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I. INTRODUCTION

Lipid bilayer membrane fusion process is an important cellular mechanism which plays a critical role in many
biological process such as exocytosis, endocytosis and pathogen entry into host cells [1–3]. It is generally viewed to
comprise three fundamental states: pre-fusion, hemi-fusion and post-fusion [3, 4].
There have been many past works devoted to the study of the cellular mechanisms which may induce the fusion

process. For instance, the hemi-fusion structures, which represent intermediate states of the fusion process, have been
confirmed by electrophysiological measurements [5, 6]. Conditions leading to a fusion process have been examined in
[7–9]. Additionally, theoretical studies have been aimed at modeling fusion processes and detecting the key factors
contributing to the membrane fusion. In particular, a popular continuum approach based on the elasticity of lipid
bilayer membranes has been given by the stalk model [10–14], which focuses on energetic comparisons between post-
fusion and pre-fusion states and determines the conditions under which the post-fusion state is energetically more
favorable than the pre-fusion station, and consequently membranes tend to fuse. There have also been various
computational approaches, like Monte Carlo simulations [15], Brownian dynamics simulations [16, 17] and dissipative
particle dynamics [18, 19], which have been applied to model the fusion process as well.
In this study, our starting point is the Helfrich type bending elasticity model for multi-component vesicles. We take

surface area and volume conservations into consideration. Motivated by recent works [20, 21], we also incorporate
the adhesion effect and the contributions of Gaussian curvature into the continuum model. As our first attempt, we
mainly consider the two equilibrium states before and after the fusion process, namely, the pre-fusion state in which
two closely apposed vesicles undergo adhesive interactions and result in the shape deformations, and the post-fusion
state in which the merger of vesicles results into a larger two-component vesicle.
We note that, different from the stalk models that mainly are confined to the localized close-contact region of the

two apposed vesicles, our approach allows us to study the energetic contributions from a number of possible sources
and from all parts of the vesicles. Many of the factors under consideration here have not been incorporated by the
stalk model but they are important to the fusion process. For example, it has been suggested that adhesion might
play an important role in facilitating the membrane fusion process [1, 22]. As two apposed vesicle membranes get
close, they may adhere and eventually fuse into a larger one. Such an adhesion-induced fusion process has been
observed for vesicles attracted by a gold surface and for lecithin membranes at the air-water interface [22]. The roles
played by the adhesion on the membrane fusion process should thus be more closely studied. Similarly, due to the
topological change from pre-fusion to post-fusion, the energetic contribution of the Gaussian curvature could also be
an important factor enhancing the vesicle fusion, as suggested in [20, 22].
Based on a diffuse interface formulation of our continuum model, we demonstrate that various possible equilibrium

configurations associated with the multi-component vesicle fusion process, in particular the pre-fusion and post-fusion
states, can be constructed. The interplay of adhesion potential, bending and Gaussian rigidities on the vesicle fusion
can be examined through the energy comparisons of the equilibrium configurations. The contrast of bending rigidities
of the separated vesicles can also be considered as the fusion process could involve vesicles with possibly different
compositions.

II. ENERGY CONTRIBUTIONS TO THE PRE-FUSION AND POST-FUSION STATES

In this section, we describe the modeling of the pre-fusion and post-fusion states, and then put our focus on their
axisymmetric case.

A. Pre-fusion

Pre-fusion is a state where two apposed vesicle membranes are in close contact with each other due to the adhesive
interaction. Let us denote the two vesicle membranes in the pre-fused state by two surfaces Γ1 and Γ2. The equilibrium
shapes of the two pre-fused vesicles are determined by minimizing a total energy comprising the elastic bending energy
of the vesicles and the adhesion energy between them. The elastic bending energies of Γi, i = 1, 2, introduced by
Helfrich [23], are of form:

Epre
b,i =

∫

Γi

(
κi

H
(H − ai)2 + κi

G
K
)
dx , i = 1, 2. (1)

where H = (k1+k2)/2 and K = k1 ·k2 are the mean and Gaussian curvatures of Γi with k1, k2 being the two principal
curvatures. {κi

H
}2i=1 and {κi

G
}2i=1 are the mean curvature bending moduli and the Gaussian curvature bending moduli
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respectively and {ai}2i=1 are the spontaneous curvatures. The adhesion energy between the two vesicles is given by
the following double integral:

