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Electrostatics of the protein-water interface and dynamical transition in proteins
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Atomic displacements of hydrated proteins are dominated by phonon vibrations at low temper-
atures and by dissipative large-amplitude motions at high temperatures. A crossover between the
two regimes is known as a dynamical transition. Recent experiments indicate a connection between
the dynamical transition and the dielectric response of the hydrated protein. We analyze two mech-
anisms of the coupling between the protein atomic motions and the protein-water interface. The
first mechanism considers viscoelastic changes in the global shape of the protein plasticized by its
coupling to the hydration shell. The second mechanism involves modulations of the local motions of
partial charges inside the protein by electrostatic fluctuations. The model is used to analyze mean
square displacements of iron of metmyoglobin reported by Mössbauer spectroscopy. We show that
high displacement of heme iron at physiological temperatures is dominated by electrostatic fluctu-
ations. Two onsets, one arising from the viscoelastic response and the second from electrostatic
fluctuations, are seen in the temperature dependence of the mean square displacements when the
corresponding relaxation times enter the instrumental resolution window.

PACS numbers: 87.14.E-, 87.15.H-, 87.15.kr, 87.10.Pq
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I. INTRODUCTION

Measurements of the Mössbauer absorption of 57Fe in
metmyoglobin crystals revealed that the mean square dis-
placement (msd) of this atom starts to grow faster with
increasing temperature above Td ≃ 200 K [1]. This find-
ing was followed by similar observations from neutron
scattering [2], which by now have been reported for a
large number of proteins and other biopolymers [3], all
demonstrating the same phenomenology [4–6]. The in-
crease in the slope of the protein msd as a function of tem-
perature was called a “dynamical transition”, presently
assigned to a rather broad range of onset temperatures
Td ≃ 200−240 K. The basic observation is that the high-
temperature msd of proteins much exceeds the linear ex-
trapolation of the low-temperature behavior characteris-
tic of a solid. The low-temperature portion of the msd
is well characterized by the observed phonon spectrum
of the protein [7], while the high-temperature msd ex-
cess is linked to dissipative long-wavelength modes with
energies below ≃ 4 meV [8–11].
Early explanations of the dynamical transition offered

scenarios ranging from detrapping of the protein confor-
mational motions from low-energy states [7, 12, 13] to the
glass transition in bulk water [2]. Several recent observa-
tions have shifted the focus to the protein-water interface
and, in particular, to the protein’s hydration shell. Two
observations are particularly important here: (i) the dis-
appearance of the dynamical transition in dry protein
powders [14] and (ii) its separate existence for the hydra-
tion water [15–17]. Both results point to a strong link
between the atomic msd of groups buried inside the pro-
tein and the coupled surface fluctuations of the hydration
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shell and the protein. We indeed show in this paper that
the msd excess at high temperatures is caused by electro-
static fluctuations produced by polar/charged groups at
the protein surface and water molecules residing in the
protein’s first hydration shell.

Despite somewhat different semantics, the views in the
field seem to converge to the notion of the critical role
of the hydration shell in promoting the dynamical tran-
sition. According to Doster [18]: “The onset of the dy-
namical transition depends on the solvent viscosity near
the protein surface.. . . The protein-water α-process con-
sists of a concerted librational motion of protein sur-
face residues, coupled to translational jumps of water
molecules on the same time scale.” The physical mecha-
nism behind the transition is assigned in this view to the
caging of the protein by water’s hydrogen bonds, stiffen-
ing its conformational flexibility. As the temperature in-
creases, the population of broken hydrogen bonds grows
exponentially, resulting in a release of the protein confor-
mational flexibility in a narrow range of temperatures.
Although appealing, this concept does not address the
key question of how ∼ 0.5−2 ps local events of hydrogen
bond breaking develop into a ∼ 2µs (Ref. 19) collective
α-relaxation at Td.

Frauenfelder and co-workers have recently suggested a
somewhat different scenario, also focusing on the dynam-
ics of the protein hydration shell [20–23]. According to
their view, protein internal motions (but not large-scale
conformational changes) are coupled to the motions of
interfacial waters and their dynamics are dominated by
the dynamics of the hydration layer. The corresponding
relaxation times follow an Arrhenius law and are there-
fore classified as a secondary, β-process in analogy with
the common classification adopted in the field of super-
cooled liquids [24]. This secondary relaxation of the hy-
dration shell is therefore distinguished from the primary,
α-relaxation bulk water. The latter shows non-Arrhenius
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temperature dependence on cooling [24]. The β-process
of the hydration shell, and its effect on internal protein
motions, is experimentally separated from the bulk wa-
ter dynamics by embedding protein samples into solid
poly(vinyl)alcohol (PVA). The dynamics of β-relaxation
is then measured by dielectric spectroscopy [21, 22].
The use of dielectric absorption of PVA-confined pro-

teins yields a surprisingly accurate account of the temper-
ature dependence of the Lamb-Mössbauer factor equal to
the fraction of recoilless absorption, f = exp[−k20〈(δx)

