumption
in this solution is that the matrix F−1AT is diagonaliz-
able. However, because µ1 → 0 and η1 → 1 as v → v∗
(see Eqn. (3.25)) the eigenspace corresponding to the zero
eigenvalue is degenerate at v = v∗ (having algebraic mul-
tiplicity two and geometric multiplicity one) and the so-
lution needs to include the generalized nullvector,

ζT ≡ f(v∗)
TA(v∗)

†. (3.49)

To that end we try a partial solution of (3.39) of the form

ξǫ(v) = c0(v)1+ c1(v)̟(v), (3.50)

where

̟(v) =
1

ν(v)
(η1(v)− 1). (3.51)

Notice that

AT̟ =
µ1

ν
Fη1, (3.52)

so that

lim
v→v∗

̟ =
µ′1(v∗)

ν′(v∗)
ζ. (3.53)

Substituting (3.50) into (3.39), we find

ǫF
d

dv
(c01+ c1̟) +AT (c1̟) = 0, (3.54)

and after using (3.51) we get

1

ν
(ǫc′1 + µ1c1)Fη1 + ǫ

(

c′0 −
c′1
ν

)

f = −ǫc1F̟
′. (3.55)

Comparing this with (3.42) it is clear that more care must
be taken as we now have terms divided by ν(v), which
vanishes at v0 and v∗. Therefore, we must make sure
that the error terms vanish sufficiently fast in the limit
v → v0,∗.
We consider now the full solution

ξǫ(v) = c0(v)1+ c1(v)̟(v) +

N−k+1
∑

j=2

cj(v)ηj(v). (3.56)

Our strategy will be to project the above solution with
the set of eigenvectors {ψj}, j = 0, 1, · · · , N , of the ma-
trix F−1A, which forms an biorthogonal set with the
eigenvectors ηj in the sense that ψT

i Fηj = δi,j . If the
error remains bounded for each of the N + 1 resulting
equations then we can be sure it is bounded in general.
We note that this is not unlike the procedure for comput-
ing Fourier coefficients in a series expansion. Substituting
(3.56) into (3.39), we find

ǫF
d

dv



c01+ c1̟ +

N−k+1
∑

j=2

cjηj





= −AT



c1̟ +

N−k+1
∑

j=2

cjηj



 .

(3.57)

Taking the product of this expression with ψT
0 = ρT we

find

c′0ν = c′1 − c1ρ
TFw′ −

N−k+1
∑

j=2

cjρ
TFη′j , (3.58)
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where we have used that ρTF̟ = −1. Similarly, taking
the product with ψT

i gives

ǫψT
i F



c′01+ c′1̟ +

N−k+1
∑

j=2

c′jηj + c1̟
′ +

N−k+1
∑

j=2

cjη
′
j





= −µiψ
T
i F



c1̟ +

N−k+1
∑

j=2

cjηj



 .

(3.59)

For i ≥ 2 this reduces to

c′i +
µi

ǫ
ci + c1

ψT
i F̟

′

ψT
i Fηi

+

N−k+1
∑

j=2

cj
ψT

i Fη
′
j

ψT
i Fηi

= 0, (3.60)

while for i = 1 we find

c′1+c1

(

µ1

ǫ
+
ψT

1 F̟
′

ψT
1 F̟

)

+

N−k+1
∑

j=2

cj
ψT

1 Fη
′
j

ψT
1 F̟

= 0. (3.61)

Since ψT
1 F̟ → ρTF̟ = −1 as v → v∗, the higher or-

der terms in the above expression remain bounded. Sub-
stituting (3.61) into (3.58) we find

c′0ν = −c1

(

1

ǫ
µ1 +

ψT
1 F̟

′

ψT
1 F̟

+ ρTF̟′
)

−
N−k+1
∑

j=2

cj

(

ψT
1 Fη

′
j

ψT
1 F̟

+ ρTFη′j

)

.

(3.62)

Now, since ψ1 → ρ as v → v∗ (see Eqn. (2.24) and (3.19))
we define the vector χ such that ψ1 = ρ− νχ and write

c′0 = −c1

(

1

ǫ

µ1

ν
+
χTF̟′ + (χTF̟)(ρTF̟′)

1 + νχTF̟

)

−
N−k+1
∑

j=2

cj

(

χTFη′j + (χTF̟)(ρTFη′j)

1 + νχTF̟

)

.

(3.63)

It is evident that the higher order terms in the above
equation are bounded as v → v∗. From (3.61) we see
that c1(v) is still given by (3.48), but instead of c0 being
constant, from (3.63) we have

c0(v) = C0+C1
1

ǫ

µ′1(v∗)

ν′(v∗)

∫ v∗

v

exp

[

−µ′1(v∗)(s− v∗)
2

2ǫ

]

ds.