Epre
a =

∫

Γ1

∫

Γ2

W
(
|x1 − x2|

)
dx2 dx1, (2)

where the scalar-valued function W presents the adhesion potential which is taken as a function of the distance
|x1 − x2| between the two points {xi ∈ Γi}2i=1 on different vesicles. One typical choice for W , which is adopted in
this paper, is of the Leonard-Jones form:

W (|x1 − x2|)

=− 4w

[(
β

|x1 − x2|

)α

−
(

β

|x1 − x2|

)α/2]
, (3)

where w measures the strength of the adhesive interaction between Γ1 and Γ2. The constant β and the exponent α
determine the thickness of the repulsive region and the rate of change of the adhesion potential, respectively.
Combining all the contributions to the total energy together, the equilibrium shapes of the two interactive vesicle

membranes in the pre-fusion state, is given by the minimum of

Epre = Epre
b,1 + Epre

b,2 − Epre
a . (4)

The enclosed volume and total area of each individual vesicle membrane are assumed to be constants. Thus the
following constraints must hold:

∫

Γi

dx = Ai,

∫

Ωi

dV = Vi i = 1, 2. (5)

where {Ωi}2i=1 represent the interior enclosed domains by {Γi}2i=1.

B. Post-fusion: a diffuse interface formulation

Post-fusion is the state where two pre-fused vesicle membranes Γ1,Γ2 merge together and fuse into a two-component
vesicle Γ of a larger size. Symbolically, one has

Γ = Γ1 ∪ Γ2,

with the individual surface areas being preserved and the total volume being the sum of two individual volumes from
pre-fusion.
To simplify our discussion, we assume that the Gaussian bending moduli κ1

G
= κ2

G
, both of which are equal to the

Gaussian bending moduli κ
G
of the fused vesicle. By the Gauss-bonnet formula, in the pre-fused state, the Gaussian

curvature term makes a contribution which is constantly equal to 2πκ
G
· χpre, while in the fused state, the Gaussian

energy is constantly equal to 2πκ
G
· χpost. Here χ represents the Euler number which is uniquely determined by the

topology of the membrane shape.
Since the post-fusion state presents a two-component vesicle membrane with potentially different bending moduli

and spontaneous curvatures on different components, it is effective to describe the membrane surface with a phase
field labeling function η = η(x) and reformulate the energy using a diffuse interface description.
More precisely, a phase field function η is introduced over the fused membrane Γ to distinguish the two components

Γ1 and Γ2. In the Γ1 phase, η is specified to be nearly +1 (and colored as solid blue in the graphical depictions); in
the Γ2 phase, η is assigned to be nearly −1 and colored as dashed red (see Figure 1). In the interfacial region between
the two phases, η makes a rapid but smooth transition. The total energy in terms of the phase field function η is
given by

Epost(η) =

∫

Γ

κ
H
(η)

[
H − a(η)

]2
dx+ 2πκ

G
χ

Γ

+ σ

∫

Γ

[
ξ

2

∣∣∇Γη
∣∣2 +Φ(η)

]
dx

−
∫

Γ

∫

Γ

W
(
|x1 − x2|

)
G(x1,x2) dx1 dx2, (6)
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where κ
H
(η) can be viewed as an inhomogeneous bending moduli, a(η) is an inhomogeneous spontaneous curvature

and ξ controls the interfacial width. In this paper, we simply take κ
H

to be a linear function of η:

κ
H
(η) = κ0(1 + c

H
η), a(η) = a0(1 + a

H
η). (7)

The first term in (6) is effectively the diffuse interface description for elastic bending energy. When x is away from
the interfacial region, η approximately takes the value of ±1 and

κ
H
(+1) ≈ κ1

H
, κ

H
(−1) = κ2

H
; a(+1) ≈ a1, a(−1) ≈ a2.

The third term in (6) is a diffuse interface approximation of line tension energy where a double well potential function

Φ(η) =
1

4ξ
(η2 − 1)2 (8)

is incorporated. The function G(x1,x2) in the last term is of form

G(x1,x2) =
1

2

∣∣∣∣
η(x1)− η(x2)

2

∣∣∣∣
2

, (9)

which implies that, only when x1,x2 are in different phases, the function G(x1,x2) takes a nonzero value. In other
words, the adhesive interaction only occurs between the two different phases. To avoid treating the singularity at
x1 = x2, we replace the term |x1 − x2| of (6) by

