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Abstract

We propose a model of mass-conserving heterogeneous nucleation to describe the dynamics

of ligand-receptor binding in closed cellular compartments. When the ligand dissociation rate

is small, competition among receptors for free ligands gives rise to two very different long-time

ligand-receptor cluster size distributions. Cluster sizes first plateau to a long-lived, initial-condition

dependent, “metastable” distribution, and coarsen only much later to a qualitatively different

equilibrium one. Surprisingly, we also find parameters for which a very special subset of clusters

have equal metastable and equilibrium sizes, appearing to equilibrate much faster than the rest.

Our results provide a quantitative framework for ligand binding kinetics and suggest a mechanism

by which different clusters can approach their equilibrium sizes in unexpected ways.

PACS numbers: 82.60.Nh,02.30.Hq,05.70.Ln
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FIG. 1: A heterogeneous nucleation process in which ligand monomers bind only to seeds. Here,

Ns = 6 seeds (open hexagons) are available to bind M = 30 initial monomers (filled dots).

I. INTRODUCTION

The binding of multiple particles to specific nucleation sites is a key process in many phys-

ical and chemical settings. The formation of droplets, condensates on aerosols [1, 2], and

crystals [3] is often triggered by the presence of impurities or boundaries, in a process known

as heterogeneous nucleation [4, 5]. Heterogeneous nucleation also occurs in cell biology dur-

ing the assembly of sickle hemoglobin [6], β-amyloid fibers [7], Arp2/3 complex-mediated

actin nucleation [8], and probably during clathrin-coat assembly [9]. Within biochemical

applications, ligand-receptor binding can also be viewed as a particular paradigm of het-

erogeneous nucleation, where multiple ligands bind to a single receptor akin to an impurity

seed in solid-state nucleation.

Viewed through this lens, nucleation is ubiquitous in cell biology. Indeed, receptor loading

levels control a variety of biochemical reactions, from viral entry to cell signalling. The

chemical stoichiometries involved in ligand-binding events however, may limit the maximum

number of ligands a receptor can hold to about a dozen. For example, hemoglobin can

bind at most four oxygen molecules [10], virus-cell fusion occurs after a small number of cell

surface receptors bind to a viral protein [11], and cell-signaling is initiated after a certain

number of phosphates bind to specific enzymes [12]. This is in contrast to most physical

and chemical systems where aggregation of an unlimited number of particles can lead to the

emergence of macroscopic structures.

An even more critical feature of nucleation in cellular settings is the small system volumes

involved and, as a consequence, the presence of a finite number of monomeric ligands driving
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the nucleation process. In the small volumes encountered in cells, ligand production and

degradation are often slower processes than attachment and detachment to receptors, allow-

ing certain ligands to be depleted [13]. Because there is no source to replenish the free ligand

concentration, receptors in confined, isolated systems compete amongst themselves for the

finite pool of free monomeric ligands, as depicted in Fig. 1. For simplicity, throughout the

remainder of this paper, the terms “monomers” and “ligands” will be used interchangeably,

as will “seeds” and “receptors.”

The dynamics of mass-conserving homogeneous nucleation has been well-studied in the

context of Becker-Döring equations [14–16]. In this work we study its heterogeneous coun-

terpart, relevant for ligand-receptor kinetics in biology. While heterogeneous nucleation

has been well studied, most theoretical treatments focus on computing equilibrium parti-

tion functions for nucleation with specific forms for the free energy of monomer association

[17–19]. Many other approaches focus on either the molecular details and geometry of an

individual cluster particle [20], or on the asymptotic dynamics of even more coarse-grained

continuum size distributions [21]. In many applications, a constant source of monomers is

also imposed [22]. Here, we will instead consider the dynamics of a system with a total

fixed number M of monomeric ligands (bound and unbound) and a fixed number Ns of

receptor seeds. Each receptor can bind at the most N monomeric ligands according to the

spatially-uniform mass-action equations we describe in the next section.