(3.64)
Now that we have a uniform solution, we must resolve

the undetermined constants Cj using the boundary con-
dition and (3.40). For any fixed v < v∗ and ǫ→ 0,

c0(v) ∼ C0 + C1
1

ν′(v∗)

√

πµ′1(v∗)

2ǫ
, (3.65)

so we require

C0 + C1
1

ν′(v∗)

√

πµ′(v∗)

2ǫ
= 1. (3.66)

Finally, we need to satisfy the boundary conditions at v =
v∗. Although the number k is specified (see Eqn. (3.2))
a good approximation for the eigenvalue can still be ob-
tained if we assume that k = N ; this gives

C1
µ′(v∗)

ν′(v∗)
ζN + C0 = 0, (3.67)

which implies that

C1 = ν′(v∗)

√

2ǫ

πµ′(v∗)
, C0 = −ζN

√

2ǫµ′(v∗)

π
, (3.68)

to leading order in ǫ.
To compute the eigenvalue λ0, we need

ξǫ(v∗) = C1
µ′1(v∗)

ν′(v∗)
ζ − ζN1. (3.69)

Because 1TFψ1 = 0, substitution of (3.69) into (3.38)
yields

λ0 ∼ C1
µ′1(v∗)

ν′(v∗)
ω(v0)B(v∗)N , (3.70)

where

B(v) ≡ −fTA†Fρ =
1

N
a(v)b(v)2f(v)2. (3.71)

Thus, the eigenvalue is

λ0 ∼
B(v∗)

πω(v0)

√

|Φ′′0(v0)|Φ
′′
0 (v∗) exp

[

−
1

ǫ
Φ0(v0)

]

. (3.72)

IV. THE QSS REDUCTION

To approximate the MFT for stimulus current above
threshold (I > I∗), we can approximate the discrete
channel noise with an effective continuous Markov pro-
cess. That is, we replace the CK equation (2.23) with an
effective FP equation. To derive the FP equation, we ex-
ploit the fact that the ion channels that drive the action
potential are “fast” channels, in that their open and close
rates are typically large compared to other processes.
We begin by splitting p into two parts

p = uρ+w, (4.1)

where 1Tp = u, and 1Tw = 0. It follows that

∂u

∂t
= −1T ∂

∂v
(F (uρ+w)), (4.2)

and

∂w

∂t
=

1

ǫ
Aw −

∂

∂v
(Fρ) + 1T ∂

∂v
(Fρ)ρ. (4.3)

Here, the fast behavior of w is evident, so we take w to
be in quasi-steady state. Thus, we take

Aw = ǫ
∂

∂v
(uFρ)− ǫ1T ∂

∂v
(uFρ)ρ+O(ǫ2). (4.4)
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The Fredholm alternative theorem [25] guarantees that
this equation can be solved uniquely for w subject to the
constraint 1Tw = 0; we denote this solution as

w = ǫA†
∂

∂v
(uFρ)− ǫA†1T ∂

∂v
(uFρ)ρ+O(ǫ2), (4.5)

where A† is the inverse of the properly constrained A.
Consequently, ignoring terms of order ǫ2,

∂u

∂t
= −

∂

∂v

(

ǫ1TFA†
∂

∂v

(

(Fρ− 1T (Fρ)ρ)u
)

)

−
∂

∂v
(1TFρu),

(4.6)

a Fokker -Planck equation. Rewriting this equation, we
have

∂u

∂t
= −

∂

∂v
(νu) + ǫ

∂

∂v

(

B
∂u

∂v

)

, (4.7)

where ν and B are defined by (2.25) and (3.71), respec-
tively. The corresponding Stratonovich SDE is

dV = ν(V )dt+
√

2ǫB(V ) ∗ dW. (4.8)

A. Mean first passage time problem

It is well known that the mean first passage time
(MFPT) T (v) for a time-autonomous process satisfies the
ordinary differential equation

ν(v)
dT

dv
+

d

dv

(

B(v)
dT

dv

)

= −1, (4.9)

For our problem, we impose the boundary conditions

T ′(ϑa) = 0, T (ϑ1) = 0. (4.10)

The left reflecting boundary is required because the volt-
age can never drop below ϑa (2.17), and we take the exit
point to be ϑ1 (2.18) because this defines the threshold
in the deterministic problem.
It can be shown that the solution to (4.9) is given by

T (v) =

∫ ϑ1

v

dy exp [−Ψ(y)]

∫ y

ϑa

dz

B(z)
exp [Ψ(z)] , (4.11)

where

Ψ(v) =

∫ v

ϑa

ν(v′) +B′(v′)

B(v′)
dv′. (4.12)