√
|x1 − x2|2 + ǫ in the actual numerical experiments with ǫ being a

sufficiently small positive regularization constant (which is taken as 0.02 in the numerical results reported in the next
section). The surface area and volume constraints are given by

∫

Γ

dx = A1 +A2,

∫

Γ

η(x)dx = A1 −A2,

∫

Ω

dV = V1 +V2, (10)

where Ω is the entire enclosed interior domain of Γ.
Similarly as in [21], a matched asymptotic expansion can be carried out to show that the phase field function

η approaches to a tanh profile of the distance function as the interfacial width ξ goes to zero. Consequently, the
last integral of (6) and the integral (2) differ by only an o(ξ) term. Additionally, as ξ approaches 0, the first two
constraints in (10) implies area conservation in (5). All these analyses substantiate the convergence of the diffuse
interface formulation to the sharp interface description of two-component vesicle membranes. For more works related
to the diffuse interface models for two-component vesicles, we refer to [24–34] and the additional references given in
[35]. The newly introduced adhesion terms does not lead to any extra difficulty in the asymptotic analysis, but does
present additional complications in the numerical simulation of full 3D vesicles. We thus study the axisymmetric
setting first.

C. The axisymmetric setting

In the following, we consider the axisymmetric case where our model can be further simplified to facilitate numerical
calculations. Figure 1 schematically presents the pre-fusion and post-fusion states of two vesicles labeled by solid blue
and dashed red colors.
In the pre-fusion state, the two vesicle membranes are represented by rotating two curves

l1 =
(
r1(s1), z1(s1)

)
, l2 =

(
r2(s2), z2(s2)

)
(11)

which in figure 1 are represented by the blue and red curves on the left. Both curves are parameterized by arc-length.
Then the total energy (4) reduces into

Epre =2π

∫ ŝ1

0

κ1
H
(H − a1)2 r1ds1

+ 2π

∫ ŝ2

0

κ2
H
(H − a2)2 r2ds2

+ 8πκ
G
− Epre

a . (12)
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s2 = ŝ2
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FIG. 1. (Color online) Schematic diagrams of axisymmetric case for the pre-fusion and post-fusion states. The left one shows
a pre-fusion state with blue and red color indicating the vesicles with higher and lower bending moduli. The right one shows
a post-fusion state with blue and red color indicating the different phases originating from vesicles in pre-fusion state. The
curves are parameterized by arc-length where s = s∗ specifies the phase boundary. θ is the angle of rotation.

The adhesion energy between the two axisymmetric separated vesicles should be

Epre
a = 2π

∫ ŝ1

0

[∫ ŝ2

0

∫ 2π

0

W (dis) rdθds2

]
rds1,

where θ represents the angle of rotation, and dis = |x1 − x2|. To simplify our model and the numerical calculation,
we drop the effect of the rotation and only consider the adhesive interaction between the two generating curve l1, l2,
so that a simpler expression reads

Epre
a = 2π

∫ ŝ1

0

[ ∫ ŝ2

0

W (dis) rds2

]
rds1. (13)

The constraints (5) become

R2
1 · (cosT1)

′ = −r1, R2
2 · (cosT2)

′ = −r2, (14)

where Ri are the linear size of vesicle Γi defined by

4πR2
i = Ai for i = 1, 2 , (15)

and

π

∫ ŝ1

0

r21z
′
1ds1 = V1, π

∫ ŝ2

0

r22z
′
2ds2 = V2. (16)

One can derive from (12) through (16) the Euler-Lagrange equations which determine the equilibrium shapes of the
two vesicle membranes in the pre-fusion state and obtain:

H̃ ′′
1 +

r′1H̃
′
1

r1
+2H1(H

2
1 −K1)

−2(µ1H1 + p1)−
δEpre

a

δn1

= 0, in Γ1

H̃ ′′
2 +

r′2H̃
′
2

r2
+2H2(H

2
2 −K2)

−2(µ2H2 + p2)−
δEpre

a

δn2

= 0, in Γ2 (17)

where H̃i = κi
H
(Hi − ai), n1 and n2 are the out normals of Γ1 and Γ2 respectively, and the variations δEu

a /δn1 and
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δEu
a /δn2 are explicitly expressed as:

δEpre
a

δn1

=− sinφ1

∫ ŝ2

0

d(W)

d(dis)

r1 − r2
dis

r2ds2

+ cosφ1

∫ ŝ2

0

d(W)

d(dis)

z1 − z2
dis

r2ds2

− 2H1

∫ ŝ2

0

W(dis) r2ds2 ,

δEpre
a

δn2

=− sinφ2

∫ ŝ1

0

d(W)

d(dis)

r2 − r1
dis

r1ds1

− cosφ2

∫ ŝ1

0

d(W)

d(dis)

z2 − z1
dis

r1ds1

− 2H2

∫ ŝ1

0

W(dis) r1ds1 . (18)

The constants µi, pi, i = 1, 2 are the Lagrange multipliers associated with the area and volume constraints (14-16).

