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Three-dimensional phase-field simulations are employed to investigate rod-type eutectic growth
morphologies in confined geometry. Distinct solutions are found to depend on this confinement
effect, with the rod array basis vectors and their included angle (α) changing to accommodate the
geometrical constraint. Specific morphologies are observed, including rods of circular cross-section,
rods of distorted (elliptical) cross section, rods of “peanut-shaped” cross-section, and lamellar struc-
tures. The results show that for a fixed value of α > 10◦, the usual (hexagonal) arrays of circular
rods are stable in a broad range of spacings, with a transition to the peanut-shaped cross sectioned
rods occurring at large spacings (above 1.5 times the minimum undercooling spacing, λm), and the
advent of rod eliminations at low spacings. Furthermore, a transition from rod to lamellar structures
is observed for α < 10◦ for the phase fraction of 10.5% used in the present study.

PACS numbers: 64.70.D-, 81.30.Fb, 81.30.-t

I. INTRODUCTION

The potential for substantial gains in the physical and
mechanical properties of materials indicates the value
of realizing precise control over the various multiphase
structures that may arise directly from solidification of
an alloy melt. Of these, the periodic phase distributions
that evolve during the freezing of alloys exhibiting a melt-
ing minimum or eutectic point constitute the most im-
portant class of multiphase solidification morphologies.
In such alloys, the behavior of the relevant phase bound-
aries, combined with diffusive coupling at the multiphase
growth front, may yield a variety of characteristic eu-
tectic structures, such as regular rod and lamellar pat-
terns, irregular (faceted-nonfaceted) morphologies, nu-
merous more complex periodic patterns, and aperiodic
or chaotic multiphase structures [1–3]. Much of our
current understanding of eutectic growth morphologies
arises from experimental investigations and analytical
models, most notably the Jackson-Hunt (JH) analysis
and subsequent modifications [4, 5]. While phase-field
modeling has led to substantial advancement in the un-
derstanding of single-phase solidification dynamics, the
application of these methods to quantitative modeling
of eutectic solidification has only become possible in the
last few years [6–9]. Given these recent developments
in multiphase solidification modeling, it is now possible
to systematically probe the morphological dynamics in-
volved with eutectic growth to answer several important
outstanding questions which limit our ability to under-
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stand, predict, control, and ultimately create new growth
structures.

One way to influence the formation of solidification
microstructures is geometrical confinement. Indeed, nu-
merous experiments are carried out in thin-slab geometry
where the distance between specimen walls is compara-
ble to or even smaller than the characteristic spacing of
the microstructure. The effect of this confinement on
dendritic and cellular microstructures has been exten-
sively studied experimentally and numerically [10–23].
In contrast, little information is available on finite-size
effects on eutectic patterns [24–27], especially for rod
eutectics [28–30]. We have previously reported [28] on
the influence of geometrical confinement on the order-
ing of a rod-type eutectic array. The degree of confine-
ment can be quantified by the ratio of the sample thick-
ness, δ, to the characteristic spacing between rods, λ.
Our investigation, which involved directional solidifica-
tion of succinonitrile-camphor (SCN-DC) transparent eu-
tectic alloy in thin slab geometries of various thicknesses,
revealed two main points. First, there exists a specific
velocity at which a transition in array basis vectors is
observed in specimens that are thick enough to include
several rows of rods (that is, δ/λ between 2 and 10).
This transition amounts to a 30◦ rotation of the rod ar-
ray, which shifts from alignment of 1st nearest neighbors
to alignment of 2nd nearest neighbors with the slide wall.
This indicates a decisive influence of the geometrical con-
straint on the array geometry, despite the relatively large
thickness of the sample. Second, significant array distor-
tion is observed with decreasing slide thickness, which ul-
timately leads to a single-row morphology where δ/λ is on
the order of unity. In our analysis of these observations,
we assumed that the distortion is completely accommo-
dated by reordering of the array with no change in the
phase fractions or the shape of the individual rods, and
we used a simple geometrical model to describe the rod
arrangement as a function of slide thickness that yields
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excellent agreement with the experimental observations.
For the case of very thin slides, which we examine here,
such an assumption does not appear to be reasonable.
Indeed, as we shall show below, morphologies in thin
specimens vary between the two extreme limits of per-
fectly circular rods and completely lamellar structures,
with several distorted rod geometries in between.

