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Abstract: 
Electron Crystallography of 2D protein crystals provides a powerful tool for the 

determination of membrane protein structure. In this method, data is acquired in the 
Fourier domain as randomly sampled, uncoupled, amplitudes and phases. Due to physical 
constraints on specimen tilting, those Fourier data show a vast un-sampled “missing 
cone” of information, producing resolution loss in the direction perpendicular to the 
membrane plane. Based on the flexible language of projection onto sets, we provide a full 
solution for these problems with a projective constraint optimization algorithm that, for 
sufficiently oversampled data, produces complete recovery of unmeasured data in the 
missing cone. We apply this method to an experimental dataset of Bacteriorhodopsin and 
show that, in addition to producing superior results compared to traditional reconstruction 
methods, full, reproducible, recovery of the missing cone from noisy data is possible. 
Finally, we present an automatic implementation of the refinement routine as open 
source, freely distributed, software that will be included in our 2dx software package. 
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I. Introduction 
Electron crystallography of two-dimensional membrane protein crystals records 

transmission electron microscopy (TEM) images of thin sheet-like crystals, which are 
oriented in the microscope horizontally (i.e. non-tilted), or at a certain tilt angle of 
typically up to 60º. The Fourier transformation of such images contains information about 
the amplitudes and phases of the diffraction orders, which are modulated by the 
instrument’s contrast transfer function (CTF). Alternatively, electron diffraction patterns 
can be recorded with the TEM, which only yield information about the amplitudes of the 
structure factors. Image processing conventionally tries to evaluate and merge the 
amplitude and phase information from several recorded images and diffraction patterns, 
yielding a dataset in the Fourier domain that is void of measurements in a so-called 
missing cone region around the Z-axis, due to the limited tilting possibilities of the 
samples in the microscope. This “missing cone” problem leads to 3D reconstructions of 
the protein that may have a good resolution in the X/Y membrane plane, but usually have 
a much worse resolution in the Z-direction perpendicular to the membrane plane. 
Horizontal protein segments such as surface loops or horizontally arranged amino acid 
side chains are then strongly smeared out vertically, and are therefore often not resolved 
in electron crystallography structures. Here we present a new algorithm to reconstruct the 
data in the missing cone. 

The central problem facing electron crystallography of two-dimensional membrane 
protein crystals can also be formulated with the question: “What protein structure best 
generates the data observed, given what is known?” Such data populate a continuous 3D 
Fourier domain as independent amplitudes (from electron diffraction patterns), 
independent phases (from real-space images, when amplitudes are taken from diffraction 
patterns), or fully coupled amplitude and phase terms (from real-space images, when 
diffraction patterns are not available). The terms are irregularly sampled in the Z-
direction perpendicular to the membrane and, in TEM, suffer from changes in the 
amplitude profile due to uncertainties in the determination of the microscope’s CTF. 
Uncorrelated noise also introduces variation of certainties in data quality.  

Iterative enforcement of known constraints allows the above question to be answered 
in full, using the measured data as well as additional prior knowledge. We present here 
both simulations and an experimental application of projection onto non-convex sets 
using a pseudo-inverse mapping between regularized real space and non-uniform Fourier 
space. We show that this mapping, combined with the application of Lions-Mercier [1] 
style projections, permits the native use of uncoupled amplitudes and phases, in addition 
to allowing a complete recovery of the missing cone.  

The algorithm is completely general and, without modification, should be applicable 
to any constrained tomographic problem including, for example, 2D electron 
crystallography, single particle protein analysis by electron microscopy, thick-specimen 
(electron-)tomography and seismic tomography. 
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II. Algorithm 

A. Projection onto Convex and Non-Convex Sets 

 Presenting a solution for the missing cone problem is not trivial. There are an infinite 
number of unconstrained real-space solutions that could generate any given incomplete 
3D Fourier dataset (i.e. those cropped by a missing cone), and the situation is made worse 
in the presence of noisy data. Application of reasonable constraints to the real or Fourier 
domain, however, can reduce the size or dimension of the search space of solutions 
dramatically. Introducing this a-priori information about a protein under study in an 
explicit, non-iterative, algebraic manner can be difficult, particularly in the case where 
constraints are only loosely known, and data are noisy.  