Two qualitatively different cases are analyzed. In Section III, we first consider irreversible

binding, where the detachment rate is strictly zero so that once attached, monomers cannot

detach from clusters. Irreversibility leads to a loss of ergodicity since only a fraction of the

possible cluster configurations will be sampled during the dynamics, while many others will

never be visited. As a result, the final “quenched” or “metastable” cluster size distribution is

not an equilibrium one and depends strongly on initial conditions. Ergodicity is restored in

the case of a non-zero detachment rate, where all possible cluster configurations are eventu-

ally sampled and where the cluster sizes approach an equilibrium distribution, independent

of the initial configuration. Reversible binding, in the limit of small unbinding rates, is in

analyzed Section IV.

Several studies of homogeneous nucleation have shown the existence of long lived

metastable states followed by final equilibration, or “coarsening”, to a very different clus-

ter size distribution. These results were found for nucleating systems driven by an infinite
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supply of monomers and while allowing clusters to grow without bound [14, 15, 23]. Our

results for mass-conserving heterogeneous nucleation show a similar coarsening behavior.

The steady-state cluster distributions arising from the irreversible and reversible dynamics

are very different from each other, especially in the limit of small particle numbers and even

in the case of vanishingly small detachment rates. In the latter case, when unbinding is very

slow compared to binding, relaxation to the true equilibrium cluster size distribution occurs

over the long time scales associated with unbinding. As a result, cluster concentrations reach

long-lived metastable plateaus that depend on initial conditions and that can be closely ap-

proximated by results obtained from considering irreversible dynamics, as treated in Section

III. Only at longer times, after monomers start unbinding in appreciable numbers, does this

metastable size distribution “coarsen” and cross over to the true equilibrium one. While the

metastable and equilibrium cluster distributions are generally very different, we find a sur-

prising result: for certain sets of parameters, special cluster sizes have identical metastable

and equilibrium concentrations. For these clusters, the equilibration process appears to be

dramatically accelerated. In Section V we find the exact mathematical relationship leading

to the apparent fast coarsening where certain clusters reach equilibrium concentrations well

before the rest. Our results are a consequence of total mass conservation, and do not arise

in the case of receptors binding an unlimited supply of free ligand monomers. Finally, in

the Conclusions, we discuss implications and future extensions of our work.

II. MASS-ACTION EQUATIONS

To begin our analysis, we consider a model of heterogeneous nucleation for M well-mixed

monomeric ligands binding sequentially [24] to any of the Ns uniformly dispersed ligand

seeds, neglecting fragmentation and aggregation that do not involve monomers, since they

have been treated in other contexts [16, 25]. We also assume that each seed can accommodate

at most N monomers due to stoichiometry constraints and consider the mean-field mass-

action equations for the number of clusters ck(t) of size k, where 0 ≤ k ≤ N . Here,

k = 0 indicates “naked seeds”, with no bound monomers, and k = N saturated ones,

where no further binding is possible. In general, monomer attachment and detachment

rates from a cluster of size k can be explicitly k-dependent. Specific forms for pk and qk

have been used to describe cooperativity and the nucleation of clusters of various shapes
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and in different dimensions. For instance, pk ∼ k1/2 and constant qk are typically used

to model 2D nucleation of circular droplets when monomer binding is not diffusion-limited

[26]. Here, we assume that while detachment is independent of the number of particles in the

free monomer pool, the attachment process depends only on how many monomers remain

unbound. The “Becker-Döring” equations for ck(t) can thus be written as

ċ0 = −p0m(t)c0 + q1c1,

ċk = −pkm(t)ck − qkck + pk−1m(t)ck−1 + qk+1ck+1,

ċN = −qNcN + pN−1m(t)cN−1.

(1)

The rates, pkm(t) and qk represent monomer attachment and detachment rates, respectively.

The effective attachment rate is proportional tom(t), the number of free monomers available

for binding

m(t) ≡ M −
N
∑

k=1

kck(t). (2)

Note, that although these equations are written assuming finite particle numbers, they can

also describe concentrations, given a normalizing reference concentration. The quantities M ,

N , Ns and ck(t) therefore need not be integers. We assume a typical initial condition where

all the mass is in the form of monomers, m(t = 0) = M, c0(t = 0) = Ns, ck>0(t = 0) = 0.