2〉].
Here, 〈(δx)2〉 is the msd of the heme iron of metmyo-
globin in projection on the wavevector k0 of γ-radiation.
The iron msd can be separated into a vibrational, low-
temperature component 〈(δq)2〉 ∝ T , described by the
vibrational density of states (VDOS) of the protein,
and a high-temperature component 〈(δQ)2〉 appearing at
T > Td. Since the q and Q coordinates are typically
considered as statistically independent [10, 22, 25, 26],
f = fqfQ becomes a product of two components, fq and
fQ. It turns out that, once the extrapolation of the low-
temperature component fq is subtracted from the ob-
served signal, the temperature variation of fQ is excep-
tionally well reproduced by the variance of the sample
dipole moment at the same hydration level

fQ = exp[−k20〈(δQ)2〉] = 〈(δM)2〉</〈(δM)2〉. (1)

In this equation, 〈(δM)2〉< is defined as the integral of
the frequency-dependent variance of the sample dipole
moment Mω over the frequencies below (subscript “<”)
the instrumental frequency ωobs = 1/τobs, τobs = 140 ns
[22]. The parameter fQ then determines the fraction of
the sample dipole that has not had a chance to alter on
the life-time of the iron nucleus, thus keeping the nuclei
in resonance for Mössbauer absorption.
The empirical connection between the dynamical tran-

sition and dipolar fluctuations is additionally supported
by recent observations of breaks in the dependence of the
terahertz dielectric absorption on temperature at typical
values of Td [27]. All these observations, although ad-
vancing the field toward identifying the physical modes
responsible for the high-temperature flexibility of pro-
teins [13], pose a significant conceptual challenge.
Both Mössbauer and neutron-scattering techniques

probe translational atomic motions on their correspond-
ing resolution windows. It seems therefore natural to
relate the break in the temperature dependence of the
msd to changes in the dynamic and/or static proper-
ties of atomic translations [28, 29]. This is the concep-
tual framework behind the glass-transition scenario [18]
which, even in the current form emphasizing the hydra-
tion layer, is focused on the caging arrest, i.e., on the
primary effect of short-ranged repulsive interactions in
the system. On the contrary, the dielectric measurements
[22, 27, 30] shift the focus to the long-ranged dipolar fluc-
tuations.
Translational (density) and orientational (dipolar po-

larization) modes are mostly decoupled by symmetry and
can therefore be considered as two distinct mechanisms

of altering the protein atomic msd [31]. Numerical sim-
ulations find enhanced fluctuations of hydrogen bonds of
hydration water at high temperatures [28], but those can
be projected on either density or collective orientational
modes. The common temperature dependence of the re-
sponse produced by atomic translations of groups buried
inside the protein and dipolar orientations predominantly
active at the protein-water interface [23, 32–34] suggests
a common physical property linking the two modes. We
show here that this property is the electric field of the
protein-water interface acting on an atomic charge inside
the protein.
The goal of this paper is to develop a model of

the protein atomic msd based on the properties of the
protein-water interface. Low-frequency deformations of
the protein-water interface, not included in the phonon
VDOS, are modeled here by the viscoelastic response
function and the interfacial electrostatics are modeled by
the response function of the electric field acting on buried
atomic charges. The dependence of the onset tempera-
ture Td on the observation window is an important in-
gredient of the observations [18, 35], which is introduced
into the theory by limiting the range of frequencies over
which the response functions are integrated [36], simi-
larly to Eq. (1). We start with formulating the model,
followed by the results of calculations.

II. MODEL

The purpose of our model is to determine the msd of
a single atom, heme iron of metmyoglobin, as a func-
tion of temperature. The atomic msd mostly originates
from projections of normal mode vibrations of the pro-
tein on the atomic displacement, iron in our case. This
component, described by the vibrational coordinate q,
can be directly calculated from the VDOS measured, for
instance, by the phonon-assisted Mössbauer scattering
[7, 26, 37]. Its msd is, in the classical limit, a linear
function of temperature shown by the dashed line in Fig.
1

〈(δq)2〉(T ) = aqT. (2)

The proportionality coefficient aq is calculated from the
VDOS according to the standard prescriptions [26].
We show below that the interaction of the atomic

charge of the heme iron with the local electric field of the
protein-water interface results in softening of the atomic
vibrations. This effect is recorded by the experimental
〈(δx)2〉(T ) as an increase of its slope vs temperature as
shown by closed points in Fig. 1. The solid line in Fig.
1 is the result of the calculation incorporating this elec-
trostatic softening using model parameters in agreement
with Molecular Dynamics (MD) simulations (see below).
The break in the slope of 〈(δx)2〉(T ) at Td occurs when
the relaxation time of the electric field fluctuations en-
ters the experimental observation window of Mössbauer
spectroscopy, τobs = 140 ns [22].
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FIG. 1. Temperature dependence of the iron msd in metmyo-
globin. Experimental msd [7] are shown by circles. Diamonds
refer to the msd calculated from the VDOS measured from
phonon-assisted Mössbauer effect at different temperatures
[7], whereas the dashed line is the same calculation from the
VDOS at 235 K [26]. The dash-dotted line refers to 〈(δx2)〉el
[Eq. (11)] combining phonons with viscoelastic oscillations of
the protein shape. The solid line refers to the combination
of all three effects: protein’s phonons, viscoelastic shape os-
cillations, and electrostatic fluctuations [Eq. (10)]. Further,
the bold dashed line refers to the calculation neglecting the
viscoelastic component 〈(δQ)2〉> in the elastic msd in Eq.
(11). The inset shows vibrational msd 〈(δq)2〉 (dashed line)
and elastic msd 〈(δx2)〉el (dash-dotted and dotted lines). The
solid line in the main panel is obtained with ∆Kp(T ) as ex-
plained in the text, while the dotted lines in both panels refer
to the temperature-independent ∆Kp = 3.2 GPa obtained
from the fit of Eq. (16) to the protein intrinsic compressibil-
ity at 298 K [38].