In the post-fusion state, the two axisymmetric vesicles merge into a single axisymmetric vesicle determined by
rotating a curve

l = (r(s), z(s)) (19)

which, in figure 1, is the curve on the right and is parameterized by the arc-length. Then the total energy (6) reduces
into

Epost(η) =2π

∫ ŝ

0

κ
H
(η)

[
H − a(η)

]2
rds+ 4πκ

G

+ 2πσ

∫ ŝ

0

[
ξ

2
η′2 +Φ(η)

]
r ds− Epost

a (20)

with

Epost
a =

∫ ŝ

0

[∫ ŝ

0

W (dis) ·G(s1, s2)r(s2)ds2

]
r(s1)ds1.

Notice that the fused vesicle Γ is made up by Γ1 and Γ2, so the linear size R of Γ should satisfy

R2 = R2
1 +R2

2.

And the constraints (10) are replaced by

(cosT )′ = −r, π

∫ ŝ

0

r2z′ds = V, (21)

and

2π

∫ ŝ

0

η ds = 4π(R2
1 −R2

2). (22)

The equilibrium shapes of the fused vesicle membranes satisfy the Euler-Lagrange equations:

H̃ ′′ +
r′H̃ ′

r
+ 2H(H2 −K)− 2(µH + p+ τηH)

+ σξη′2φ′ − 2σH
[ξ
2
η′2 +Φ(η)

]
− δEpost

a

δn
= 0

c
H
H2 + σ

[
− ξ

(
η′′ +

r′η′

r

)
+

dΦ

dη

]
+ τ − δEpost

a

δη
= 0 (23)
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FIG. 2. (Color online) The pre-fusion and post-fusion equilibrium states between two almost round vesicles. The line tension
constant σ in the post-fusion state is set to be 0.5, and adhesion strength w between blue and red phases equals 2.

with H̃ = κ
H
(η)

[
H − a(η)

]
, and the variations of Epost

a explicitly expressed as

δEpost
a

δn
=− sinφ

∫ ŝ

0

∂W

∂
[
r(s) − r(s2)

] · G̃(s, s2) r(s2)ds2

+ cosφ

∫ ŝ

0

∂W

∂
[
z(s)− z(s2)

] · G̃(s, s2) r(s2)ds2

− 2H

∫ π

0

W · G̃(s, s2) r(s2)ds2 (24)

δEpost
a

δη
=

∫ ŝ

0

W · η(s)− η(s2)

2
r(s2)ds2 (25)

with G̃(s, t) = G(s, t)+G(t, s). The constants µ, p, τ are the Lagrange multipliers associated with constraints (21-22).

III. NUMERICAL EXPERIMENTS

To solve the Euler-Lagrange equations, we use the MATLAB solver BVP4C which is designed for solving the
boundary value problems. The interfacial width ξ is taken as ξ = 0.1, 0.05, 0.02, 0.01 to test the numerical convergence.
As ξ becomes smaller, it is numerically observed that the diffuse interface tends to become sharper but the vesicle
configuration and the geometry of the individual phases remain intact (see [21] for similar testing examples in the
case of vesicle-substrate adhesions). Since the convergence of computed results in our numerical simulation has been
carefully tested, from here on, ξ = 0.05 is taken as a representative value for the rest of the paper.

In this section, we present a couple of possible configurations of pre-fusion and post-fusion states, and discuss the
diagrams of phase transition for various parameters.

A. Sphere + Sphere → Prolate

One of the most popular in-vitro experiments of membrane fusion [22, 36] is to consider the case where two nearly
round vesicles adhere and fuse into a prolate vesicle. This is examined in our first set of numerical experiments. Here
we begin with two apposed vesicle membranes in the pre-fusion state Γ1,Γ2 chosen as being almost spherical with
their linear sizes, defined in (15), being set to be equal to R1 = 1, R2 = 1.5. The volumes are taken as

V1 =
4

3
πR3

1 · V redu
1 , V2 =

4

3
πR3

2 · V redu
2

with the nondimensionlized reduced volumes

V redu
1 = V redu

2 = 0.98.