The other constraint particles must obey is that the total number of seeds must be Ns at

all times, regardless of cluster population levels. We thus impose

Ns =

N
∑

j=0

cj(t), (3)

which is satisfied by the system in Eq. 1, using the given initial conditions. For clarity, and

because we will be referring to these equations often, we rewrite our mass-action equations

for the simplified case of uniform attachment and detachment rates pk = p and qk = q.

This approximation might be most relevant for modeling nucleation and growth of linear

filaments where there are always only one or two ends on which monomers can bind or

detach from. Rescaling time by the attachment rate p, we find
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ċ0 = −m(t)c0 + εc1,

ċk = −m(t)ck − εck +m(t)ck−1 + εck+1,

ċN = −εcN +m(t)cN−1,

(4)

where ε = q/p. In the context of Eqs. 4, irreversible binding corresponds to ε = 0 and

reversible binding to ε > 0. In the following, we shall be interested in the difference in

behavior between ε = 0 and ε → 0+. As we shall see, the presence of a vanishingly small

detachment rate ε → 0+ can lead to qualitatively different cluster size distributions compared

to those obtained in the purely irreversible case at ε = 0.

III. IRREVERSIBLE BINDING

We first consider the strictly irreversible binding limit in the general framework of Eqs. 1

where there is no detachment and qk = 0. Two possibilities arise. For M ≥ NNs, there is an

excess of available monomers. Given the irreversible nature of the dynamics, all Ns seeds will

be fully occupied by N ligands, leaving M −NNs free ones. In this case, we expect steady

state solutions to yield cN(t → ∞) = Ns, ck 6=N(t → ∞) = 0 and m(t → ∞) = M − NNs.

We shall call this the excess monomer limit. In the other case of M < NNs there are not

enough monomers to fill seeds to capacity and a non-trivial steady state will arise. Here,

we expect the existence of a finite time t∗ at which the pool of free monomers is depleted,

so that m(t∗) = 0. At this time, the final cluster distribution is the one frozen at t∗, since

no further attachments nor any detachments are possible. We shall call this the excess seed

limit. Since the quantity M −NNs will play an important role in our analysis, we introduce

the monomer excess parameter σ = M/NNs, so that values of σ ≥ 1 correspond to the

excess monomer case, while σ < 1 describes the case of excess seeds.

To determine the final cluster size distributions in both cases, first note that Eqs. 1 (or

Eqs. 4) are nonlinear due to the constraint on m(t) involving ck(t) via Eq. 2. If qk = 0

however, all terms on the right hand side multiply m(t). We can make analytic progress by

dividing by m(t) and defining a rescaled time τ according to
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dτ

dt
= m(t) = M −

N
∑

k=1

kck(t). (5)

Eqs. 1 can now be written as

dc0
dτ

= −p0c0,

dck
dτ

= pk−1ck−1 − pkck,

dcN
dτ

= pN−1cN−1.

(6)

Our goal is to find the rescaled time τ∗ corresponding to the rescaled time at which monomers

are irreversibly depleted: m(τ∗) = M−
∑N

k=1
kck(τ∗) = 0. The quenched, steady-state cluster

size distribution is thus found by evaluating the cluster concentrations at τ∗: ck(τ∗) ≡ c∗k.

Eqs. 6 are linear and can be solved by using Laplace transforms. Upon defining c̃k(s) =
∫∞

0
e−sτck(τ)dτ we find that c̃k(s) satisfy

sc̃0 −Ns = −p0c̃0,

sc̃k = −pkc̃k + pk−1c̃k−1,

sc̃N = pN−1c̃N−1,

(7)

which yield the solutions

c̃k(s)

Ns

=

∏k−1

j=0
pj

∏k
j=0

(s+ pj)
,

c̃N(s)

Ns

=

∏N−1

j=0
pj

s
∏N−1

j=0
(s+ pj)

. (8)

To simplify our analysis, we restrict ourselves to uniform intrinsic attachment rates pk = p

and use units of time such that p = 1. The dynamics are now described by Eq. 4 with ε = 0.