However, in most cases, the integrals cannot be explicitly
evaluated, and numerical methods must be employed.
Rather than using numerical integration methods to

evaluate (4.11), it is straightforward to solve the bound-
ary value problem numerically using a shooting method.
We let T (v) = T̂ (v)+c, where c is a constant. Then, T̂ (v)
is the solution of the equation (4.9), and the boundary

conditions (4.10) can be imposed as the initial conditions

T̂ (ϑa) = 0 and T̂ ′(ϑa) = 0. After setting c = −T̂ (ϑ1),
we recover the desired solution. This converts the BVP
to an IVP, which can be efficiently and accurately solved
using standard stiff ODE solvers. The mean of the RV,
T , gives us a great deal of information, but it is worth
mentioning that for I > I∗ and large N , the density func-
tion for T is asymptotically Gaussian, where the mean is
given by the deterministic limit [11].
In the case where I < I∗ the MFPT becomes the mean

exit time for a spontaneous action potential, for which
the QSS approximation is defined but is inaccurate. In
this case (4.11) can be approximated along the lines of
standard Kramers theory. There are many methods for
obtaining this approximation too numerous to restate
here. We simply quote the result and direct the inter-
ested reader to [4, 14]. We have that F(t) ∼ e−λqsst,
where T ∼ 1/λqss and

λqss ∼
B(v∗)

π

√

∣

∣

∣

∣

ν′(v0)

B(v0)

∣

∣

∣

∣

ν′(v∗)

B(v∗)
exp

[

1

ǫ

∫ v∗

v0

ν(y)

B(y)
dy

]

.

(4.13)
Comparing this to the quasi-stationary approximation
(3.72) we can see that the prefactors differ by the quan-
tity 1/ω(v0), which is an exponential function of N
(see (3.29) and (3.26)). However, the largest contribu-
tion to the error in the MFT is the error in the es-
timate of the stability well (compare

∫ v

v∗
µ1(v

′)dv′ =
∫ v

v∗

Nν(v′)
b(v′)g(v′)h(v′)dv

′ to
∫ v

v∗

ν(v′)
B(v′)dv

′) because this gener-

ates errors that are exponential in N/ǫ.

V. THE SYSTEM-SIZE EXPANSION

In this section we ask the following question. Can
we replace the SDE (2.8), which is driven by discrete
channel noise, by two coupled SDEs, like (1.6), for the
variables V and S, where the channel noise is contin-
uous? This is different than the QSS reduction, which
resulted in the single SDE (4.8) for the variable V . In-
stead of exploiting fast channel switching, the system-size
expansion [26] relies on the presence of a large number
of channels N ≫ 1. An alternative method for deriving
this approximation begins with the Krammers-Moyal ex-
pansion, which is an expansion in the moments of the
discrete jump propagator. One can only truncate this
expansion at the second moment by linearizing around
the deterministic stable critical point, that is, the sta-
ble critical point in the variable s, which we distinguish
from the fixed points in the variable v. It can be shown
that the result is the same as that obtained by the di-
rect system-size expansion [5]. The benefit of using the
system-size expansion is that more complicated conduc-
tance models—such as the Hodgkin-Huxley model—can
be treated analytically. However, as we show in this sec-
tion, the system-size expansion only gives a good approx-
imation for the mean firing time when I > I∗. Moreover,
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at least for the Morris-Lecar model considered here, the
QSS (or adiabatic) reduction of the FP equation obtained
by the system-size expansion is identical to the QSS re-
duction of the full model.
The Krammers-Moyal expansion of (2.11) is found by

setting s = n
N , with ds = 1

N . We then expand in small ds
about s = a(v) (the deterministic critical point) to find

∂p

∂t
= −

∂

∂v
((sf − g)p) +

1

ǫ

(

∂

∂s

(

s− a

b
p

)

+
a

N

∂2p

∂s2

)

,

(5.1)
It is evident that the discrete matrix operator A is re-
placed by a differential operator in the variable s. In
this section, we first compute the QSS reduction of the
above equation, which is also known in the literature as
the adiabatic reduction [5]. Then, we apply the WKB
method to approximate the stationary distribution. In
each case, we compare the results with those obtained
for the discrete equations.

A. Adiabatic reduction

First, we make the following change of variables. We
set x = s− a, v = y, and

D(y) =
a(y)

N
, c(y) =

1

b(y)
, ν(y) = a(y)f(y)− g(y),

(5.2)
to get the system

∂p

∂t
= −

∂

∂y
((f(y)x+ ν(y))p) +

1

ǫ

∂

∂x
(c(y)xp+D(y)

∂p

∂x
).