Projection onto convex sets is a robust and rigorous theory of optimization, which is 
applied using a straightforward alternating iterative application of known convex 
constraints to a dataset. In each iteration the dataset is sequentially modified to represent 
the closest solution that satisfies a given constraint. If these constraints represent convex 
sets, such that one uniquely defined closest solution (projection) can be found for each 
step, iterative application will move the dataset towards a guaranteed optimal solution.  

Closely related is the study of projections onto non-convex sets, which governs 
constraint sets with ambiguous projections. An example of such a non-convex set would 
be that defined by the points on the circumference of a circle. Here the point at the center 
of the circle for example has an undefined projection, as all points in the set are 
equidistant from it. In spite of this, extensions to known convex projection algorithms (in 
particular Lions-Mercier [1]) have proven convergence properties (subject to 
satisfiability) in theory [2, [3], numerical simulation [4], and experiment [5]. 

The language of projection operators is well suited to most constraints and is often 
“human readable”. In the case of electron crystallography, constraints exist in the real and 
Fourier domains, which can be translated into projection operators. For example, a 2D 
membrane protein crystal has no densities above and below the membrane, implying that 
the real space volume of this membrane bound structure has to be strictly contained 
within a slab of finite thickness. This knowledge can then be enforced as a constraint, 
specifying that the real-space volume is non-zero only within a known horizontal slab 
region. The associated projection is unique for all structures (and therefore convex) as it 
simply sets to zero all those regions that are known to be empty.  

In the Fourier domain, the constraint of known amplitudes or phases (namely the 
collected data) at particular points has an equally simple projection operator: the 
enforcement of the appropriate phase or amplitude at the point in question. Changing an 
existing phase value in the current dataset to an experimentally known (measured) phase 
represents a unique, convex constraint. The case of changing a zero amplitude to a non-
zero amplitude, however, presents an ambiguous projection as it is undefined which 
phase should be assigned to the new amplitude. As a result, the amplitude constraint is 
non-convex.  

The method of projection onto convex sets as answer to the missing-cone problem 
was already investigated by Agard and Stroud [6, [7], and by Barth et al.  [8, [9], who 
combined this with a maximum entropy approach. Here we present an application of 
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projection onto convex sets, in combination with a linear algebra solution for the 
transformation between real space and non-regularly sampled Fourier space, factional 
steps with individual point-wise weighting of applied constraints, and a shrinkwrap 
boundary constraint.  

B. Truncated singular value decomposition 

In the presented method we alternate between real and Fourier space, applying 
constraints in each space. Alternating projections between sets requires an invertible 
mapping between projection spaces. In the case of a simulated dataset, the values in 
Fourier space can be placed at regular sampling positions, and a Discrete Fourier 
Transform (DFT) suffices as a one-to-one mapping between the real and Fourier 
domains. In the case of experimentally obtained electron crystallography data, however, 
due to the typically random orientation of crystals on tilted support films in the electron 
microscope, the available data are usually distributed in Fourier space at an arbitrary 
location in the vertical direction along the Fourier lattice lines, resulting in a 3D Fourier 
dataset of irregular sampling. Such a dataset then requires either regularization by (re-
)interpolation, or an operator that takes this non-uniform sampling into account. 
Traditional methods [10, [11] have used SINC interpolation as an initial regularizing step 
of the lattice line data, before using the DFT as the mapping. We present here a direct 
method that, instead of SINC interpolation, uses a non-uniform transform from a regularly 
sampled real space volume to an irregularly sampled Fourier space, which then provides 
a method to find the best unbiased real linear estimator for a given Fourier dataset. The 
advantage of this method is that repeated interpolation errors are avoided and the raw 
data is used directly as a constraint.  

While sampling irregular points along a sub-Nyquist interval may seem to create a 
problem, it is precisely this extra information gained by additional sampling that can be 
leveraged to determine un-sampled data. Historically, the corresponding "oversampling" 
along the Fourier domain rods normal to the slab have been found to greatly reduce the 
number of high-resolution cryo-EM images needed, at the experimentally difficult high 
tilt angles, to phase a dataset [12]. Here we present a method to use such oversampled 
data to fully reconstruct both missing amplitudes and phases. 