The solutions represented by Eqs. 8 thus simplify to

c̃k(s)

Ns

=
1

(s+ 1)k+1
,

c̃N(s)

Ns

=
1

s(s+ 1)N
, (9)

which can be inverse Laplace transformed to yield
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ck<N(τ)

Ns

=
τke−τ

k!
,

cN (τ)

Ns

= 1−
N−1
∑

j=0

τ je−τ

j!
. (10)

These results obey the constraint in Eq. 3. The value of τ∗ can now be found by using Eqs. 10

in the mass constraint Eq. 2 and imposing the condition m(τ∗) = 0. After some algebra,

this condition yields

τN∗ e−τ∗

NΓ(N)
+ (N − τ∗)

Γ(N, τ∗)

NΓ(N)
= 1− σ. (11)

As mentioned above, we expect a finite solution τ∗ only in the excess seed (σ < 1) case. For

excess monomers (σ ≥ 1) we do not expect a finite time at which monomers are depleted.

Indeed, the left hand side of the above expression is positive and monotonically decreasing,

implying that Eq. 11 will have a finite, real solution only in the excess seed case, for σ < 1.

When the initial monomer number M is increased, and σ decreases past unity, the root τ∗

diverges since all binding sites on the seeds are eventually occupied and further depletion

of monomers can never occur. The quenched concentrations in this case are described by

m(τ∗ → ∞) = M − NNs and ck(τ∗ → ∞) = Nsδk,N , indicating that all seeds are filled to

capacity for σ ≥ 1, as expected.

As a nontrivial example of the excess seed case, σ < 1, we can numerically solve Eq. 11

for N = 10, M = 30, Ns = 8 and σ = 3/8 to obtain τ∗ = 3.75248 and

c0
Ns

= e−τ∗ = 0.02346,
c1
Ns

= τ∗e
−τ∗ = 0.088031,

c2
Ns

=
τ 2∗
2!
e−τ∗ = 0.165168,

c3
Ns

=
τ 3∗
3!
e−τ∗ = 0.206596,

c4
Ns

=
τ 4∗
4!
e−τ∗ = 0.193812,

c5
Ns

=
τ 5∗
5!
e−τ∗ = 0.145455,

c6
Ns

=
τ 6∗
6!
e−τ∗ = 0.0909699,

c7
Ns

=
τ 7∗
7!
e−τ∗ = 0.0487661,

c8
Ns

=
τ 8∗
8!
e−τ∗ = 0.0228743,

c9
Ns

=
τ 9∗
9!
e−τ∗ = 0.0095373,

c10
Ns

=
τ 10∗
10!

e−τ∗ = 0.0035788.

(12)

It can be explicitly verified that these solutions obey
∑10

k=0
c∗k = Ns. Finally, for large N

(but NsN < M), the root of Eq. 11 is approximately
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FIG. 2: (a) Numerical solution to Eqs. 4 with M = 50, N = 6, Ns = 5, and ε = 0. Since

monomers are in excess (σ = 5/3 > 1), all clusters except cN vanish at long times. This plot is

indistinguishable from the one plotted using ε = 0.0001, and is qualitatively similar to what would

be found for a constant free monomer concentration m(t) = M . (b) The numerically computed

(colored dots) maximal cluster concentrations ck(tmax) = kke−k/k! and corresponding times tmax.

The approximation tmax ≈ N−1
s ln [M/(M −Nsk)] and the corresponding ck(tmax) are also shown

by the dashed and solid curves, respectively.

τ∗ ≃
M

Ns

+
e−

M

NsNs

M
√
2πN

(

eM

NNs

)N

, (13)

which allows us to find analytic approximations to the final quenched values c∗k = ck(τ∗) in

this limit. The full irreversible dynamics are illustrated in Fig. 2. In order to find approxi-

mations for the maximal concentrations of clusters ck(t) of size k < N , we note that from

Eq. 10 they occur at the rescaled time τmax = k. To find the corresponding real time tmax

we insert Eqs. 10 into the scaling relationship Eq. 5 so that

dτ

dt
= M −Ns

N−1
∑

k=1

k
τke−τ

k!
−N

(

1−
N−1
∑

k=0

τke−τ

k!