8

The total area the fused vesicle is A1 + A2 = 4π(R2
1 + R2

2) and the total volume of the fused vesicle is V = V1 + V2

so that its reduced volume becomes:

V redu =
R3

1 · V redu
1 +R3

2 · V redu
2(√

R2
1 +R2

2

)3
= 0.7318.

In figure 2, we present (on the left) a pre-fusion equilibrium of two vesicles with an adhesive interaction (adhesion
strength w = 2). It is obvious that these two vesicles deform due to adhesion, and their shapes become flat in the
close-contact region. On the right of figure 2, the post-fusion equilibrium for the same set of parameters is shown
where a larger prolate vesicle is formed as the two vesicles fuse (the line tension constant is σ = 0.5). The parameters
used are κ0 = 1, c

H
= 0, a0 = 0.

B. Oblate + Oblate → Oblate → Torus

To examine the geometric effects of the adhering vesicle, we next consider two apposed oblate vesicles instead of two
round ones. In this experiment, an interesting fact is revealed by our computation: after two oblate vesicles fuse into
a single oblate vesicle, adhesion may further induce the self-fusion into a two-component oblate vesicle, consequently
results into a toroidal shape.
In this case, two apposed vesicle membranes Γ1,Γ2 in the pre-fusion state are chosen as being oblate. The linear

sizes of the oblates are set to be equal to R1 = R2 = 1 with smaller reduced volumes V redu
1 = V redu

2 = 0.75. Due to

the volume conservation of the fusion process, the reduced volume of fused vesicle is V redu = 0.75/
√
2.

In figure 3, the top one presents the equilibrium of apposed two vesicle membranes interacting each other by
adhesion. We point out that this pre-fusion equilibrium is under axisymmetric setting. A more general nonsymmetric
sigmoid-contact equilibrium [37] might be energetically more favorable than the axisymmetric solution. The middle
one in figure 3 shows a post-fusion equilibrium where the biconcave membrane is almost in self-contact at the center
region. Furthermore, self-fusion could take place and result in an equilibrium state in the shape of a torus as shown
at the bottom of figure 3. The other parameter values used are κ0 = 1, c

H
= 0, a0 = 0.

C. Round+Oblate → Wrapping → Oblate

A recent paper [38] considers the adhesion between a rigid cylindrical particle and a soft fluid membrane tube (both
being infinitely long) which causes the wrapping-around of the particle by the membrane. This work motivates us
to conduct another experiment, in which the fusion between two vesicles is considered, one is round with a higher
bending rigidity (hard) and the other is an oblate with a lower bending rigidity (soft), and the contrast of the bending
rigidities is adjusted by the parameter c

H
.

For this case, a round vesicle of R1 = 1, V redu
1 = 0.99 and an oblate vesicle of R2 = 2, V redu

2 = 0.6449 are
adhered before the fusion occurs. Consequently a wrapping is formed in the pre-fusion state. After the fusion process

r

z

FIG. 3. (Color online) The pre-fusion and post-fusion equilibrium between two oblate vesicle membranes. Adhesion strength
w = 2, and the line tension σ = 0.5.
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FIG. 4. (Color online) The wrapping induced by adhesive interaction between a soft oblate and a hard, almost round vesicle.
κ0 = 1, c

H
= 0.05, 0.5, 0.8 from left to right, respectively.

r
z

r

z

FIG. 5. (Color online) The pre-fusion and post-fusion equilibrium states of the wrapping case for w=2. The line tension
constant σ = 0.5 in the post-fusion state, and κ0 = 1, a

H
= 0.5 yields κblue

H
/κred

H
= 3/1.

completes, the fused vesicle becomes an oblate with R =
√
R2

1 +R2
2 =

√
5 and V redu = 0.55. In figure 4, we can see

the wrapping effect between two vesicles induced by adhesive interaction. By changing the ratio of bending rigidities
of the two vesicles, we observe the wrapping phenomena similar as the findings in [38]. In figure 5, we show the pre-
fusion and post-fusion equilibrium of the two vesicles where κ0 = 1, c

H
= 0.5, namely, the ratio of bending rigidities of

the two vesicles κblue
H

/κred
H

= 3/1. Due to the combined effects of elastic bending, adhesion and line tension, the blue
phase (with a larger bending modulus) of the post-fusion equilibrium in figure 5 is nearly flat, while the red phase
(with a smaller bending modulus) curves dramatically.