While the theory advanced here suggests that
〈(δq)2〉(T ) and its softening by the local electric field of
the protein-water interface are two major components
required to reproduce the experimental 〈(δx)2〉(T ), one
also wonders what are the effects of global viscoelastic
deformations of the protein shape on the atomic msd.
This problem unfortunately cannot be currently resolved
with atomic or even coarse-grained resolution. While ap-
proaches to study global motions of proteins by coarse-
grained models (e.g., elastic network models [39–42])
have been successfully advanced in recent years, the so-
lution of a viscoelastic analog of this approach still lags
behind. This is the result of both the difficulties of solv-
ing the viscoelastic problem [43] for objects of complex
shape and the absence of established dynamic moduli of
proteins of which only the static compressibility has been
sufficiently studied [38, 44].

In order to provide estimates of the effect of global
viscoelastic shape fluctuations on the iron msd, we de-
velop here a formalism limited to a simplified spherical
geometry thus including only the projections of the global
low-frequency deformations of the protein on the radial
expansion of the protein volume for which the bulk mod-
ulus is sufficient. The model is parametrized on the ex-
perimental volumetric data and shows that viscoelastic
motions become important at high temperatures. The
bold dashed line in Fig. 1 was obtained by neglecting

the viscoelastic deformations altogether, and the result-
ing msd falls below the experimental points by ≃ 30%.
We will split the coordinate of the iron atom r = q+Q

into two statistically independent components, q and Q

[25]. The dissipative motions of the protein, described by
coordinate Q, are seen in neutron scattering spectra as a
quasielastic peak with energies below ≃ 4 meV, growing
in intensity with increasing temperature [10]. In contrast,
high-frequency vibrations projecting on the q-coordinate
produce a temperature independent scattering intensity.
Further, with the sound velocity of a protein ≃ 1700 m/s
[9, 45], the wavelength of the corresponding Q-modes is
about 26 Å, which is comparable with the diameter of
myoglobin, 2R = 36 Å. These modes therefore alter the
global shape of the protein, which is the domain of the
viscoelastic response.
The protein viscoelastic motions are modeled as ra-

dial vibrations of a sphere of radius R immersed in a
viscoelastic water continuum. The low-frequency iron
msd is then related to the radius fluctuations of the
sphere as 〈(δQ2)〉 = (r/R)2〈(δR)2〉. The latter can be
found by solving the standard equations of viscoelasticity
[43, 46] yielding the response function χR(ω) connecting
the change of the sphere’s radius R to an oscillatory pres-
sure p(t) = p0e

iωt applied to the sphere’s surface. The
result is [46]

χR(ω) = −
1

4πR

1

3∆Kp(ω) + 4µw(ω)
. (3)

Here, ∆Kp(ω) = Kp(ω) − Kp,0 is the viscoelastic bulk
modulus of the protein minus its bulk modulus Kp,0 at
zero frequency. Further, µw(ω) is the shear modulus of
water. Applying the fluctuation-dissipation theorem [47]
to Eq. (3), one gets

〈(δQω)
2〉 = −

2kBTr
2

3ωVp
Im

1

3∆Kp(ω) + 4µw(ω)
, (4)

where Vp is the protein volume.
We now proceed to calculating the Lamb-Mössbauer

factor [48–50]

f = 〈
∣

∣〈eik0x〉
∣

∣

2
〉het, (5)

where x = k̂0 · (q + Q) is the projection of the iron
displacement on the direction of photon propagation,
k̂0 = k0/k0. There are two averages in this definition:
the inner angular brackets denote the canonical ensemble
average over the protein and water modes affecting the
position of iron in a single protein, while the outer an-
gular brackets denote an average over the proteins in the
sample. This second average carries the subscript “het”
to emphasize that it reflects the heterogeneity of the sam-
ple, such as for instance variations in the hydration level
among different proteins in the protein powder. We do
not consider the heterogeneous average in our present
study and limit ourselves by the inner average only. This
approximation amounts, in experimental techniques, to
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considering the narrow feature of the Mössbauer absorp-
tion line and subtracting the broad base-line originating
from the sample heterogeneity [7]. Accordingly, the ex-
perimental closed points shown in Fig. 1 are obtained
from the area f(T ) of the narrow line as − ln f(T )/(k0)

2,
k0 = 53.2 Å−1.
One has to recognize that the distinction between

the heterogeneous average in the outer brackets and the
canonical average in the inner brackets in Eq. (5) is not
clearly specified. The canonical average includes only the
modes of the medium with relaxations times τ(T ) faster
than the instrumental observation window τobs. This fact
will be explicitly incorporated below in all response func-
tions of the slow modes by restricting the integrals over
the mode frequencies by fast modes only [36]. However,
once the temperature is lowered, an increasing fraction
of the phase space sampled by water and conformational
motions of a single protein falls outside the canonical av-
erage and thus should be included in the heterogeneous
average in the outer brackets in Eq. (5). This component
of the picture is completely neglected here, but needs to
be considered to incorporate the broad base-line feature
of Mössbauer band-shapes [7, 48–50].
The canonical ensemble average over the water/protein

statistical distribution can be described in terms of the
free energy F (x) such that the inner brackets in Eq. (5)
become

〈eik0x〉 = Z−1

∫

eik0x−βF (x)dx, (6)

where β = 1/(kBT ) and Z =
∫

exp[−βF (x)]dx. The free
energy F (x) is determined by projecting [51] the manifold
of q and Q coordinates on the single coordinate x

e−βF (x) =

∫

δ[x− k̂0 · (q+Q)]

〈e−βH0(q,Q)−βzφw(q,Q)〉w dqdQ.