The relationship between a discretely sampled real-space 2D-crystal structure and an 
irregular, finite sampling of the continuous Fourier domain is a linear one, 

 ℑr ,sxr = x̂s  (1)

where ℑr .s  is the discrete to s-sampled Fourier transform, xr  is an unknown regularly 
spaced real space solution, and x̂s  is the Fourier domain data sampled at s. In most 
experimental cases, depending on the number and distribution of the data samples, this 
represents a severely ill-conditioned matrix. A standard tactic in ill-conditioned inverse 
problems is to use a pseudo-inverse matrix calculated by truncated singular value 
decomposition [13] (SVD), which provides a stabilized least squares solution to the 
problem. 

 xr = ℑr,s
+ x̂s  (2)



Gipson et al.: Projective Constraint Optimization 6
 

Applying constraints in the Fourier or real domain may then be performed directly on the 
data, with numerical accuracy dependent only on the quality of the data and the number 
of assumed discrete real samples [14].  

As zero terms in the real domain (i.e. those values outside of the 2D-crystal slab) do 
not contribute to the Fourier sum, they may be removed, resulting in a m × n  transform 
with an implicit support constraint. In cases where this is the only real-space constraint, 
the above may be re-written as 

 ℑr .sℑr,s
+ x̂s = Γx̂s = x̂s  (3)

or that all Fourier domain solutions lie in the Eigenvector space of Γ , describing all finite 
slabs that generate the observed data. 

Both the sensitivity of Γ  to noise and the accuracy of solutions depend heavily on 
the choice of the regularization parameter v  in the SVD truncation. High condition value 
matrices are extremely sensitive to noise, while low condition numbers yield a less 
accurate reconstruction. The reliance on v  can be lessened by calculating an estimated 
error for Γ : 

 W = diag+ (abs(Γ)εJ )  (4)

Here, J is the N dimensional vector of all ones, ε  is the estimated error level, 
diag+ (v)  indicates the diagonal matrix formed from vector v, where the non-zero 
elements have been inverted, and abs(Γ)  is the element-wise absolute value of the 
matrix Γ . This weighting function can additionally be normalized, combined with other 
known confidence values, or otherwise altered to fit the purposes of a given dataset. 
While this error function could in principle be used as a least squares weighting function 

 ΓW = ℑr .s (W ℑr .s )+W  (5)

it will later be shown in Eq. 11 that this is not optimal for our purposes.  

In the most general case of electron crystallography of 2D crystals, Fourier 
amplitudes (A) and phases ( eiΘ ) are collected as uncoupled values 
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which form the basis for the Fourier constraints. A projection operator Pℑ  (Eq. 8) 
enforcing the constraints in Eq. 6 can be applied to an arbitrary image in the form of 
Eq. 7 
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where α and eit  are discarded and replaced by the known amplitudes (A) and phases 
( eiΘ ). Here,  D  represents the Hadamard (element-wise) product of two vectors or 
matrices. Using Eq. 3 and Eq. 8, iterative application of these Fourier constraints can be 
performed. 

 ΓPℑ(vn ) = vn+1  (9)

 

C. Iterations in fractional time steps 

Due to the non-convex nature of the system, however, strictly enforcing these 
constraints as in Eq. 9 can lead to pseudo-solutions and exponentially slow convergence 
(stagnation) [3]. These problems can be alleviated using fractional time-step parameters 
as used in Lions-Mercier [1], Fienup's Hybrid Input Output [4], and the Douglas-
Rachford Algorithm [15].  

 (1 − β) vn + β  ΓP3(vn ) = vn+1       |    0 ≤ β ≤ 1 (10)

While such fractional parameters have historically been globally enforced as in Lions and 
Mercier (1979) [1], we have used the weights of Eq. 4 in a point-wise fashion 
independently operating, subject to known confidence levels W, on each value. 

 (1− W ) vn + W  ΓP3(vn ) = vn+1  (11)

This has the simultaneous benefit of introducing a per-point fractional time step for 
convergence purposes, as well as allowing values that are more certain to guide the 
convergence process as a whole. 