In the work reported here, we employ a three-
dimensional phase-field model [6] for regular nonfaceted-
nonfaceted (nf-nf) eutectic solidification to probe the in-
fluence of geometrical constraint over the full range of
confinement (0◦ ≤ α ≤ 90◦) from the bulk case to the
limit of very thin samples. Specifically, we use simula-
tions to (i) map out the relevant steady-state morpho-
logical domains in terms of eutectic spacing and material
(i.e. slide) thickness, (ii) examine transitions in growth
morphologies and their relative stability, and (iii) investi-
gate the stability and evolution dynamics associated with
the important morphological attractors.

II. METHODS

A. Eutectic solidification

During eutectic solidification, the interface tempera-
ture of any growing phase (i = α, β), is given by the
generalized Gibbs-Thomson law,

T ∗i = TE −mi(C
∗ − CE)− Γiκ−

Vn
µi
, (1)

where TE is the eutectic temperature, mi is the liquidus
slope for phase i in the phase diagram, taken at the eu-
tectic point (with mα < 0 and mβ > 0), C∗ is the com-
position of the liquid at the interface, CE is the eutec-
tic composition, Γi is the Gibbs-Thomson coefficient for
phase i (Γi = γiLTE/Li, with γiL being the surface free
energy of the iL-interface, and Li the latent heat associ-
ated with the phase change), κ is the interface curvature
(in 3D, κ = 1/R1 + 1/R2, where R1 and R2 are the prin-
cipal radii of curvature), Vn is the normal velocity of the
interface, and µi is the interface mobility of phase i. Note
that we have neglected here any crystallographic effects,
so that the surface free energies and interface mobilities
are isotropic.

In the material frame, the temperature is given by

T (z) = TE +G(z − V t), (2)

which corresponds to directional solidification in constant
temperature gradient, G, with pulling speed, V . With Cα
and Cβ being the respective solidus compositions at the
eutectic temperature, we identify a characteristic com-
position range as ∆C0 = Cβ − Cα and the correspond-
ing characteristic temperature range for each phase as
∆T i0 = |mi|∆C0. The relevant physical length scales are
then given by

liT = ∆T i0/G, (3a)

di = Γi/∆T
i
0, (3b)

lD = D/V, (3c)

which are the thermal, capillary, and diffusion lengths,
respectively, where D is the solute diffusion coefficient in
the liquid.

In terms of the scaled concentration field

c =
C − CE
Cβ − Cα

, (4)

the sharp-interface formulation of the problem includes
the diffusion equation in the liquid,

∂c

∂t
= ∇ ·D∇c, (5)

and the standard mass balance condition at moving in-
terfaces is given by,

Vnci = −Dn̂ · ∇c|int, (6)

where ci are the scaled versions of Ci (i = α, β), n̂ is the
local interface unit normal pointing into the liquid, and
we have supposed in Eq. (6) that the composition differ-
ence between liquid and solid is independent of tempera-
ture and equal to its value at the eutectic point. Solving
Eq. (1) for C∗, defining βi = 1/µi∆T

i
0, and combining

the result with Eqs. (2), (3a) and (4), we express the
composition on the liquid side of the interface as

c∗i = ∓
(
z

liT
+ di0κ+ βiVn

)
. (7)

Since the surface free energies are isotropic, local equilib-
rium at the three-phase junctions implies Young’s law,∑

i 6=j

γij t̂ij = 0, (8)

where γij are the i− j surface tensions (i = α, β, L), and

t̂ij are the i − j interface unit tangent vectors, all taken
at the trijunction point.