)

. (14)

Equation 14 can be numerically integrated to find t(τ). An approximation can be easily

derived for large N (while remaining in the NsN < M excess monomer limit) In this case,

the RHS of Eq. 14 is approximately

N−1
∑

k=1

k
τke−τ

k!
≈ τ, (15)
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with corrections of O(1/N). Eq. 14 can therefore be accurately approximated by

dτ

dt
≈ M −Nsτ, (16)

which can be explicitely integrated to give

t(τ) ≈ N−1
s ln [M/(M −Nsτ)] . (17)

We plot tmax ≡ t(τmax) = t(k) ≈ N−1
s ln [M/(M −Nsk)] and the associated ck(tmax) =

kke−k/k! in Fig. 2(b) as a function of k. The approximation for tmax is shown by the

dashed curve in Fig. 2(b) and is extremely accurate, especially for small k where maxima

are reached before appreciable accumulation of larger clusters invalidate the approximation

τ̇ ≈ M −Nsτ .

In the next section we will analyze the nucleation process when successive monomer

detachment is allowed. The question will arise as to how closely the irreversible nucleation

results found here are followed in the case of a vanishingly small, but non-zero, detachment

rate ε. As we shall see, our reversible results will closely mirror the irreversible ones in the

limit ε → 0+, only in the excess monomer case, when seeds are saturated with ligands. In the

excess seed case on the other hand, dramatic differences between reversible and irreversible

binding arise, even as ε → 0+. Only very special parameter choices will lead to the rare

matching of reversible and irreversible dynamics for specific clusters.

IV. REVERSIBLE BINDING

In this section we find the equilibrium cluster size distributions allowing for positive

detachment rates qk > 0. We start by finding the equilibrium cluster concentrations ceqk ≡
ck(t → ∞) by setting dck/dt = 0 in Eqs. 1. Due to reversibility, initial conditions are

irrelevant. After defining meq ≡ M −
∑N

k=1
kceqk , we find that ceqk can be written as a

function of ceq0 and meq as follows

ceqk = ceq0

∏k−1

j=0
pj

∏k
j=1

qj
[meq]k. (18)

This expression can be used in the mass constraint of Eq. 2 and the total cluster number

constraint in Eq. 3 to find two equations for the two unknowns ceq0 and meq
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meq = M − ceq0

N
∑

k=1

k

∏k−1

j=0
pj

∏k
j=1

qj
[meq]k, (19)

Ns = ceq0

N
∑

k=1

∏k−1

j=0
pj

∏k
j=1

qj
[meq]k, (20)

These equations can be solved by substituting the expression for ceq0 in Eq. 20 into Eq. 19

and determining meq numerically. Again, computations are greatly simplified by restricting

our analysis to uniform attachment and detachment rates pk = p and qk = q, respectively.

Further nondimensionalizing time in units of p−1 and introducing ε ≡ q/p, Eqs. 18 become

ceqk = ceq0

[

meq

ε

]k

≡ ceq0 zk, (21)

where z ≡ meq/ε. The fixed seed number constraint in Eq. 3 yields ceq0 = Ns(z−1)/(zN+1−1)

so that by substituting ceq0 zk into Eq. 2 we find an equation for z:

(

εz

NsN
− σ

)

(z − 1)(zN+1 − 1) + zN+2

−(1 + 1/N)zN+1 +
z

N
= 0.

(22)

Eq. 22 determines the numerical value for the normalized cluster fugacity z. In the small

detachment limit ε → 0+, once more, the two limits of excess monomers and excess seeds

naturally arise. In the excess monomer case, σ ≥ 1, the real root of Eq. 22 can be found as

the inner solution of a singular perturbation [27] where the largest power of z multiplies ε

so that z = ε−1(M − NsN) + Ns(M − NsN)−1 + O(ε). Inserting this approximation for z

into the seed constraint Eq. 3 we find ceq0 ≈ Ns [ε/(M −NsN)]N +O(ε), which yields

ceqk ≈ Ns

(NsN)N−k

εN−k

(σ − 1)N−k
+O(εN−k+1). (23)

Thus, equilibrium concentrations all vanish as O(εN−k) except that of the maximum

cluster k = N which asymptotes to ceqN ≈ Ns − O(ε). This qualitative behavior is expected

in the excess monomer case when nearly all available binding sites are occupied and only

nearly fully occupied seeds survive. In particular, when ε → 0+, ceqk 6=N → 0 and ceqN → Ns.