(5.3)
The method can be presented best using operator nota-
tion. We define the linear operators

L1p =
∂

∂x

(

cxp+D
∂p

∂x

)

, L2p = −
∂

∂y
(fxp), (5.4)

L3 = −
∂

∂y
(νp). (5.5)

We want a projection operator based on the null-space
of L1. Note that L1ρ = 0 implies that

Dρ′ + cxρ = 0, (5.6)

so that

ρ(x | y) =

√

c

2πD
exp(−

cx2

2D
), (5.7)

and
∫∞

−∞
ρdx = 1. Notice that ρ depends on y because

c and D are functions of y. The adjoint operator has a
null space spanned by η = 1, so the projection operator
we seek is

Pq = ρ(x | y)

∫ ∞

−∞

q(x, y)dx. (5.8)

Now, we set p = Pp+ (1 − P)p = r + ǫw (so that Pp =
r = u(y, t)ρ(x|y)) and observe that

L2r = −
∂

∂y
(fxPp) = −

∂

∂y
(fxuρ)

L3r = −
∂

∂y
(νuρ) (5.9)

Since
∫∞

−∞
xρdx = 0, we also observe that

PL2r = 0, PL3r = −ρ
∂

∂y
(νu). (5.10)

Furthermore, we assume that p decays sufficiently fast as
x→ ±∞ so that PL1p = 0.
Applying the projection operator to both sides of (5.3)

yields

∂r

∂t
= P

(

1

ǫ
L1 + L2 + L3

)

(r + ǫw) = PL3r + ǫPL2w.

(5.11)
On the other hand, if we apply the projection 1 − P to
(5.3), we get

ǫ
∂w

∂t
= L1w + (1 − P)(L2 + L3)r + ǫ(1− P)(L2 + L3)w.

(5.12)
Now, we assume that w is at a quasi-steady-state, so take

L1w = −(1− P)(L2 + L3)r. (5.13)

It can be shown that contributions to w that determine
the O(ǫ) diffusivity in the final FP equation depend only
on L2. Although contributions from L3 affect the drift
term, they are higher order and can be ignored. The
solution can then be formally written as

w = −L−11 (1− P)L2r, (5.14)

which is substituted into (5.11) to get the FP equation

∂r

∂t
= PL3r − ǫPL2L

−1
1 (1− P)L2r. (5.15)

We need only solve for w, given by (5.14). To do this we
use the following properties of ρ:

xρ = −
D

c

∂ρ

∂x
,

∂ρ

∂y
= −

1

2

d

dy
log(D/c)

(

1−
c

D
x2
)

ρ.

(5.16)
The goal is to express (1−P)L2r in terms of total deriva-
tives with respect to x. First, we substitute (5.9) into the
RHS of (5.13). Then, we use (5.16) to get

∂

∂x
(cxw +D

∂w

∂x
) = −

∂

∂y

(

fD

c

∂ρ

∂x
u

)

. (5.17)

After integrating and rearranging the above equation we
have

D
∂

∂x

(

w

ρ

)

= −
1

ρ

∂

∂y

(

fD

c
uρ

)

. (5.18)
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Differentiating the RHS of (5.18) and using (5.16) then
yields

D
∂

∂x

(

w

ρ

)

= −
∂

∂y

(

fD

c
u

)

+
1

2

d

dy

(

D

c

)

(

1−
c

D
x2
) fD

c
u.

(5.19)

We can integrate both sides of the result to get

w = −

[

1

D

∂

∂y

(

fD

c
u

)

+
1

2

d

dy

(

D

c

)(

1−
cx2

3D

)

f

c
u

]

xρ,

(5.20)

which is then substituted into the final term of (5.15)

PL2w = ρ
∂

∂y

(

f

c

∂

∂y

(

fD

c
u

))

. (5.21)

Then, by dividing (5.15) through by ρ, we get an equation
for the scalar function u:

∂u

∂t
= −

∂

∂y
(νu) + ǫ

∂

∂y

(

f2D

c2
∂u

∂y

)

, (5.22)

where we have ignored the O(ǫ) terms in the drift veloc-
ity.
Expressing this in terms of the original variables, we

find that, to leading order, the resulting FP equation
is exactly the same as equation (4.7) derived previously
from the discrete model.