B. Phase-field model

For our simulations, we use the model described in de-
tail in Ref. [6], and we will only give the most important
elements here. We use the multi-phase-field formalism
[37] and describe the interface geometry with a set of
three phase fields, pα, pβ , and pL, which represent the
local volume fraction of each phase such that

pα + pβ + pL = 1 (9)

everywhere. The evolution of these phase field is given
by

τ (p)
∂pi
∂t

= − δF

δpi

∣∣∣∣
pα+pβ+pL=1

, (10)
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where p represents the set of the three phase fields, and
τ(p) is the relaxation time of the phase fields. This func-
tion of p is constant and equal to τα on the α-liquid
interface, and constant and equal to τβ on the β-liquid
interface. The dimensionless free energy functional, F , is
given by

F =

∫
V

∑
i=α,β,L

[
W 2

2

∣∣∣~∇pi∣∣∣2 + p2i (1− pi)2
]

+ λ̃
∑
i=α,β

gi(p){Bi(T )− µci}. (11)

In this functional, the second term represents a triple-
well potential where each minimum corresponds to a pure
phase, and the third term ensures the coupling of the
phase field to the thermodynamic driving forces. Here,
Bi(T ) = ci(T−TE)/(mi∆C) represents the undercooling
of each solid phase with respect to the liquid, the gi(p)
are functions of all the three phase fields that tilt the
triple well potential, and µ is a dimensionless chemical
potential,

µ = c−
∑
i

cipi. (12)

The expressions for the functions gi as well as the com-
plete equations of motion that result from the evaluation
of the functional derivative in Eq. (10) are given in Ref.
[6]. The evolution equation for the chemical potential is

∂µ

∂t
= ~∇ ·

[
D (p) ~∇µ

]
−
∑
i

ci
∂pi
∂t

+
W

2
√

2
~∇ · n̂L

∑
α,β

ci
∂pi
∂t

(n̂i · n̂L) (13)

with D(p) = DpL, which corresponds to the one-sided
model (no diffusion in the solid). The last term in Eq.
(13) is added to the usual diffusion equation in order to
avoid spurious solute trapping, and is a generalization of
the antitrapping current for dilute alloys [31].

C. Simulation setup

Even though this model allows for quantitative simula-
tions of a large class of alloy solidification problems, the
computational resources required for a three-dimensional
simulation of SCN-DC solidification with the same pa-
rameters as in the experiments are currently out of reach.
Furthermore, we are interested in general questions re-
garding confinement rather than in a precise reproduc-
tion of specific experiments. Therefore, we use parame-
ters that are inspired by the phase diagram of SCN-DC,
but make several simplifications which increase the effi-
ciency of the simulations. First, the surface tensions of
all three interfaces are assumed to be equal, which yields

120◦ angles between interfaces at trijunctions. As a con-
sequence, the capillary lengths in the model satisfy the
relationship [6]

dα|cα| = dβ |cβ |. (14)

Second, the liquidus slopes are taken to be of equal mag-
nitude. Furthermore, the temperature gradient is taken
much larger than the typical experimental values. This is
legitimate since the temperature gradient does not have a
decisive influence on eutectic solidification patterns. Fi-
nally, the pulling velocity is also chosen to be larger than
the one in the experiments. However, as long as the
Péclet number, λ/lD, remains much smaller than unity,
the system obeys a scaling law [32] according to which the
velocity enters the problem only through the determina-
tion of the Jackson-Hunt minimum-undercooling spacing
λm, which varies as V −1/2.

It is known that for a given binary system, the deter-
mining parameter for the lamellae to rod transition is
the volume fraction of the minority phase [4, 9, 33]. We
have chosen the values of the concentrations Ci such as
to match the molar fractions of SCN-DC phase diagram
(Table 1). This yields a volume fraction of 10.5% of the
minority phase at TE . It should be noted, however, that
for the actual SCN-DC system, due to difference in molar
volume of the phases, this volume fraction is 18% [28].

The free parameters of the model are the interface
thickness, W , and the relaxation times, τα and τβ . An
asymptotic analysis in the thin-interface limit [6] gives
the following relationships with the relevant physical
quantities:

di = a1
W

λ̃ |ci|
(15a)