Combining the concepts of Eq. 2 and Eq. 11, we then form a completely general 
optimization routine using both real and Fourier constraints. The data in real space ( x ) 
and Fourier space ( v ) are iteratively obtained by applying Eq. 12-14. 

 xn = ℑr,s
+ vn( ) (12)

 ℑr ,s (1− β) xn + β  Pℜ(xn )( )= vn+1  (13)

 (1− W ) vn+1 + W  Pℑ(vn+1) = vn+2  (14)

Here the final Pℜ  and Pℑ  represent all real and Fourier space constraints, respectively, 
that are appropriate for the system. For example, Pℜ , the real-space constraint operator, 
might include (but by no means be limited to) real-valuedness, non-negativity and 
additional support information, as well as more vague concepts such as appropriately 
defined regional continuity or non-diffuse (i.e. sharp) boundaries between zero and non-
zero regions. Equally, Pℑ , the Fourier space constraint operator, might include symmetry 
and spectral profile (e.g. from a small-angle X-Ray scattering experiment, or from 
general spectral expectations about the amplitude for the dataset), as well as optical 
constraints such as that from a known point-spread function. The presence of a global 
real-space weight β  in Eq. 13 is necessary here, as point-wise confidence about the real-
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domain is typically unknown. Nevertheless, Eq. 13 could obviously be modified 
according to Eq. 14, if such were available.  

D. Shrinkwrap optimization 

Shrinkwrap [16], a final added optimization that has recently gained increased 
theoretical support [17], can be implemented by setting to zero all real-space values that 
are found below an assumed noise threshold, as an iterative extension to the known 
support. 

 xn (i) =
xn (i)   ; xn (i) > ε
0        ; xn (i) ≤ ε

⎧
⎨
⎪

⎩⎪
 (15)

Knowledge that the 2D-crystal exists as a slab of finite thickness provides an initial 
estimate for the support of the object; empty regions found within this slab are then 
iteratively refined and can be used in the above procedure by appropriately modifying the 
real space projection operator Pℜ . 

We refer to the above-described algorithm, with or without Shrinkwrap, as Projective 
Constraint Optimization (PCO) for the remainder of the text.  

E. Cylindrical Ring Correlation (CRC) as convergence measure 

In addition to using standard resolution measures for analysis, such as Fourier Shell 
correlation [18], we developed a cylindrical ring correlation measure (CRC), which 
calculates the Fourier Ring Correlation (normalized dot-product for corresponding points 
on a ring of Fourier pixels [33]) for each horizontal 2D slab of 3D Fourier space between 
the current dataset and a reference dataset. Alternatively, the CRC can be calculated 
between the current dataset, and its symmetry-rotated copy, if the membrane protein has 
an internal symmetry that was not exploited in the processing. This CRC measure 
produces a 2D-map that describes resolution in ρ,z  space: The ring correlation value is a 
function of radius ρ  and height z  of a ring of constant thickness (e.g. 1 Fourier pixel) in 
Fourier space. Using this measure it is possible to measure point-wise ring-correlation for 
all points inside and outside of the missing cone, and observe the convergence of the 
algorithm in real time [33].  

III. Application 

A. Application to underdetermined simulated experimental data 

We applied Eq. 12-14 with Eq. 15 to a series of test cases based on computed 
datasets of actual 3D models of biological proteins (described in [33]). For all these 
noise-free datasets we found, in agreement with previous results [12], a near complete 
convergence (greater than 99% Fourier shell correlation out to Nyquist). The CRC for 
simulations showed that the convergence process is being spatially localized in Fourier 
space, growing from known constraint regions outward into unknown regions in Fourier 
space, such as the missing cone [33]. During this process, a starting point, x0 , for 
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undetermined Fourier pixel values has to be chosen at the beginning of the iterative 
processing. In terms of time to convergence, setting x0  equal to the minimum energy 
solution to Eq. 1 (or to zero, a closely related solution path) consistently out-performed 
guesses with random initial amplitudes and phases for the entire Fourier domain 
(supplemental movie 3) and also outperformed hybrid-guesses, where only unknown 
values in the Fourier domain were set to random values.  