(7)

In this equation, H0(q,Q) is the Hamiltonian of clas-
sical harmonic vibrations of the protein and φw is the
electrostatic potential of the dielectric medium acting on
the heme iron with the charge z. The subscript “w” in
Eq. (7) specifies water as the main source of the elec-
trostatic fluctuations. This is, however, not required by
the theory, and slow protein motions, not included in
the calculation of 〈(δq)2〉, can contribute to the fluctua-
tions of the electrostatic potential as well (see below). In
that case, φw denotes the overall electrostatic potential
arising from the heterogeneous, protein-water medium
surrounding the heme.
The Hamiltonian H0(q,Q) in Eq. (7) can be given in

the Gaussian form

βH0(q,Q) =
δq2

2〈(δq)2〉
+

δQ2

2〈(δQ)2〉>
, (8)

where the variance of q is given by Eq. (2) and the vari-
ance of Q requires additional explanation.

The limited instrumental time τobs affects the observ-
ables and, in fact, the dynamical transition itself becomes
possible only when the relaxation times of modes coupled
to the iron msd enter the experimental observation win-
dow [18, 22]. Therefore, the variance of the slow disper-
sive motions of the heme iron is not a thermodynamic
variable referring to an infinite observation window (in
contrast to fast vibrations projecting on q), but a prop-
erty affected by instrumental resolution [36, 52]. This is
reflected by the subscript “>” in Eq. (8) which indicates
that 〈(δQ)2〉> is calculated by integrating the response
function in Eq. (4) over the frequencies exceeding the
observation frequency ωobs = τ−1

obs

〈(δQ)2〉> =

∫

∞

ωobs

〈(δQω)
2〉(dω/π). (9)

The statistical average over the electrostatic fluctua-
tions can be simplified by a first-order expansion of the
potential φw in x: φw ≃ φw,0 − xEw , where φw,0 is the
potential at the equilibrium position of the iron and Ew

is the electric field projected on k̂0.
Assuming that Ew is a Gaussian variable, one gets a

Gaussian form of βF (x) = x2/(2〈(δx)2〉) where the vari-
ance 〈(δx)2〉 is

〈(δx)2〉 = 〈(δx)2〉el/ME . (10)

Here, the elastic msd

〈(δx)2〉el = 〈(δq)2〉+ 〈(δQ)2〉> (11)

is the sum of two statistically decoupled components
given, correspondingly, by Eq. (2) and Eqs. (4) and
(9). Further, the correction ME represents the soften-
ing of the elastic msd by electrostatic fluctuations of the
protein-water interface.
Similarly to the viscoelastic effect, the electrostatic

softening depends on the observation window. Account-
ing again for the frequency cutoff introduced by the finite
instrumental resolution, it is given in the form

ME = 1− (βz)2〈(δx)2〉el

∫

∞

ωobs

CE(ω)dω/(2π), (12)

where CE(ω) is the Fourier transform of the time auto-
correlation function of the field Ew(t)

CE(ω) =

∫

∞

−∞

〈δEw(t)δEw(0)〉e
iωtdt. (13)

By applying the fluctuation-dissipation theorem [47]
once again, one can recast Eq. (12) in terms of the re-
sponse function χE(ω) representing the electrostatic re-
sponse to an oscillating point dipole m(t) = m0 exp(iωt)
placed at the position of the iron atom

ME = 1− βz2〈(δx)2〉el

∫

∞

ωobs

χ′′

E(ω)dω/(πω). (14)

In Eq. (14), χ′′

E(ω) = Im [χE(ω)] is the loss function [53].
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To summarize, our model for the calculation of the
iron msd includes three components. The elastic msd
〈(δx)2〉el [Eq. (11)] is the sum of the vibrational [Eq. (2)]
and viscoelastic [Eqs. (4) and (9)] components. This elas-
tic msd is affected by the combination of phonon vibra-
tions and the global shape and connectivity of the protein
matrix [39]. For charged atoms carrying partial charge
z this global elasticity is further softened by the fluctua-
tions of the electric field of the protein-water interface at
the position of the atom inside the protein. This soften-
ing of displacements of charge z, not incorporated in the
global vibrations/deformations affecting 〈(δx)2〉el, is de-
scribed by the softening factorME in Eq. (14); ME = 1 in
Eq. (14) when the atom carries no charge, z = 0. Equa-
tion (10) also suggests that the interpretation of Eq. (1)
as the appearance of a “new” high-temperature mode
above Td is misleading. The electrostatic field of the in-
terface is there even at low temperatures and it is only
its fluctuations that are recorded at high temperatures
by lifting the kinetic arrest determined by the relative
magnitudes of the relaxation time and the instrumental
observation window.