B. WKB approximation of the stationary

distribution

The above analysis shows that the adiabatic reduction
applied after the system-size expansion is identical to the
QSS reduction applied to the full discrete model. How-
ever, as we show in this section, the WKB approximation
of the stationary distribution of (5.1) is not consistent
with the approximation of Section III; furthermore, the
result is subject to the same large-deviation errors as the
QSS reduction. As a result, the system-size expansion
can only provide an accurate approximation for above-
threshold stimulus current I > I∗.
It is no surprise that the leading-order WKB approxi-

mation is simply the continuum analogue of the discrete
eigenvalue problem (3.14). The existence and uniqueness
of the eigenpair (µ1,ψ1) is guaranteed in the discrete
case, and we are interested as to whether these proper-
ties extend to the case of continuous noise. Our results
provide strong evidence that this is indeed true.
We seek to approximate the solution to the equation

1

ǫ

[

D(v)
∂2p̂

∂s2
+

∂

∂s
((s− a(v))p̂)

]

= b(v)
∂

∂v
(sf(v)−g(v))p̂),

(5.23)
satisfying the normalization condition

∫ ∞

−∞

∫ 1

0

p̂(v, s)dsdv = 1, (5.24)

where D(v) = a(v)b(v)/N . The solution is assumed to
have the following form

p̂(v, s) = r0(v, s) exp

[

−
1

ǫ
Φ0(v)

]

. (5.25)

After substituting this into (5.23) we have

[L+ bΦ′0F ] r0 = ǫb
∂

∂v
(Fr0), (5.26)

where the operator L is defined as

L ≡ D(v)
∂2

∂s2
+ (s− a(v))

∂

∂s
+ 1, (5.27)

and F (s, v) = sf(v) − g(v). Collecting terms of leading
order in ǫ, we obtain the eigenvalue problem

[L+ bΦ′0F ] r0 = 0, (5.28)

which is the continuum version of (3.14). Thus, up
to an s-independent normalization factor, we have that
r0(v, s) = ψ(s|v) and Φ′0(v) = µ(v)/b(v), where ψ and µ
are the eigenpair for the generalized eigenvalue problem.
We wish to solve for the eigenfunction ψ(s|v) and

eigenvalue µ, which satisfy the equation

Dψ′′ + (s− a)ψ′ + (1 + µF )ψ = 0. (5.29)

From (3.20) we know that the eigenvalue must vanish
at a fixed point, where a(v)f(v) − g(v) = 0. If we set
µ = 0 in the above equation, we get an equation for the
eigenfunction ρ(s|v), with solution

ρ(s|v) = exp

[

−
(s− a(v))2

2D(v)

]

. (5.30)

This solution provides the essential property of zero flux,
that is

D
∂ρ

∂s
+ (s− a)ρ = 0. (5.31)

Likewise, the eigenfunction ψ must satisfy this property,
so we seek a solution of the form

ψ(s|v) = exp

[

−
(s− κ(v))2

2D(v)

]

, (5.32)

where κ(v) is an unknown shifted mean. After substitu-
tion into (5.29), we have

(s− κ)2 − (s− a)(s− κ) + µD(sf − g) = 0. (5.33)

Two equations for the two unknowns µ and κ are then
obtained by expanding the above to get

(−κ+ a+ µDf)s+ (κ2 − aκ− µDg) = 0, (5.34)

and requiring each term to vanish so that

κ = a+ µDf, (5.35)

κ2 = aκ+ µDg. (5.36)
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Solving these two equations yields either µ(v) = 0 and
κ(v) = a(v), which recovers the function ρ(s|v), or

µ(v) = −N
a(v)f(v)− g(v)

a(v)b(v)f(v)2
, κ(v) =

g(v)

f(v)
. (5.37)

The solution for the eigenfunction is then

ψ(s|v) = exp

[

−
(s− g(v)/f(v))2

2D(v)

]

, (5.38)

which is a shifted version of the steady-state solution so
that ψ(s|v) = ρ(s − ζ(v)|v), where the shift is ζ(v) =
(g(v)/f(v) − a(v)). Treating ψ as an approximation of
the true eigenvector, given by (3.19), we can see that
it cannot be uniformly accurate in v. The reason for
this inaccuracy is simple; the system-size expansion re-
sults in approximations of the first and second moment
of the jump propagator by linearizing them around the
deterministic critical point s = a. While this creates no
approximation for the first moment, since it is already lin-
ear in s, the second moment is frozen to its value at the
critical point. Remember that this is the best that can
be expected, since truncation of the Krammers-Moyal
expansion at the second moment is valid only near the
deterministic critical point. Away from the critical point,
all moments of the propagator are significant. The func-
tion ρ(s|v) is uniformly accurate because it is peaked at
the critical point, where the system-size expansion is at
its most accurate. However, since the peak of the eigen-
function ψ(s|v) is shifted, it is only accurate for values of
v such that |ζ(v)| ≪ 1; that is, near the fixed point v0,
where g(v0) = a(v0)f(v0).

As for the eigenvalue approximation, we have that
µ(v)/b(v) = −ν(v)/B(v), where ν(v) is the mean total
current and B(v) is the diffusivity, defined by (2.25) and
(3.71). The true eigenvalue, given by (3.20), differs from
the approximation only in the denominator; that is, ig-
noring the common factor of b, the estimate from (5.37)
has the denominator abf2, whereas the true denominator
is g(f − g). Now, notice that at the fixed point v = v0,
where g(v0) = a(v0)f(v0), we have

g(v0)(f(v0)− g(v0)) = a(v0)f(v0)(1− a(v0))f(v0)

= a(v0)b(v0)f(v0)
2.