Random starting points will typically partially satisfy constraints in both the real and 
Fourier domain. These semi-consistent solutions produce densities in the Fourier domain 
that persist through iterations, and can guide the refinement of neighboring densities into 
wrong pseudo-solutions. This appears to result in slowly growing "solution fronts" in 
Fourier space, both from pseudo-solution densities and constraint densities, which 
eventually collide and slowly attempt to reconcile. Starting with the unknown densities 
set to zero instead insures that a single, self-consistent, solution front is allowed to 
propagate through "resistance free" zero-valued solution space. This was found to be a 
rapid process. In the absence of noise however, all starting positions converged to 
essentially complete correlation, differing only by required iterations –typically ~30 for a 
zero starting point to more than 1000 rounds for a random guess. Starting with zeros in 
the missing cone, however, led to a dilution of the “energy” in the dataset during the 
iterations, so that the amplitude values from the known regions “bled” into the formerly 
missing cone region. Multiplication of the amplitudes of the entire dataset by a constant 
factor (e.g. 2) once, after a certain number of iterations, was found helpful to scale the 
intensities back to the original experimental values.  

B. Application to an experimental dataset of Bacteriorhodopsin 

As also done with a limilar approach by Agard and Stroud [7], the routine was 
applied to an experimental data-set of Bacteriorhodopsin (BR) [19]. This dataset was 
used in 1997 to generate a 3D reconstruction at 3.5Å resolution and contains both 
electron diffraction intensities and approximate phases derived from real-domain 
transmission electron microscope projection images. Data were available from -60º to 
+60º sample tilt angle, leaving an empty, vertically aligned “missing cone” of 60º angular 
diameter. These data were the basis of our refinement processing with the projective 
constraint optimization (the full details of processing are available online [33]). For 
comparison we used an atomic model of Bacteriorhodopsin 1BRR [20] and 1C3W  [21], 
both of which stem from 3D crystals grown of BR in the presence of lipids, and X-ray 
diffraction structure determination at 2.9Å and 1.55Å resolution respectively. These 
models were only used for comparative quality analysis of the results, and were not used 
during the processing at any time. 

The above-described algorithm was applied to this raw electron crystallography 
dataset, running 24 rounds with conventional constraints (without Shrinkwrap, for 
example see supplemental movies 8-9 at [33]), followed by 122 rounds of iterations 
including the Shrinkwrap constraint (supplemental movies 4-7 at [33]) and with the 
inclusion of a sharp-boundary constraint [33], until convergence was reached. The raw 
measured amplitudes and phases from the images were directly used as the input of this 
algorithm. 
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Ideally, the above algorithm would be applied between 3D domains of regular real 
space and irregularly sampled Fourier space. Due to the large size of the dataset, 
however, we divided the algorithm into two steps: A first, one-dimensional PCO (1D-
PCO) refinement was performed on individual lattice line data from regular real space to 
irregular Fourier space, strictly in the sampled regions and restricted to one lattice line at 
a time. This was followed by a second, three-dimensional PCO (3D-PCO) refinement, 
operating between the full (sampled plus unsampled) regular 3D real space to regular 3D 
Fourier space (see supplemental online figure 1). These steps were identical in form, 
following Eq. 12-14 iteratively, differing only in the applied constraints (i.e. 1D-PCO 
could not assume real-valuedness) and number of iterations (1D-PCO was performed for 
20000 iterations vs the ~150 rounds for 3D-PCO). This was strictly due to computational 
limits on storage (i.e. a maximum size for the matrices of ~200,000 x 200,000 elements) 
and the fact the data was processed serially on a single machine. Future versions of this 
algorithm plan to incorporate large parallelized SVD computation, as in Hernandez et al. 
(2005) [22], which is expected to additionally improve results. Though initial 1D-PCO 
operates on lattice lines, as does MRC image processing of 2D crystal data [10], it is 
important to note that PCO is algorithmically distinct from this method and can 
additionally be generally applied in any number of dimensions.  

Maximum structure correlation [23] of better than 0.82 of the obtained refined map 
relative to the atomic model 1BRR [20] and better than 0.80 when compared to 1C3W 
[21] was achieved when filtered to 2.5Å (Table 1).  

A more complete picture of angle dependent resolution is available from the full 
CRC (Fig. 1), which shows correlation out to beyond the data resolution limit. 
Comparison with the CRC in the region of the missing cone also shows significant 
correlation and a generally isotropic distribution of resolution, with the exception of 
characteristic semi-regular absences in correlation in the vertical direction. While these 
absences could be attributed to the low number of pixels at radii close to the center of the 
cylinder (leading to less meaningful correlation factors) or the tightness of the 2D slab 
mask, it may also be a result of ”striation” errors typical [24] of iterated projection 
solutions. It is also possible that high-frequency “ringing” effects, resulting from 
discontinuities at the edges of the 2D slab, introduce such artifacts – a problem a 
carefully chosen real-space “soft” Gaussian edge constraint might alleviate. 