III. PARAMETERS OF THE MODEL AND

MEAN SQUARE DISPLACEMENT

Here we outline the calculations performed using the
model developed in this paper. We need to mention
that many parameters entering the model are not ex-
perimentally available. Some of them can potentially
be extracted from numerical simulations. The useful-
ness of simulations is, however, limited for interpret-
ing the experimental data since reproducing heteroge-
neous conditions of partially hydrated protein powders
and polycrystals presents significant challenges to simu-
lation protocols [29, 54, 55]. Likewise, the viscoelastic
model used here should be viewed as only a first step to-
ward a more realistic description of the elastic response of
hydrated proteins. Global motions of proteins are more
complex than spherically-symmetric breathing vibrations
[39]. However, one of the major conclusions of this paper
is the dominance of electrostatics and a relatively small
effect of viscoelastic motions on the iron displacements.
This observation puts high priority to the development
of the electrostatic component of the model, and makes
the limitations of modeling the viscoelastic response less
critical.

A. Viscoelastic response

The viscoelastic response functions entering Eq. (3)
were taken in the Maxwell form [47]

∆Kp(ω) =
∆Kpiωτp
1 + iωτp

,

µw(ω) =
G∞iωτw
1 + iωτw

.

(15)

In this equation, ∆Kp = Kp,∞ − Kp,0 is the change in
the bulk protein modulus between infinite and zero fre-
quencies and G∞ is the high-frequency shear modulus of
water; τp,w are the corresponding relaxation times.
The protein relaxation time τp(T ) in Eq. (15) was ob-

tained from measurements done on dry protein powders
[30]. The relaxation process in dry proteins is too slow
to enter the observation window of the spectrometer and
∆Kp(ω) ≃ ∆Kp in Eq. (15). This observation implies
that the frequency dependence of the moduli, e.g., Debye
vs dispersive relaxation, does not significantly affect the
outcome of the calculations and only ∆Kp(T ) matters
for the protein component of the viscoelastic msd. This
latter function (listed in the caption of Fig. 2) was ob-
tained to match the experimental intrinsic compressibil-
ity [44] of myoglobin [38] βT = 11.04 Mbar−1 at T = 298
K and the temperature variation of Young’s moduli of
myoglobin crystals at lower temperatures [59, 60] (inset
in Fig. 2). An estimate of the myoglobin compressibility
using fluctuations of its gyration radius from MD sim-
ulations described below [61] leads to βT = 10 Mbar−1

for R = 18 Å calculated from the protein van der Waals
volume. This comparison suggests that radial breathing
vibrations of an effective sphere are mostly responsible
for the volumetric fluctuations of the protein.
From the Maxwell equation, one gets the shear vis-

cosity ηw(T ) = G∞(T )τw(T ) which is well tabulated
down to the water nucleation temperature [56]. The
shear relaxation time τw(T ) was obtained from ηw(T )
and G∞(T )/GPa = 1.68 − 0.0127(T − 273) taken from
Ref. 57. The resulting τw(T ) turns out to be close
to the exponential relaxation time of the longitudinal
modulus extracted from inelastic x-ray scattering [58]:
τℓ(T )/s = 0.84× 10−15 exp(1910 K/T ).
The response function in Eq. (3) combined with the dy-

namic moduli from Eq. (15) can be used to parametrize
the viscoelastic response on protein’s intrinsic compress-
ibility [44]. For a given instrumental resolution, one
obtains from Eq. (3) for the isothermal compressibility
βT ∝ 〈(δVp)

2〉 of the protein

βT = −(6/π)

∫

∞

ωobs

Im [3∆Kp(ω) + 4µw(ω)]
−1

(dω/ω).

(16)
In Fig. 2 we show βT (T ) for the parameters adopted in

the calculations of the iron msd in Fig. 1 and several val-
ues of ωobs. The intrinsic compressibility of the protein
rises sharply at the point close to protein’s glass tran-
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FIG. 2. Intrinsic isothermal compressibility βT (T ) of myo-
globin calculated from Eq. (16) with ωobs = 1 (dashed line),
102 (solid line), and 103 MHz (dash-dotted line). The protein
and water parameters are those adopted for the calculation
of the myoglobin msd, with ∆Kp(T )/GPa = 3.22 − 0.03 ×
(T − 298) + 0.00025 × (T − 298)2 obtained to fit the protein
intrinsic compressibility at 298 K [38] and the temperature
dependence of Young’s moduli (crosses in the inset). The in-
set shows experimental expansivity of the hydration shell of
lysozyme (circles) [62], experimental inverse Young’s moduli
of myoglobin crystals exposed to air of 95–100% (diamonds)
[60] and 75% humidity (crosses) [59]. The solid line in the in-
set shows βT (T ) calculated from Eq. (16) at ωobs = 102 MHz;
all curves in the inset are normalized to the corresponding
values at T = 298 K.

sition Tg. The latter depends on the observation win-
dow, but is close to reported values Tg ≃ 180 ± 15 K
[60, 62, 63] marked by breaks in several observable pa-
rameters [63]. The rise of compressibility at Tg is caused
by the water component of the viscoelastic response func-
tion when the relaxation time τw becomes smaller than
τobs = ω−1

obs. This onset is also consistent with the glass
transition of the hydration shell expansivity [62] shown
by open circles in the inset in Fig. 2. The temperature
Tg therefore marks the rise in the compressibility of the
protein-water interface driven by lifting the dynamical
arrest of the water shear response.

The protein and water dynamic moduli tabulated on
the protein volumetric data can next be used to calculate
the elastic msd in Eq. (11). Its first, phonon component
〈(δq)2〉 was calculated from the VDOS of metmyoglobin
powders from phonon-assisted Mössbauer measurements
[7, 9, 26] (dashed lines in Fig. 1). When the viscoelastic
component 〈(δQ)2〉> is added to 〈(δq)2〉 one obtains the
elastic msd 〈(δx)2〉el shown by the dash-dotted lines in
Fig. 1.