(5.39)

Thus, like the eigenfunction ψ(s|v), the approxima-
tion (5.37) of the eigenvalue µ(v) is valid only near the
fixed point. This means that the WKB method, ap-
plied after the system-size expansion, fails to accurately
approximate the stability well in exactly the same way
as the QSS approximation of the full CK equation (see
Sec. IVA). We conclude that all of the diffusion approx-
imation techniques fail for the same reason: they cannot
estimate the large-deviation behavior of the random pro-
cess away from the deterministic fixed point.

VI. RESULTS

Thus far, we have developed an approximation of the
probability density function for the onset time of an ac-
tion potential. Building upon earlier studies, which de-
velop analytical and simulation approaches for the case
where the stimulus amplitude is above threshold, we
now have a quasi-stationary approximation for a below-
threshold stimulus amplitude. This allows us to build
a complete picture of how stochasticity affects the relia-
bility of neuron’s response to stimuli, and for how these
results compare to those predicted in the deterministic
limit. We have also explored different diffusion approx-
imation techniques and found that each resulted in the
same one-dimensional reduced FP equation (4.7), which
we now refer to as the diffusion approximation. In this
section, we compare the quasi-stationary and diffusion
approximations of the MFT, using the theory developed
in previous sections along with averaged Monte Carlo
simulations, which are generated with the Gillespie algo-
rithm [27] (see Appendix B for details).
The MFT is computed using the quasi-stationary ap-

proximation from Section III and the diffusion approxi-
mation (numerical method) from Section IV. Parameter
values are listed in Section II, and unless otherwise spec-
ified we take β = 0.8s−1 so that ǫ = 6.9 × 10−3. The
results of this calculation are shown in Fig. 2.
It is evident that the quasi-stationary approximation

is accurate for I < I∗ and the diffusion approximation is
accurate for I > I∗; however, we note that the diffusion
approximation is in error by many orders of magnitude as
I → 0. In Fig. 2b we also show the coefficient of variation
(CV), defined as the standard deviation over the mean,
from the Monte Carlo simulations, which shows the qual-
itative transition as the applied current increases past the
deterministic threshold (I∗ ≈ 40mA) from an exponen-
tial distribution (CV = 1) to something else for which
CV < 1.
To characterize the stochastic nature of the model,

one can examine how the fluctuations change as a func-
tion of voltage. This quantity is often experimentally
accesible and has a convenient theoretical form. When
using the diffusion approximation, the random process
can be written as a Langevin equation (4.8), in which
the noise term contributes fluctuations with magnitude

σ(v) =
√

1
N a(v)b(v)

2f(v)2. However, a continuous de-

scription of the noise is not valid away from the deter-
ministic fixed point v0. To see how this affects the MFT
we compute an approximation of stationary distribution,
using the FP equation (4.7). We find

û(v) = N exp

[

−
1

ǫ
Φ(v)

]

, (6.1)

where

Φ(v) = −N

∫ v

v∗

ν(v′)

a(v′)b(v′)2f(v′)2
dv′ (6.2)
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FIG. 2. Mean time to fire an action potential (MFT) T (ms) as a function of the applied current I (mA), for N = 10. a) The
quasi-stationary (solid line) and diffusion (dashed line) approximations are compared to 300 averaged Monte Carlo simulations
(symbols). The relative error of each approximation, compared to Monte Carlo simulations, are shown by grey lines. b) CV
from the Monte Carlo simulations.

and N is a normalization constant. The mean (and de-
terministic limit) is given by ν(v) (2.25), and it charac-
terizes the stability properties; that is, the zeros of ν are
the deterministic fixed points and the local minima and
maxima of Φ(v). Indeed, Φ can be thought of as a stabil-
ity landscape, which has multiple wells corresponding to
metastable states. Recall that the deterministic system
has three fixed points; two are stable, and they are sep-
arated by one that is unstable (see Sec. II). We focus on
the noise-drive transition from the left stable fixed point
v0 to the unstable fixed point v∗.

The corresponding term in the quasi-stationary ap-
proximation is (see Eqn. (3.21))

Φ(v) = −

∫ v

v∗

µ1(v
′)dv′

= −N

∫ v

v∗

ν(v′)dv′

b(v′)g(v′)(f(v′)− g(v′))
.

(6.3)

In Fig 3, we compare the stability-landscape functions.