D. Phase Transitions

To further study the vesicle fusion induced by adhesion, one interesting numerical experiment is to detect the role
in which adhesion strength w plays in the process of vesicle fusion. Here we consider the fusion between two almost
round vesicles as we did in subsection III A. All the other parameters are kept fixed. A simple relation determines
the w − κ

G
transition,

(Epost
b + Epost

l − Epost
a )− (Epre

b − Epre
a ) = 4πκ

G
. (26)

0 2 4
−0.32

−0.31

−0.3

−0.29

−0.28

w

κ G

Postfusion

Prefusion

0 0.2 0.4
−0.45

−0.4

−0.35

−0.3

−0.25

c
H

κ G

Postfusion

Prefusion

FIG. 6. Left: w − κ
G

diagram of phase transition from pre-fusion to post-fusion. Right: c
H

− κ
G

diagram of phase transition
from pre-fusion to post-fusion.
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FIG. 7. (Color online) Exocytosis, fusion and endocytosis equilibria from left to right. The spontaneous curvatures on two
separated membranes are a1 = 0.5, a2 = 0 with a0 = 0.25, a

H
= 1 in the fusion equilibria.

In figure 6, the w − κ
G

diagram of phase transition from pre-fusion to post-fusion is presented on the left. In the
similar manner, the c

H
−κ

G
diagram of phase transition from pre-fusion to post-fusion is shown on the right in figure

6. Above both transition curves, the post-fusion state is energetically more favorable than the pre-fusion state; while
below each curve, the pre-fusion equilibrium becomes more favorable energetically.

We can further simulate the exocytosis equilibrium, fusion and endocytosis equilibrium between a plasma membrane
and a vesicle with adhesive interaction. In this experiment, we take the linear size of the vesicle R1 = 1, and the
linear size of the plasma membrane R2 = 4 with reduced volumes V redu

1 = 0.98, V redu
2 = 0.9347. Then the linear

size of the fused membrane R =
√
17, and its reduced volume is computed as V redu = 0.8674. Figure 7 presents

equilibrium shapes in exocytosis, fusion and endocytosis with parameters given as above. The spontaneous curvatures
on two separated membranes are distinct with a1 = 0.5, a2 = 0. To compare which one of the three equilibrium states
is energetically more favorable, the diagram of Etotal versus a0 is shown in figure 8 where κ

G
= 0 is assumed. Two

energy transition points aL = 0.2328 and aR = 0.6602 are found. When a0 < aL, the fusion equilibrium has the lowest
energy among the three states; as aL < a0 < aR, the energy of the exocytosis is larger than that of the fusion state
and both of them are larger than the energy of endocytosis, i.e., in this region of a0, without having to overcome
any energy barrier, the vesicle originally being outside of the plasma membrane can be successfully fused with the
plasma membrane, and finally step into the plasma membrane by endocytosis; finally, if a0 > aR, the energetic order
changes and the energy decreases as the vesicles change from fusion to exocytosis then to endocytosis. The influence
of Gaussian modulus κ

G
on the transition points aL and aR is presented in figure 9. The three regions determined

by κ
G
− aL and κ

G
− aR are shown. For each of the regions, the three equilibrium states are ordered by their total

energies.
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FIG. 8. (Color online) Energy comparison between exocytosis, fusion and endocytosis equilibria where aL and aR are the two
transition points.
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FIG. 10. (Color online) Schematic of fusion process (A → D) by gradient flow dynamics. The figures (B → A) present the
gradient flow dynamics from two single-point-contact vesicles to pre-fusion state. The reverse process A → B describes the
process that extra work is done to push the pre-fused vesicles to make contact. The two vesicles in (B) are viewed as a single
vesicle in (C) after reparameterization, and the gradient flow dynamics (C → D) present the pore formation and the final
post-fusion equilibrium.