βi = a1

(
τi

|ci|λ̃W
− a2|ci|

(
W

D

))
, (15b)

where a1 = 2
√

2/3 and a2 = 0.7464.
Accurate results can be expected as long as W is kept

about one order of magnitude smaller than the rele-
vant length scales present in the physical system. Since
our interest is the small Péclet number regime, thermal
and diffusion lengths are much larger than the eutec-
tic spacing, λ, and the smallest relevant length scale is
the size of the minority phase. Therefore, for a given
velocity, we choose the interface thickness to be 1/10
of the diameter of a rod at the minimum undercooling
spacing. For V = 2.92µm/s, this value is calculated as
W = 7.07× 10−4mm. The relaxation times, τi are then
chosen to give vanishing kinetic undercooling at the solid-
liquid interfaces. From Eq. (15b), this condition requires

that τi = a2λ̃ |ci|2W 2/D, which yields τα = 2.4× 10−3s
and τβ = 3.3× 10−5s for the simulations presented here.
In the following, all lengths will be scaled by W , and all
times by τ̄ = (τα + τβ)/2. All dimensionless quantities
listed in Table I are scaled in this manner.



4

TABLE I: Material and Simulation Parameters

Parameter Value
Cα (mol %) 99.15
Cβ (mol %) 3.87
CE (mol %) 13.9
mα (K/mol%) -1
mβ (K/mol%) 1
∆x 0.8

D̃ 1.178

λ̃ 4.01

Ṽ 0.005
lαT 940.45

lβT 940.45

For all simulations, a rectangular simulation cell is
used, in which two quarter-rods are initially located in
two diagonal corners, as illustrated in Fig. 1. Reflection
boundary conditions (i.e. boundary-normal components
of all field gradients are fixed to be zero) are used on all
sides. Since the volume fraction is fixed and all simula-
tions are initialized with cylindrical rods, the geometry is
completely defined by the lateral dimensions, namely, the
thickness, δ, and width, w, of the simulation cell. Alter-
natively, we also use the cell diagonal λ =

√
w2 + δ2 and

the array angle α = atan(δ/w). The auxiliary parameter
d (rod diameter) is also shown in Fig. 1.

The simulation cell can actually represent several ex-
tended geometries, as illustrated in Fig. 2. On one hand,
a perfectly periodic triangular rod array of infinite size
exhibits two sets of orthogonal mirror symmetry planes
(on which all gradients vanish by symmetry) that run
through the center of each rod, and can therefore be re-
constructed by successive reflections of the simulation cell
(Fig. 2a). On the other hand, the walls of a thin sample
also impose a vanishing solute flux (and thus zero gra-
dient of the solute concentration field) at the boundary.
Under the assumption that the solid-liquid and solid-solid
interfaces make contact angles of 90◦ with the glass wall,
the reduced simulation cell can thus also represent thin
samples of various geometries, as sketched in Fig. 2b, and
2c. While this assumption is certainly not realistic, the
true contact angles are unknown, and we have restricted
our simulations to this case for simplicity.

Keeping the model parameters fixed, the variation of
the simulation domain dimensions enables the examina-
tion of various cell geometries. The eutectic front is ini-
tially placed within the temperature gradient at a loca-
tion that corresponds to a temperature below TE . Af-
ter a period during which the front position oscillates, it
stabilizes at a certain average temperature. Under the
constraints imposed by the fixed simulation cell dimen-
sions, the linear thermal field, the constant translation
velocity, and the reflective lateral boundaries, the phase
fields are permitted to evolve freely, and the system re-
sponse may involve changes in growth morphology, in-

terface temperature, phase fraction, and the uniformity
of these. In every case, we continue the simulation until
a time-independent structure is reached, and systemati-
cally map out the final morphologies as a function of the
geometry.

!
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FIG. 1: (Color online) Top and 3D view of the start-
ing simulation cell that contains two quarters of rods
located in two diagonal corners. z is the growth direc-
tion.

(a)

(b)

(c)

FIG. 2: (Color online) Exploiting the symmetries gen-
erated by the reflective boundary conditions in xy
plane, several extended geometries can be represented
by the simulation cell: a) infinite triangular rod ar-
ray, b) geometrically-confined array of half rods on the
walls, and c) one row of full rods with half rods on the
walls.