Both approximations of the stability landscape, Φ,
have the same geometry imposed by ν, but the depth
of the well is overestimated by the diffusion approxima-
tion. Note that the left edge of the well is essentially a
vertical wall at v = ϑa ≈ −60mV, and the right stability
well, whose minimum corresponds to the up state, is not
shown. Since the MFT is an exponential function of the
depth of the well, in general, it is no surprise that the dif-
fusion approximation of the MFT has exponentially-large
errors.

The strength-duration curve for a deterministic model
is the curve of stimulus amplitudes as a function of stim-
ulus duration that is required to move the potential from
rest to threshold. To be specific, for the bistable model
(1.1), the strength-duration curve I = I(T ) is defined

−60 −50 −40 −30 −20 −10
0

1

2

3

4

5

v

Φ

0 20 40
0

2

4

I
diffusion approx

quasi stationary

height difference

FIG. 3. (color online) The stability-landscape Φ(v) from
the diffusion (dashed) and quasi-stationary (solid) approxi-
mations, with no applied current (I = 0). To normalize each
curve we have taken N = 1 ion channels. For ease of compari-
son we have vertically shifted each curve. The inset shows the
difference of the height of each stability well approximations
as a function of the applied current I .

implicitly by

T =

∫ ϑ1

v0

dv

a(v)f(v) − g(v; I)
. (6.4)

For a stochastic model of action potential initiation, a
natural definition of strength-duration curve is the mean
first exit time vs. stimulus amplitude curve, plotted with
stimulus amplitude as a function of mean first exit time.
Thus, simply reversing the axes in Fig. 2 gives examples
of stochastic strength-duration curves. In Fig. 4, addi-
tional strength-duration curves are shown for several val-
ues of N and ǫ.
For above-threshold amplitudes, the stochastic stimu-

lus durations converge quickly to the deterministic limit
as N → ∞ or as ǫ→ 0, and the deterministic behavior is
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FIG. 4. (color online) Strength-duration curves, with the quasi-stationary approximation (solid lines) diffusion approximation
(dashed lines) and 102 averaged Monte Carlo simulation (symbols). a) The stimulus amplitude I (mA) as function of the
stimulus duration T (ms) for different values of N , the number of channels, with β = 0.8s−1. b) Curves for different values of
ǫ (which scales the channel switching rate) and N = 8. In each, the deterministic strength-duration curve, defined by (6.4), is
compared to the stochastic behavior.

qualitatively accurate. For below-threshold amplitudes,
the deterministic limit predicts infinite stimulus dura-
tion and a zero rate of action potential generation. In
contrast, the stochastic model predicts a nonzero rate of
action potential generation, which is a behavior that can-
not qualitatively predicted by the deterministic model.
While the stochastic behavior converges to the determin-
istic limit as N → ∞, the convergence is much slower
than predicted by the diffusion approximation. Physi-
cally, this suggests that the discreteness of the channel
noise makes spontaneous action potentials much more
frequent than predicted by the diffusion approximation.

We can also examine the likelihood that a neuron fires
an action potential when exposed to a small, constant
amplitude stimulus with finite duration td. Using the
first passage time density F(t) for action potential initi-
ation, we define the probability of firing an action poten-
tial Prob{0 < T < td} with

Π =

∫ td

0

F(t)dt. (6.5)

Using the quasi-stationary approximation (3.10), this
probability is

Π ∼ 1− e−λ0td , (6.6)

where λ0 is the firing rate given by (3.72). In Fig. 5
the firing probability is plotted as a function of stimulus
amplitude, with a stimulus duration of td = 70ms.

As expected, close agreement between the quasi-
stationary approximation and Monte Carlo simulations
is found at low stimulus amplitudes.
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FIG. 5. (color online) Firing probability Π as a function of
the stimulus amplitude (fraction of threshold) with a stimulus
duration of 70ms. The quasi-stationary approximation (solid
lines) and the diffusion approximation (dashed lines) are com-
pared to 106 averaged Monte Carlo simulations (symbols).

VII. DISCUSSION

The goal of extending a successful deterministic model,
such as the Morris-Lecar equations, to include stochas-
tic effects is to uncover behavior that the deterministic
model cannot predict. In neuroscience, numerous vital
functions have been found to depend upon noise, and
uncovering the many sources of noise and their effects
has been an active area of research in the theoretical
community. It has long been known that channel noise
can lead to spontaneous action potentials and fuzzy re-
sponse properties. In this paper, we apply asymptotic
techniques to the problem of estimating the time scale
for spontaneous action potential initiation. For applied
currents above threshold, the magnitude of fluctuations
in the time to fire decreases and the behavior converges
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to the deterministic limit as the number of channels in-
creases. We can then view the deterministic model, which
assumes an infinite number of channels, as an approxi-
mation for the true situation, where N is finite. For an
applied current below threshold, however, the determin-
istic model predicts that no action potential is possible,
while the stochastic model predicts a nonzero probabil-
ity of firing. As a result, the deterministic model fails to
fully describe the behavior of a single neuron, and this in
turn affects any description of how neurons interact in a
network.
The message of the paper is twofold. First, we explore