E. Dynamic Simulations

In addition to the study of equilibria, it is highly desirable to generalize our analysis and simulations to cover the
dynamic fusion process. In reality, the model studied in the present work cannot fully account for the whole fusion
process, especially the hemi-fusion state which is affected by many other important factors. The latter has remained
a very active area of research. In the present context, it is illuminative to conduct the dynamic simulations based on
the model given here to illustrate the transitions to the pre-fusion and post-fusion states. This allows us to estimate
the various energetic contributions to vesicle fusion process.
To be specific, we consider the following dynamic system:

dΓ

dt
= −δE

δΓ
(27)

where t is the time variable, Γ is the vesicle surface in pre-fusion or post-fusion state, and E = Epre or Epost is the
total energy of the system.
Figure (10) (A-D) schematically presents the gradient flow dynamics of fusion process. In this figure, two vesicles

are placed in the pre-fusion equilibrium. We postulate that due to adhesion and thermal fluctuations, there are two
main steps in the fusion process: namely, the energy barrier-crossing, and the transition to the post-fusion equilibrium.
In the first step (A → B), two vesicles in pre-fusion equilibrium are pulled together, due to adhesion and fluctuation
forces, to make contact at a single point. Since the energy of the vesicles in such a position is higher than the pre-fusion
and post-fusion equilibria, we describe this step through a time-reversal process, that is, we solve for the gradient
dynamics from the state B to A. After reparameterizing the two vesicles in contact and representing them as the
surface of a single vesicle, we then conduct the gradient flow dynamics (C → D) to reach the post-fusion equilibrium.
The two steps of such a gradient flow dynamics can be justified from the large deviation theory about rare events of
energy barrier crossing.
For illustrative purposes, two identical axisymmetric vesicles Γ1 and Γ2 with R1 = R2 = 1/

√
2, V redu

1 = V redu
2 = 0.99

are set initially to be in contact with each other. Due to the adhesion effect(w = 2), the gradient flow dynamics (27)
leads the vesicles to the pre-fusion equilibria. We may use the reverse process of this gradient flow dynamics to mimic
the first step of the fusion process. For the second step, the two contacting vesicles are re-parameterized using a single
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FIG. 11. (Color online) Fusion process by gradient flow dynamics. The energy barrier is in the single-point-contact state (A5)
and its reparameterization (B1), which corresponds to the hemi-fusion state. The values of parameters are κH = κG = 1, R1 =
R2 = 1/

√
2, V redu

1 = V redu

2 = 0.99, w = 2, σ = 2.

parameter in order to represent the instantaneous state prior to the pore formation. Figure (11) presents numerical
simulations of the gradient dynamics. The number under each profile is the corresponding total energy. The top
figure (A) presents the first step of the gradient flow where two vesicles in pre-fusion equilibria (A1) are making
contact to each other (A5). After reparameterizing the profile (A5), we reformulate the vesicles in contact as a single
vesicle which is given again in (B1). By following the gradient flow dynamics with the reparametrized profile, one
can observe the pore formation in (B2) with the pore size keeping increasing until the post-fusion equilibrium (B5)
is reached. We note that the dramatic drop in the total energy from (B1) to (B2) is mostly due to the sharp drop of
the Gaussian energy contribution.

Since the simple sharp interface approach adopted in this study lacks detailed description of the hemi-fusion state.
Therefore, the energy computed here for the initial in-contact state serves only as an estimation to the upper bound
of the actual energy barrier. It will be of much more interest to conduct more careful studies of the hemi-fusion state
and the energy barrier, some alternatives employing an implicit surface representations are discussed in the conclusion
section.

IV. CONCLUSION

In the current work, we have introduced and studied a continuum diffuse interface model for the lipid membrane
fusion process which incorporates the nonlocal adhesion effect and other energetic contributions. A phase transition
diagram with respect to adhesion strength, bending and Gaussian moduli, and the spontaneous curvature can be built
up systematically through numerical computations. In many in-vitro experiments of the membrane fusion [22, 36], it
has been most popular to examine the case where two round vesicles merge into a prolate one. Our study reveals that
there can be many other interesting equilibrium configurations of the pre-fusion and post-fusion states, suggesting
further theoretical and experimental investigations.

Our model can be extended in a number of directions. By adding one more phase field function to describe
membranes themselves [34], we may further examine the fusion intermediate or the hemi-fusion state which could
lead to more accurate information on the energy barriers between the pre-fusion and post-fusion states. We may
also introduce inhomogeneities into the energy functionals to model the effect of transmembrane proteins on the
fusion process more closely. Such works can allow a more quantitative comparison with the popular stalks model.
Additionally, while we have made preliminary studies of the gradient dynamics, there are a large variety of other
fusion dynamic processes which can also be examined.
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