III. RESULTS

Our overall modeling results are summarized in Fig. 3,
where observed morphologies are mapped out in a graph
with axes λ and δ/λ. The motivation for this choice
is that λ actually represents the initial spacing between
rods, whereas δ/λ is related to the aspect ratio of the
simulation cell, which determines the distortion of the
rod array. Indeed, the points on a given horizontal line of
the graph correspond to states with the same angle, α, as
shown in the secondary y-axis. Here, only the simulations
with α ranging from 0◦ to 45◦ are examined for symmetry
reasons: due to the fact that we use identical boundary
conditions on all sides of the cell, simulations for α and
90◦ − α yield strictly identical results. In Fig. 3, the
circles present over the large central portion of the map
indicate that the basic triangular array of circular rods is
the stable configuration. In this region, the change in δ
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is accommodated by distortion of the rod array, observed
as a change in the array basis vector angle, α. This is
consistent with our previous experimental findings [28].

On the periphery of the map, other morphologies are
present. For small values of λ, an instability occurs that
leads to the elimination of one of the two rods that are
initially present (triangular symbols). In this case, there
is a set of corresponding extended geometries, analogous
to those in Fig. 2, but with an aligned (rectangular)
arrangement. This could represent (a) an infinite rect-
angular array (R array), (b) a finite set of aligned rods,
or (c) a single row of circular rods, located between two
walls. It should be noted that the final state actually
has only one quarter-rod within the simulation cell. Ex-
tended rectangular arrays would most likely be unstable
against further rod elimination or rearrangement of rods,
similarly to what is observed for rectangular arrays of
cellular growth morphologies [22, 23]. At small values of
δ/λ which corresponds to values of α < 10◦, a transi-
tion from rods to lamellae takes place, where the pattern
becomes effectively one-dimensional. On the border be-
tween the rod domain and the lamellar domain, there
is a small region where distorted (noncircular) rods are
observed. For Fig. 3, rods are defined to be distorted
when |rx − ry|/min(rx, ry) > 15%, where rx and ry are
the radii in x and y directions, respectively. Finally, in
the upper-right portion of the map, the stable growth
morphology consists of severely elongated rods with a
peanut-shaped cross section. These remain arranged in
a staggered array that could be described as a type of
broken-lamellar structure, consistent with the findings of
Ref. [9]. In the following, we will examine these steady-
state solutions and the transitions between them in more
detail.

The steady-state average front undercoolings are plot-
ted in Fig. 4 as a function of λ for rod morphologies at
three approximately constant values of α, (15◦, 30◦, and
45◦), indicated by the upper three dotted horizontal lines
in Fig. 3. The results for the lamellar structures are also
shown.

As shown in Fig. 4, the data can be well described by
the Jackson-Hunt theory,

∆T = KcλV +
Kr

λ
(16)

when the constants Kc and Kr are treated as free param-
eters. Their values, obtained from fits to the data, are
given for each curve. In the JH theory, these constants
arise from the averaging of the solutal and curvature un-
dercoolings along the growth front, respectively. It is in-
teresting to note that both constants, as well as the ratio
between them, vary with α, which indicates that the so-
lute diffusion field, the distribution of curvatures on the
interface, and the balance between their effects at the
eutectic operating point, are all significantly influenced
by the confinement. As a result of these variations, the
minimum undercooling spacing, λm, increases with de-
creasing α. This indicates that a complete description of

FIG. 3: (Color online) Overall map of the steady-state
morphologies, plotted in the δ − λ− α domain of initial
simulation conditions.

! Kc Kr 

45° 0.03328 0.931 
30° 0.03088 0.999 
15° 0.02492 1.290 

Lamellar 0.02334 1.625 

FIG. 4: (Color online) A summary of simulation re-
sults, showing dimensionless undercooling vs. spacing
for final steady-state structures of circular rods along
the lines α = 15 ± 0.3◦, 30 ± 1◦, 45◦, as shown in
Fig. 3. The simulation results that exhibited lamellar
final states are also shown. The JH coefficients for each
fitted curve is listed at the upper-right corner, where
λ2mV = Kr/Kc
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the system would require the determination of the surface
that gives ∆T as a function of λ and α. Furthermore, it
can be seen from Fig. 4 that for certain values of λ, the
variation of the undercooling with the angle (at a fixed
spacing) is non-monotonous, such that there will be a
specific α that gives the minimum undercooling for that
spacing. Such a correlation implies that, at a constant
undercooling, variations in local spacing may be accom-
panied by corresponding variations in α.