The elastic msd in the inset in Fig. 1 shows an upward
increase at the highest temperatures studied. It is pro-
jected on a similar increase in 〈(δx)2〉 in the main panel
in Fig. 1 and reflects pre-melting of myoglobin crystals
when their Young’s moduli approach zero [60]. Since
the melting temperature is typically higher in protein
powders [60], ∆Kp(T ) obtained from fitting the crystal
data might overestimate the pre-melting effects. Never-
theless, the temperature dependence of ∆Kp(T ) has a
minor effect on either 〈(δx)2〉el or 〈(δx)2〉. The dotted

line in the main panel in Fig. 1 shows 〈(δx)2〉 obtained
with a temperature-independent ∆Kp = 3.2 GPa fixed
to its value at 298 K, while the dotted line in the inset
shows 〈(δx)2〉el calculated under the same assumption.
The solid and dotted lines in the main panel in Fig. 1 are
sufficiently close to each other and are mostly within the
experimental uncertainties.

B. Electrostatic response

The theory as formulated so far does not make any spe-
cific assumptions about the electric field response func-
tion χE(ω) and any such function obtained from com-
puter or laboratory experiment can be used in Eq. (14).
A model of χE(ω) can be constructed by solving the ma-
terial Maxwell’s equations for the heme immersed in the
heterogeneous dielectric formed by the protein and its
hydration layer. However, the assignment of the dielec-
tric constants to both the protein and the thin layer of
water surrounding proteins is subject to significant un-
certainties [32–34]. On the other hand, the simulations
of the hydrated myoglobin [61] which we discuss below
show that, despite the obvious complexity of the protein-
water interface, a Debye form, characterized by only
two parameters, fits the simulated loss function χ′′

E(ω)
quite well. We will therefore start our discussion with a
phenomenological description aimed to establish whether
electrostatic fluctuations can produce a significant effect
on the msd under a reasonable set of assumptions. The
results of fitting the Debye loss function to reproduce the
experimental msd are then compared to MD simulation
data.
The dielectric response to charges immersed in a polar

medium is dominated by longitudinal modes of dipolar
polarization [64] characterized by the dielectric modulus
ǫ(ω)−1, where ǫ(ω) is the complex, frequency-dependent
dielectric constant of the protein-water mixture. The
dielectric response function χE(ω) establishes the reac-
tion field of the dielectric medium in response to a probe
dipole placed at the position of the heme iron. It scales as
the inverse cube of the characteristic size d of the heme.
The loss function χ′′

E(ω) can therefore be written in the
form

χ′′

E(ω) =
1

d3
ǫ′′(ω)

|ǫ(ω)|2
. (17)

Assuming the Debye form for ǫ(ω) = ǫ∞+(ǫs− ǫ∞)/(1−
iτDω) one gets

βz2χ′′

E(ω) =
1

δ2
ωτL

1 + (ωτL)2
, (18)

where δ, δ−2 = βz2c0/d
3 is a length parameter and c0 =

ǫ−1
∞

− ǫ−1
s is the Pekar factor [65]. In addition, τL =

(ǫ∞/ǫs)τD is the longitudinal dielectric time and τD is
the Debye relaxation time [66]; ǫ∞ and ǫs are the high-
frequency and static dielectric constants, respectively.
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FIG. 3. Dielectric longitudinal relaxation time τL(T ) =
(ǫ∞/ǫs)τD(T ) obtained from Debye relaxation times τD(T )
reported in the literature [22, 68, 69] with the protein hy-
dration levels indicated in the legend. The results from Ref.
22 refer to myoglobin confined in PVA, results from Ref. 31
are for metmyoglobin crystals, and Refs. 68 and 69 refer to
metmyoglobin powders. The solid line shows relaxation time
τE(T )/s = 3.2× 10−13 exp[3000 K/T ] of the reaction field re-
sponse function χE(ω) [with τL replaced with τE in Eq. (18)]
used to fit the experimental msd [7] shown by closed points
in Fig. 1. The closed circle shows τE(300 K) from MD simu-
lations of hydrated metmyoglobin.

Dielectric properties of partially hydrated proteins
have not been well characterized since the results are
strongly affected by both the sample preparation and the
hydration level. Even dielectric relaxation times mea-
sured on samples of close hydration level are rather in-
consistent. This point is illustrated in Fig. 3 where the
results for partially hydrated myoglobin powders of hy-
dration level h = 0.3−0.5 (in g of water per g of protein)
have been assembled [22, 67–69]. We also show measure-
ments done on myoglobin crystals [31] for the sake of
comparison. Multiple relaxation processes are common
for such measurements, and the fastest relaxation, com-
monly attributed to the hydration shell [30, 68], is shown
in Fig. 3.

Even if we could firmly establish the proper relaxation
time for the the sample dipole moment, this would not
necessarily give us the relaxation time of the reaction
field correlation function χ′′

E(ω), which is in principle
accessible experimentally from the Stokes shift dynam-
ics [70]. Because of the linear scaling of the dipole mo-
ment variance with the number of dipoles, dielectric mea-
surements emphasize the effect of outer solvation shells,
while χ′′

E(ω) is dominated by waters closest to the probe
dipole (heme’s iron). This response function thus weighs
medium modes into the overall response differently from
the dielectric signal [71, 72]. In view of these uncertain-
ties, we have constructed the temperature-dependent re-
laxation time τE(T )/s = 3.2×10−13 exp[3000 K/T ] (solid
line in Fig. 3) which replaces τL(T ) in Eq. (18). This re-
laxation time and δ = 0.12 Å are used in the calculation
shown in Fig. 1.