This result is identical to what was found for the strictly irreversible case of ε = 0 in the

previous section. In the excess monomer case (σ ≥ 1) thus, all clusters will be filled to
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FIG. 3: Values of the normalized cluster fugacity z determined from the real root of Eq. 22.

Fugacities for N = 3, 10, 40 are plotted in the limit ε/(NsN) = 10−6. A good approximation to z

is given by Eq. 24 and is shown by the dashed curves. The region σ ≡ M/(NsN) ≥ 1 corresponds

to the case of excess monomers where ceqk ∼ εN−k, as shown in Eq. 23.

capacity in the case of vanishingly small detachment rates, regardless of when the limit

ε → 0+ is taken.

In the opposite case of excess seeds, σ < 1, monomers are depleted before all binding sites

on all Ns seeds can be filled, leading to finite concentrations ceqk . Interestingly, the excess

seed limit further separates into two sub-cases. From our numerical analysis of Eq. 22 we

find that z > 1 for 1/2 < σ < 1, implying ceqk+1 > ceqk and larger cluster sizes tend to be

favored. On the contrary, for σ < 1/2 we find z < 1 so that ceqk+1 < ceqk . In this case, there

are too few monomers M for larger clusters to persist and smaller cluster sizes are more

populated. For a range of values of σ near 1/2 we find that the approximation

z ≈ 2−
[

1− 24

N + 2

(

σ − 1

2

)]1/2

, (24)

and the associated ceqk = ceq0 (z)zk, are highly accurate. Note that at the special point σ = 1/2

the monomer fugacity z = 1 and all equilibrium concentrations ceqk = Ns/(N + 1) are equal.

The behavior of the root z of Eq. 22 as a function of the monomer excess is plotted for σ < 1

in Fig. 3. The analytic approximation (Eq. 24) is also indicated by the dashed curves.

Our analysis thus far does not provide insight into how the equilibrium state is reached.

As discussed earlier, when ε → 0+, we expect binding to occur in a nearly irreversible
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manner over intermediate times, yielding metastable cluster size distributions. Repeated

monomer detachment and reattachment become significant only after much longer times, of

the order tc ∼ ε−1, allowing redistribution of mass into equilibrium clusters.

To find the metastable cluster size distribution, we make the ansatz that ck(t) can be

approximated by setting the detachment rate ε = 0 at intermediate times. We may thus

neglect detachment and use the results obtained for irreversible binding up to tc ∼ ε−1,

beyond which detachment effects may become appreciable, both in the excess monomer and

excess seed cases.

Fig. 2(a) shows the full time dependence of ck(t) in the reversible, excess monomer case

where σ = 5/3 ≥ 1. Here, as expected, both ceqk<N and ck<N(τ → ∞) ≡ c∗k<N vanish as

ε → 0+. In this case, the dynamics is not appreciably affected by the onset of detachment and

there are no dramatic behavioral crossovers originating across the ε−1 time scale. Reversible

and irreversible dynamics thus coincide at all time scales in the ε → 0+ limit if σ ≥ 1.

In particular, the initial rise in c0<k≤N(t) is determined by the monomer loading process

and is independent of the detachment rate ε. Setting ε = 0 and using our results from the

previous section we can numerically compute the time scale tmax over which the cluster size

distributions peak. We have verified that as ε → 0+, the full dynamics arising from the

reversible binding process in not appreciably different from that obtained in the irreversible

binding limit. In summary, when monomers are in excess, σ ≥ 1, the differences between ceqk

and c∗k vanish in the ε → 0+ limit, ergodicity-breaking is not apparent and seeds are always

filled to capacity.