FIG. 5: (Color online) Simulated steady-state struc-
tures under the constraint of α = 45◦ (upper se-
quence) with λ values of 33.9, 101.8, 118.8, 135.8 and
α = 30±1◦ (lower sequence) with λ values of 32.2, 96.7,
129.0. These simulations correspond to specific points
plotted in Fig.3. The white boxes on the top left corner
of the images are the actual simulation cells.

FIG. 6: (Color online) A comparison of other mor-
phologies (empty symbols), including rectangular array
of circular rods (R array), and rods with peanut cross-
sections (Peanut), with triangular array of circular rods
(solid symbols), and lamellae (filled square symbols).
The curves are JH fits to circular rods and lamellae
data, which are shown in Fig. 4.

We now examine the morphological transitions ob-
served as we sample the map in Fig. 3 along a horizontal
line (i.e. keeping α roughly constant). Fig. 5 shows the
various morphologies that are found along the α = 45◦

and α = 30◦ lines. In both cases, the structure consists
of a triangular circular-rod array for intermediate val-
ues of λ with transitions to a rectangular array at low
λ and a staggered array of peanut-shaped rods at high
λ. The transition to the rectangular array corresponds
to an elimination of each second vertical (along y) row
of rods, which is one of the generic instabilities expected
in periodic patterns. The transitions from circular to
peanut-shaped rods can be rationalized with the help of
the undercooling plots in Fig. 6. Indeed, both for the
α = 45◦ and α = 30◦, the transition occurs close to the
intersection of the respective undercooling curves with
the lamellar solution, at approximately 1.6λm, also shown
in Fig. 6, which suggests that the peanut-shaped struc-
tures resembles broken lamellae. The steady-state solu-
tion branch always follows the lower of the two curves.

FIG. 7: (Color online) Effect of δ on steady-state mi-
crostructures, where the width (w = 112) of the sim-
ulation cell is kept constant. The starting λ, δ/λ, and
α values are (a) 112.64, 0.11, 6.12, (b) 113.14, 0.14,
8.13, (c) 113.77, 0.18, 10.12, (d) 116.48, 0.27, 15.95, (e)
118.93, 0.34, 19.65, (f) 123.48, 0.42, 24.90, (g) 129.00,
0.50, 29.74.

Next, we look more directly at the effect of specimen
thickness, δ, on the selected eutectic morphology. The
morphological transitions indicated in Fig. 3 are shown
in more detail in Fig. 7 for a constant width, w, reveal-
ing the rod to lamellae (3D-2D) transition for thin slides
and the transition to peanut-shaped rods for large thick-
nesses. Fig. 3 shows that the rod structure gives way to
a lamellar structure for δ/λ < 0.2, which corresponds to
an α value of approximately 10◦.

An important question is whether the observed mor-
phologies are dependent on the choice of the initial and
boundary conditions. Here, we have limited ourselves
to simulations carried out in the reduced simulation cell
shown in Fig. 1 that contains only two quarters of rods.
However, simulations carried out with the same model in
Ref. [9] with larger cells containing several rods (which,
thus, were not submitted to the same boundary condi-
tions) did not yield any other steady-state morphologies.
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FIG. 8: (Color online) Evolution dynamics for the tri-
angular to rectangular rod array transition for α = 45◦,
where the rectangular rod array emerges after some
transient time. The sequence of structures shows that
the decease in undercooling is associated with an in-
crease in spacing that arises from the disappearance of
alternating rods.

Therefore, we believe that we have correctly captured the
dependence of the final morphology on the initial posi-
tion of the rods which is controlled by the cell geometry.
It was also shown in Ref. [9] that for rods with higher
volume fraction than the one used here, two distinct fi-
nal states could be reached for the same parameters and
simulation box geometry by starting from two different
initial conditions. No such phenomenon is observed in
the present study.