The relaxation time τE(T ) used in the fitting is gener-
ally consistent with τL(T ) from dielectric measurements

and, in addition, the Arrhenius slope of τE(T ) matches
our simulations of the protein Stokes-shift dynamics at
elevated temperatures [73]. The same activation energy
of ≃ 3000 K was used in Doster’s analysis [19]. More de-
tailed calculations might require replacing one-relaxation
Debye dynamics in Eq. (18) with dispersive dynamics
characterized by a distribution of relaxation times, as
suggested by the NMR experiment [74].
Substituting Eq. (18) into Eq. (14) one gets for the

vibrations softening factor

ME = 1− 〈(δx)2〉el/(πδ
2) cot−1 [ωobsτE ] . (19)

This relation is clearly distinct from other instrumental
resolution functions previously suggested in the litera-
ture [19, 62]. This function is then used in Eq. (11)
to scale the elastic msd 〈(δx)2〉el. The result is shown
by the solid line in Fig. 1. This calculation thus incor-
porates all three components of the model: (i) normal
mode vibrations, (ii) viscoelastic shape deformation, and
(iii) local softening of the displacements of charge z. In
contrast, the calculation neglecting the viscoelastic com-
ponent 〈(δQ)2〉> is shown by the bold dashed line in Fig.
1.

C. Comparison to MD simulations

The function βz2χ′′

E(ω) required to fit the experimen-
tal msd [Eq. (18)] is shown by the dashed line in Figure
4 and compared to the same function obtained from MD
simulation of the fully hydrated metmyoglobin [61] (solid
line marked as “P+W” in Fig. 4). The height of the max-
imum quantifies the variance of electric field fluctuations
at the iron atom, and it is clearly not overestimated in
our fit of the experimental msd. Further, the relaxation
time of 6.3 ns of the essentially Debye overall function
χ′′

E(ω) is close to τE(300 K) ≃ 7 ns in Eq. (18) adopted
in the fitting of the experimental msd (closed circle and
solid line in Fig. 3). There is therefore a good match
between the response function produced by fitting the
experimental data and the one obtained directly from
MD simulations.
It turns out that protein charges alone can produce

fluctuations of the electric field sufficient to reproduce
the observed high temperature excess of the iron msd
(cf. the lines marked as “P” and “F” in Fig. 4). It
is therefore quite possible that the primary role of wa-
ter in partially hydrated powders is to ionize the surface
residues of the protein and plasticize its motions above
Tg (Fig. 2). Water in patches solvating ionized residues is
strongly coupled to the protein both electrostatically and
by surface hydrogen bonds [75]. The fluctuations of the
water dipoles could be reduced to motions of domains
formed around ionized surface residues and pushed by
low-frequency protein motions. Fast water subsystem fol-
lows essentially adiabatically protein’s motions [76] and
their relaxation times are therefore close to each other
(Fig. 4). The experimentally observed match between
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FIG. 4. The loss function βz2χ′′

E(ω) obtained from the fitting
of the experimental msd to Eqs. (10), (14), and (18) (marked
as “F”) and from direct MD simulations of the electric field
acting on the iron of metmyoglobin. The plot shows the result
for the overall electric field produced by protein and water
(“P+W”) and by protein (“P”) and water (“W”) separately.
The simulation trajectories of 45 ns long, 35 ns of which were
used for collecting the correlation functions, were obtained for
metmyoglobin solvated by ≃ 32000 waters at T = 300 K [61].

temperatures of dynamical transition of the water and
protein components [15–17] then gains a natural expla-
nation in this picture.
The collective dynamics of the electrostatic fluctua-

tions, in the range of nanoseconds, are slow compared
to the sub-picosecond one-particle dynamics [76] even at
the room temperature. The electric field dynamics are
slow also in comparison with the collective dynamics of
the overall dipole of the sample typically reported by
dielectric spectroscopy (τE ≃ 6 ns vs τD ≃ 5 ps from
MD simulations at 300 K). One therefore does not need
a super-Arrhenius temperature dependence of the relax-
ation time to connect the sub-picosecond single-molecule
dynamics at room temperature to the instrumental reso-
lution window ≃ 140 ns near Tg ≃ 180 K, as is required
by models based on water translations to drive the transi-
tion [28, 29, 62]. An Arrhenius temperature dependence
with a relatively gentle slope of ∼ 3000 K is sufficient to
achieve the kinetic arrest at Tg.