Real-space correlation values (Table 1) show significant improvement for the here 
described refinement algorithm out to 2.5Å. Already a comparison of the PCO-refined 
result strictly within the experimentally sampled region (i.e. outside of the missing cone) 
shows improvement out to 3.0 Å. Interestingly, however, the calculated R-Factors appear 
to get worse and increase commensurately with the amount of purely refined (i.e. 
unobserved) data in the case of full 3D-PCO. A careful reading of the CRC explains this 
apparent contradiction.  

As iterative application of real-space boundaries equate to a series of convolutions on 
Fourier space, unmeasured amplitudes derive their energy iteratively from neighboring 
constrained or previously refined regions. Without additional energetic Fourier 
constraints or consideration [31], refined amplitudes remain down-weighted relative to 
their distance to constraint densities and thus yield higher R-factors. This leads to 
significant non-linear (yet smoothly predictable) scaling effects as distance from 
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constraint regions increase. Thus phases, which have a significant impact on real-space 
structure and therefore structural correlation, are quickly refined to near accurate values, 
while amplitudes require more iterations to come to equilibrium as inaccuracies here 
violate real-space constraints far less. This results in high structural correlation values 
(and real-space quality) with increasingly worse R-factors, as the latter rely on correct 
amplitude scaling that may at most differ by the non-linear (exponential) effect of a 
wrong B-factor. 

To test this we performed analysis on the results that had only been processed by 1D-
PCO and had therefore not received missing cone refinement. It was found in this case 
that R-factors were dramatically better, reaching their best values when the dataset was 
actually limited to 50º (Table 1); an effect likely due to the unreliability of measured 
amplitudes, phases, and error estimates at high tilt ranges as well as sparsity of sampling 
in these regions (see supplemental materials for details). As can be seen, in this case R-
factors are considerably better than MRC refined values, while the structural correlation 
was correspondingly worse, the opposite of the case of full 3D-PCO refinement. 
Fortunately, these refinements are not mutually exclusive and this issue could in principle 
be solved with the careful tuning of refinement parameters, the enforcement of local 
Fourier energy constraints, such as constant radial averages, or the application of known 
amplitude profiles, such as those derived from low-angle scattering experiments. 
Generally, as this method simultaneously refines both amplitude and phase, here real-
space structure correlation becomes the more reliable indicator of map quality. 

Visual inspection of the map (Fig. 2) shows that the refinement procedure produces a 
reconstruction with a well-resolved helical pitch and side chain densities that were not as 
clearly seen after application of traditional lattice line interpolation methods [32]. In 
particular, horizontal features such as extracellular loops, most dependent on vertical 
resolution, are in our refined reconstruction clearly visible at a single map-wide iso-
surface threshold.  

C. Evaluation of the tolerance of limited tilt-range 

We evaluated the robustness of the PCO reconstruction with respect to the size of the 
missing cone (Fig. 4). The BR dataset was further limited in tilt, so that copies of the 
dataset with tilt-ranges between +/- 1º to +/- 60º were created. Full 3D-PCO 
reconstructions were performed on these datasets and the average 3D resolution of the 
final maps was estimated by Fourier Shell Correlation (FSC) with the 0.5 threshold with 
the 1BRR map. The preliminary 1D-PCO refined reconstructions (see supplemental 
online materials) were compared to measure the benefit of 3D constraints. The resulting 
resolutions are shown in Fig. 4: The original MRC-based 3D reconstruction from this 
dataset showed an FSC-0.5 resolution of 4.4Å. PCO refined results from data from the 
low tilt-range between +/- 10º produced a map at 9Å resolution, while data from the tilt-
range of +/- 35º were found sufficient for PCO to reconstruct the almost complete map 
with an average FSC estimated resolution of 4.5 Å. Inclusion of higher tilted data 
between 40º and 60º (Fig. 3) for PCO refinement did not significantly improve the 
isotropic resolution of the final map. This means that with the PCO algorithm available, 
data collection in the tilt-range between 40º and 60º would not have been required for this 
dataset.  
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The best statistics for the final reconstruction were obtained after removing the top 
10° tilt range from the bacteriorhodopsin dataset, i.e. by not using the data with a 
specimen tilt of 50º or higher. Even though in pure simulations, including higher tilt data 
always produced faster convergence rates for solutions, for an experimental dataset, the 
high-tilt data may present both larger uncertainties as well as lower sampling density. In 
this specific case, the given phase incoherence, noise level, and the distribution of 
sampled data in different tilt ranges, showed the highest errors and lowest sampling 
density at the highest tilts. By removing the top 10° tilt range, the resolution of the final 
reconstruction was improved, highlighting algorithmic sensitivity both to data certainty 
and, importantly, sampling density. A better estimation of error levels might improve this 
situation. In the current situation, however, a sufficiently dense sampling is highly 
influential in balancing the effects of noise (see Fig. S3 and S4 at [33]).  