Representative evolution dynamics for the triangular
to rectangular array transition are shown in Fig. 8, which
shows both the undercooling and the corresponding mor-
phologies as a function of time. As can be seen in Fig. 8,
the undercooling curve reaches a plateau at point “B”,
where the morphology is still the original staggered array,
just before the rapid transition to the final rectangular

array takes place. This indicates that the staggered ar-
ray is still a fixed point for the dynamics of the system,
but that this fixed point has become unstable. The un-
dercooling corresponding to this plateau, when plotted
in the ∆T versus λ plot, falls right on the corresponding
JH curves for α = 30◦ and α = 45◦ (the empty triangles
at higher ∆T values in Fig. 6). Quite surprisingly, the
undercoolings for the final steady-state morphology also
falls on the same curves when the characteristic spacing
is calculated as the mean value of horizontal and vertical
spacings in the rectangular array (λ = δ + w), although
the structure has changed from a triangular to a rectan-
gular array. This indicates that the determining parame-
ter for the JH curves is the aspect ratio of the simulation
cell which remains, of course, unchanged during the mor-
phological transition.

Finally, for a particular simulation with a starting
value of α = 16◦, we have observed two successive tran-
sitions, first from a triangular to a rectangular array (the
corresponding values of the undercooling are shown as
triagles pointing to the left in Fig. 6), and then to lamel-
lae. This indicates that, for a given phase fraction, the
transition from rods to lamellae occurs at larger values
of α for rectangular arrays, which is quite intuitive since
the diameter of the rods is larger in that state. More pre-
cisely, the occurrence of the rods to lamellae transition
depends on the ratio of d to δ.

The evolution from circular to peanut-shaped rods is
illustrated in Fig. 9, which shows the undercooling as
a function of time along with the corresponding mor-
phologies. The rods are initially circular (point “A”),
but with time they become elongated (point “B”), and
finally evolve to the peanut-shaped cross-sectioned struc-
ture (point “C”) which persists as the stable steady-state
structure. Note that the undercooling of the final struc-
ture is lower than the one of mildly elongated rods, de-
spite the large curvatures at the “tips” of the “peanuts”.

IV. SUMMARY AND PERSPECTIVES

We have reported here on a phase-field study of eutec-
tic growth, where simulations are employed to investigate
rod-type growth morphologies in constrained geometry.
We have characterized various steady-state patterns and
the conditions under which they can form, and examined
the dynamics of the transitions between them. Our most
important findings can be summarized as follows.

1. Confinement can trigger a transition from rods to
lamellae, even for growth conditions and alloy com-
positions where rods would be the preferred mor-
phology in extended systems.

2. A stability map of different morphologies involving
rods of circular cross section with triangular and
rectangular arrays, rods of peanut-shaped cross sec-
tion, and lamellae is obtained. At low spacings, a
rod elimination instability occurs that transforms
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FIG. 9: (Color online) Evolution dynamics of rod to
peanut transition with the corresponding morphologies.

the original triangular rod array into a rectangular
one. A shape transition to peanut-shaped cross-
sectioned rods occurs for larger values of spacing,
as already observed in Ref. [9].

3. The undercooling of steady-state rod arrays can be

well described by a fit to a Jackson-Hunt law, with
coefficients that depend on the array distortion (ex-
pressed by the angle between array basis vectors).
Both triangular and rectangular arrays can be de-
scribed by the same curve if the rod spacings are
properly defined.

It is clear that phase-field simulations are a valuable
tool to investigate the influence of confinement. We have
performed simulations here for a fixed set of material pa-
rameters and various geometries. It would be interesting
to explore the influence of the materials parameters (such
as volume fractions of the solid phases, ratio of the liq-
uidus slopes, and ratio of the surface tensions) on the
observed transitions. However, a large number of simu-
lations would be required to get a reasonably complete
picture, which remains a computational challenge.

A particularly interesting question that will be ad-
dressed in a future work is the influence of the wetting
properties on the confined states. The precise value of
the sample thickness where the transition occurs will cer-
tainly depend on the wetting properties of the sample
walls. Qualitatively, this phenomenon should be robust
and therefore observable in experiments. The measure-
ment of contact angles is delicate if not impossible in ex-
periments. In phase-field simulations, however, arbitrary
contact angles can be implemented by simple changes
in the boundary conditions (see for example Ref. [43]).
Therefore, such simulations offer a unique opportunity
for investigating this issue.
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