mathematical issues involved in approximating discrete
channel noise with a continuous Markov process. This
can be done using the QSS reduction or the system-size
expansion, the result of which we refer to as the diffusion
approximation. For most observable behavior, the diffu-
sion approximation is a powerful and effective tool, but
it fails when estimating the timescale for a spontaneous
action potential initiation. Second, we present a quasi-
stationary (multiple time scale) analysis, which results
in an accurate estimate of this time scale. Our analysis
shows that the full, discrete stochastic process must be
considered to accurately approximate the latency time

for a spontaneous action potential.

Discreteness is an important characteristic of chan-
nel noise, and for some behaviors we find that discrete
channel noise cannot be approximated by a continuous
Markov process. In particular, we find that discreteness
affects the strength of random fluctuations away from the
deterministic fixed point, making the neuron more re-
sponsive to subthreshold stimuli and more likely to gen-
erate spontaneous action potentials than an equivalent
continuous channel noise. The qualitative picture for the
single subunit channel model presented here is not ex-
pected to change for a more detailed model of the Sodium
channel, which accounts for the different subunits it con-
tains. Indeed the methods presented here should work
equally well for the Hodgkin-Huxley model.
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Appendix A

In this appendix, we verify that

(ψ1)n =

(

N

n

)

(f − g)N−ngn, (A.1)

µ1 =
N(af − g)

bg(f − g)
. (A.2)

is an eigenpair of the matrix M = F−1A, where the matrices A and F are defined by (II) and (2.20). Proceeding by
direct calculation, we find that

vj(Mψ1)j = (Aψ1)j =

j+1
∑

i=j−1

aj,i(ψ1)i

= (N − j + 1)α

(

N

j − 1

)

hN−j+1gj−1 − ((N − j)α+ jβ)

(

N

j

)

hN−jgj

+ (j + 1)β

(

N

j + 1

)

hN−j−1gj+1

= (N − j + 1)α

(

N

j − 1

)

hN−j+1gj−1 − (N − j)α

(

N

j

)

hN−jgj

− jβ

(

N

j

)

hN−jgj + (j + 1)β

(

N

j + 1

)

hN−j−1gj+1

= αhN−jgj−1

(

(N − j + 1)

(

N

j − 1

)

h− (N − j)

(

N

j

)

g

)

βhN−j−1gj

(

−j

(

N

j

)

h+ (j + 1)

(

N

j + 1

)

g

)

= (αhN−jgj−1 − βhN−j−1gj)

(

N

j

)

Nvj

= (αg−1 − βh−1)

(

N

j

)

Nvjh
N−jgj

=
αh− βg

hg
Nvj(ψ1)j . (A.3)

Appendix B

Monte Carlo simulations are generated using the Gillespie algorithm [4, 7–10, 28–30]. The simulations were coded
in C (using the GNU Scientific Library for random number generators) and carried out in MATLAB, using its MEX
interface. In between each jump in the number of open channels, the voltage is evolved according to the deterministic
dynamics (2.8), which provides the relationship between voltage and time

v(t− t0) = (v(0)−K) exp

[(

geff −
S

N
gNa

)

t

]

+K (B.1)

K =
SgNavNa −Ngeffveff

SgNa −Ngeff
. (B.2)

To compute the next jump time, we use the transition rate

W (t|S, v(t0)) = Sβ + (N − s)α(v(t)) = β
(

S + (N − S)e
2
v2

(v(t)−v1)
)

. (B.3)
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After integrating the above transition rate, we derive the distribution function for the next jump time:

ϕ(t|v(t0)) = exp

[

−β

(

St+
(N − S)e−

2
v2

(K+v1)

geff − S
N gNa

Q(t|v(t0))

)]

, (B.4)

where

Q(t|v(t0)) = Ei(
2

v2
(v(t0) +K) exp

[(

geff −
S

N
gNa

)

t

]

)− Ei(
2

v2
(v(t0) +K)) (B.5)

and Ei is the exponential integral function defined by (3.22). Because the transition rates depend on voltage, and
therefore time, the distribution for the next jump time is not explicitly invertible. Let U be a uniform random variable.
Then, the next jump time, t, is given implicitly by

St+
(N − S)e−

2
v2

(K+v1)

geff − S
N gNa

Q(t) = −
log(U)

β
. (B.6)

To generate random times, a Newton root finding algorithm is applied to (B.6) until machine precision is reached.
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