 

IV. Discussion 
We have presented an algorithm for the PCO refinement of electron crystallography 

data. This was applied to several simulated (noise-free) and an experimental (noisy) 
dataset of Bacteriorhodopsin, and resulted in the reconstruction of data inside the missing 
cone region. Noise was found to typically lead to an increased density of local minima 
and stagnation of the iterative refinement procedure [5]. Eq. 2 offers a solution to this 
problem as data are collected in the continuously oversampled Fourier domain, causing 
neighboring values (relative to real-space support) to correlate. In this way, global noise 
contribution can be controlled by the addition of more data. The amount of data 
necessary and the chances for achieving a unique solution were seen to be most sensitive 
to the ability to estimate error. When error was not considered, the algorithm effectively 
proceeded as assuming an error of zero, which typically corresponded to the enforcement 
of conflicting constraints, which, as can also easily be shown through simulations, 
produced radically diverging densities within a few tens of rounds. Even only 
approximate estimations of error, however, applied as in Eq. 11 in the form of individual 
data-point weights, were found to stabilize convergence. 

Over-fitting was found to be a problem in cases where Fourier reconstruction was 
attempted well beyond the limits of sampled resolution (e.g. out to 1Å). As both phases 
and amplitudes are unbounded in the refinement regime, spurious high frequency Fourier 
terms began to dominate the reconstruction, likely counter-balancing known Fourier 
constraints in an attempt to satisfy both Fourier-domain noise and the real-space support 
constraint. This appeared in real space as either high-valued, apparently randomly 
scattered, point densities or 1-pixel wide slabs touching the boundaries of the allowed 
support regions. When a real-space sharp region-boundary constraint was applied, 
however, all above-mentioned over-fitting effects were almost completely absent (see 
supplementary online materials for description, and supplementary movies 4-7 for real-
time application at [33]).  
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V. Conclusion 
Iterative application of known projective constraints presents a dynamic and 

completely general framework for the refinement of incomplete data, which 
automatically reduces solution search space sizes for a wide range of problems. The 
procedure defined here has shown that even in experimental cases where irregular 
sampling and variable levels of noise are present, complete structure recovery is possible. 
The presented refined bacteriorhodopsin dataset shows the power of this algorithm for 
general-purpose electron crystallography of 2D crystals.  

Additionally, we show that an increase in the amount of data can be leveraged into an 
increase in resolution. As recent results [25] demonstrate, given sufficiently oversampled 
data, almost any tilt-range suffices as the basis for full 3D reconstruction. The PCO 
algorithm presented here allows a reduction in tilt-range requirements, if a sufficiently 
large dataset can be collected, e.g. through automation of electron crystallography data 
collection. In the utilized bacteriorhodopsin data set, inclusion of data up to a tilt range of 
only 35º allowed the almost full reconstruction of the 3D structure, implying that data 
collection in the tilt range of 40º and higher could have been avoided. Since lower tilt 
angle electron crystallography data can be collected with much higher success rates and 
usually contain higher resolution data, the presented algorithm not only allows pushing 
the resolution limit in the direction perpendicular to the membrane plane, but also offers 
significant improvements for speed and overall resolution of the structure determination 
of membrane proteins by electron crystallography. 