IV. DISCUSSION

The picture presented here assigns an increase in the
protein msd at the dynamical transition to the entrance
of a collective relaxation time of the protein-water in-
terface into the observation window of the spectrometer
[22, 30, 77]. We consider two types of interfacial fluc-
tuations, elastic modes changing the global shape of the
protein and electrostatic fluctuations. Electrostatics turn
out to be the main factor affecting the high-temperature
portion of the msd.
The relaxation time of the electric field fluctuations,

τE(T ), determines the transition temperature by the con-
dition ωobsτE(Td) ≃ 1. With the Arrhenius form for

100 150 200 250
T (K)

0

0.04

0.08

0.12

0.16

(e
V

2 )

FIG. 5. Variance of the water’s electrostatic potential at the
active site, ∆q2〈(δφ)2〉 of the protein plastocyanin from MD
simulations (circles) [79]. Diamonds show the difference of
water potentials in equilibrium with the active site carrying
charges q1 and q2, β

−1∆q(〈φ〉1−〈φ〉2), ∆q = q2−q1. This lat-
ter quantity is sensitive to high-frequency ballistic modes of
the hydration water, but not to collective fluctuations of the
shell dipole [80]. The two calculations coincide in the linear
response approximation, which is valid at low temperatures,
below Td. Linear response breaks down when the collective
mode of water’s dipolar polarization enters the observation
window fixed by the length of the simulation trajectory. The
spike at ≃ 220 K in the potential variance carries signatures
of a weak first-order transition, but its origin is currently un-
clear.

τE(T ), this condition predicts a logarithmic dependence
of Td on the observation frequency,

Td ∝ |ln[ωobsτ0]|
−1

, (20)

where τ0 is the preexponent in τE(T ). For instance, with
the observation window of neutron scattering of ≃ 500
ps and of Mössbauer spectroscopy of 140 ns, the above
equation yields 1.4 for the ratio of Td values measured by
neutron and Mössbauer techniques (τ0 = 10−13 s). This
estimate assumes equal electrostatic relaxation times for
(mostly surface) protons and the heme iron, which is
likely not true. The actual picture is also more complex
as several slope changes contribute to the overall tem-
perature dependence of the msd [78]. It is also the case
with the present model producing two different onsets
arising from viscoelastic and electrostatic fluctuations:
the viscoelastic onset falls in the common range of glass-
transition temperatures, Tg ≃ 180±15 K, while the elec-
trostatic onset is in the range assigned to Td ≃ 200− 240
K.
An increase in Td was also reported for proteins sol-

vated in glycerol and in concentrated sucrose-water so-
lutions [18]. Although an increase in viscosity does shift
Td in the right direction according to Eq. (20), the al-
teration of the effective polarity of the hydration layer
and the surface charge distribution of the protein might
be other factors contributing to the shift. Generally, the
present model predicts a decrease in the protein atomic
displacements for hydration in solvents of lower polarity.
The main physical question looming behind the phe-

nomenon of the dynamical transition is what are the
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mechanisms and physical modes allowing high atomic
msd of proteins at physiological temperatures. We em-
phasize here electrostatic fluctuations as the primary
origin of the increase in the protein’s atomic displace-
ments. This mechanism connects the translational man-
ifold of the protein’s interior to the fluctuations of the
more mobile protein-water interface. While this connec-
tion was established empirically by experiment [22] [Eq.
(1)], numerical simulations directly show the same basic
phenomenology for the electrostatic fluctuations and the
atomic msd.
Figure 5 shows the results of numerical simulations for

the variance of the electrostatic potential produced by
the water hydration shell at the active site of the protein
plastocyanin [79]. A break in the temperature depen-
dence at Td refers to the time-scale of ≃ 10 ns fixed by
the length of the simulation trajectory. The difference of
the first moments of the potential in the two redox states
of the protein (diamonds in Fig. 5) gives the component
of the same property produced by ballistic dynamics of
the hydration shell and not sensitive to its collective re-
laxation [80]. In a sense, the diamonds in Fig. 5 are
analogs to the diamonds in Fig. 1 referring to the vi-
brational component of the msd [7]. There is a clear
qualitative similarity between laboratory and numerical
results presented in Figs. 1 and 5.

Because the response function of the water’s electric
field scales as d−3 with the distance d from the surface
inside the protein, interfacial fluctuations will mostly af-
fect protein’s surface residues. The vibrations of the sur-
face protons will therefore be softer than of interior pro-
tons [29], and they will stronger contribute to the msd
recorded by neutron scattering. There is also a possi-
bility of “surface melting” when ME = 0 in Eq. (10) is
reached with rising temperature for a group of atoms.
The low-temperature conformation of the corresponding
residues will become unstable, with instability released
through a conformational transition.

The present model makes several testable predictions.
First, the softening of atomic displacements due to the
parameter ME in Eqs. (10) and (14) scales with the
squared charge of the atom. In case of heme iron this im-
plies higher msd for a protein in the oxidized state com-

pared to the reduced state. This prediction qualitatively
agrees with experiment [81, 82]. One can additionally
envision several charge configurations affecting the over-
all value of the electric field variance at the position of
iron. Since electric field is nearly a Gaussian variable, the
variance is expected to be simply connected to the aver-
age magnitude,

√

〈(δE)2〉 = (3π/8)1/2〈E〉. The latter is
generally a sum of the water (w) and protein (p) fields,
〈E〉 = 〈|Ew + Ep|〉. The two components can superpose
constructively, as in the case of metmyoglobin (Fig. 4),
or destructively. Given that iron is positively charged
and the overall charge of metmyoglobin at pH= 7 is −2,
the destructive superposition of the protein and water
electric fields might be achieved for a positively charged
myoglobin. In that case, a lower overall field will lead
to lower high temperature excess of the msd, a proposal
directly accessible to experimental testing.

V. CONCLUSIONS

The model proposed here treats high-temperature
atomic displacements of the protein as a combination of
viscoelastic deformation of the global protein shape and
electrostatic fluctuations coupled to the atomic charge.
We suggest that electrostatic fluctuations dominate the
high-temperature excess of protein’s atomic displace-
ments.
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