This software is released open source under the GPL. It currently exists as a stand-
alone C++ program and individual Octave [26] modules, and has been optimized for a 
CUDA ready GPU, if present. The stand-alone software will be incorporated into future 
versions of 2dx [27], and will be available online [28]. The PCO refined map is available 
at the EMDB under accession code EMD-1856. 
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Figures & Tables 
 

  MRC 
(Outside of 

Cone) 

3D-PCO 
(Total Volume) 

3D-PCO
(Outside of 

Cone) 

1D-PCO 
(Outside of Cone) 

Resolution limit 4.00 2.98 4.00 2.98 2.50 4.00 2.98 4.00 2.98 
Number of used reflections 3171 6512 3531 8339 11891 2877 5192 5643 13108 
% observed  89.8 78.1 100 100 82.8 81.1 61.0 83.8 82.5 
Overall R factor (1C3W) 0.324 0.344 0.348 0.463 0.503 0.348 0.398 0.321 0.344 
Overall R factor (1BRR) 0.305 0.335 0.351 0.456 0.490 0.325 0.388 0.287 0.329 Structure correlation (1C3W) 0.651 0.691 0.646 0.755 0.807 0.646 0.715 0.673 0.644 Structure correlation (1BRR) 0.677 0.711 0.670 0.769 0.820 0.665 0.731 0.690 0.648 
 
Table 1: Amplitude Comparison - refmac5 [29] generated table describing comparison of 
atomic structure (1BRR and 1C3W) with the unrefined MRC processed data that contain a 
missing cone region, Projective Constraint Optimization (PCO) refinement data, and refinement 
result data with Fourier pixels from within the formerly missing cone region excluded. The last 
column describes 1D-PCO refinement of the 50º tilt-limited dataset. sfcheck [23] was used to 
produce the real-space structure correlation coefficient values (last row). Full refinement details 
available in [33]. 
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Figure 1: (Color) CRC Comparison - Normalized Intensity profiles (top: a, b) and Cylindrical 
Ring Correlation (CRC) plots (bottom: c, d) calculated relative to an atomic Bacteriorhodopsin 
crystallographic model (1BRR), without (left: a, c) and with (right: b, d) refinement by the here 
described PCO refinement algorithm. Plots are given as a function of ring of radius ρ (horizontal 
axis, in Å), and height z (in the vertical axis, in Å) in Fourier space. Initial rigid body fitting 
performed for CRC comparison (see supplemental online materials) were performed by the UCSF 
Chimera package from the Resource for Biocomputing, Visualization, and Informatics at the 
University of California, San Francisco (supported by NIH P41 RR-01081). Figure 2 was 
generated by COOT [30]. 
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Figure 2: (Color) Structural Comparison - Close-up views of selected map positions of the 
bacteriorhodopsin dataset after refinement by PCO (top), and before refinement (bottom). Helix 
backbone (a, b) is well defined, and the loop at 103 ALA (c, e) is connected and well resolved 
relative to the rest of the structure. All prominent side chains (e, f) are accounted for. 
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Figure 3: (Color) CRC Comparison of Tilt Limited Data – Calculated CRC for 3D-PCO 
reconstructions of the kimura-97 dataset tilt limited to (a) 30º, (b) 40º, (c) 50º and (d) 60º against 
1BRR. Note the sharpest transition occurs between 30º and 40º, with CRC roughly constant 
there-after. Plots are given as a function of ring of radius ρ (horizontal axis, in Å), and height z (in 
the vertical axis, in Å) in Fourier space (see figure S2 in [33]). 
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Figure 4: (Color) Resolution performance of PCO in dependence of available tilt-range data 
– The Bacteriorhodopsin dataset was tilt-range limited at 1 degree intervals, each fully subjected 
to structure reconstruction by 200 rounds of PCO [33]. The average resolution of the final dataset 
was estimated by Fourier Shell Correlation (FSC, 0.5 threshold) with the 1BBR model. Shown is 
the resolution of the full 3D PCO refined dataset (blue line) relative to a one dimensional PCO 
lattice line refinement only (green line). The original MRC reconstruction was based on data up 
to 60º specimen tilt, and showed a 4.4Å resolution when evaluated by FSC-0.5. The plot shows 
that a tilt limitation to only +/- 10º sample tilts still allows a 9Å reconstruction, additionally 
verified by CRC and visual inspection. Inclusion of data up to only 35º tilts effectively allowed 
the full reconstruction of the structure up to a resolution of 4.5Å. Inclusion of data beyond a 45º 
tilt-range did not bring any further improvements. 

 