We now consider reversible binding in the σ < 1 case, where there are more receptor

seeds than initial free monomers. As in the ansatz made in the excess monomer case, we

assume that at least up to time scales of order ε−1, the dynamics can be approximated

as an irreversible binding process, where ε = 0. By following the full dynamics in Eqs. 4

we verify that at intermediate times, the metastable concentrations ck(t) approach levels

approximated by the final ones ck(τ∗) ≡ c∗k ≡ Nsτ
k
∗ e

−τ∗/k! reached in the irreversible case

when ε = 0. Following the evolution of Eqs. 4 beyond timescales ε−1, we find that these

metastable concentrations eventually coarsen towards a qualitatively different, equilibrium

distribution defined by ceqk (ε → 0+).

This qualitative difference in cluster size distributions is noticeable only in the excess seed

limit when σ < 1 and illustrates ergodicity-breaking at ε = 0, as clearly shown in Fig. 4. In
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FIG. 4: Ergodicity breaking occurs only when seeds are in excess. (a) Numerical solution to Eqs. 4

with ε = 0.0001, M = 30, N = 4, and Ns = 20 (σ = 3/8). In this strong excess seed case, σ < 1/2

and both c∗k > c∗k+1 and ceqk > ceqk+1
. (b) ceqk as a function of ε. Note that even as ε → 0+, ceqk

are different from the metastable values c∗k (colored dots) found from setting ε = 0 in Eqs. 4. (c)

Cluster concentrations ck(t) for ε = 0.0001, M = 30, N = 4, and Ns = 10 (σ = 3/4). In this weak

excess seed case, σ > 1/2, both c∗k < c∗k+1 and ceqk < ceqk+1
. (d) Again, ergodicity-breaking arises

since ceqk (ε → 0) 6→ c∗k(ε → 0). In all plots, the free monomer concentration m(t) and the number

of naked seeds c0(t) can be reconstructed from the constraint conditions and are not explicitly

shown.

Fig. 4(a), where σ = 3/8 < 1/2, seeds are in such strong excess that monomers are quickly

depleted and c∗k+1 < c∗k. Fig. 4(b) plots c
eq

k as a function of ε, found from numerically solving

Eq. 22. Note that the values of ceqk (ε → 0+) differ from the intermediate ones approximated

by the frozen distribution c∗k. The latter are indicated by the colored dots. Figures 4(c) and

(d) are the analogous plots but for 1/2 < σ < 1, where c∗k+1 > c∗k. When seeds are in excess,

the crossover to equilibrium is clearly observable over the coarsening time scale tc ∼ ε−1.
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V. APPARENT ACCELERATED EQUILIBRATION OF SPECIFIC CLUSTERS

The general qualitative behavior described in the previous section is that when seeds are

in excess (σ < 1), the full heterogeneous nucleation problem exhibits dynamics occuring

over two time scales. The first is of t ∼ O(1) and corresponds to monomer attachment

rates, while the second coarsening time scale, tc ∼ ε−1, is associated with the monomer

detachment rate. In general, ceqk 6= c∗k.

FIG. 5: (a) The relative difference (c∗k − ceqk )/ceqk as a function of discrete values of k for σ =

0.08, 0.35633, 0.92. (b) Selected cluster concentrations for σ ≡ M/(NsN) = 0.35633, where c∗k=4 ≈

ceqk=4
. Note the small transient in c4(t) near t ∼ ε−1. (c) (c∗k − ceqk )/ceqk plotted as a function

of k for σ = 0.08, 0.86293, 0.92 These values indicate that for σ = 0.86293, the concentration

c1(t) quickly reaches its equilibrium value. (d) The corresponding concentration plot showing

just c0(t), c1(t), and c2(t). These plots also indicate that for σ = 0.08, the concentration c2(t)

experiences accelerated equilibration.

However, upon fine tuning relevant parameters, we find special values of σ < 1 and

N where up to two specific cluster sizes k can have nearly equal values of quenched and

equilibrium concentrations (ceqk ≈ c∗k) in the ε → 0+ limit. These clusters quickly reach their

equilibrium concentrations on a short time scale independent of ε. Mathematically, the sizes

k that are subjected to this rapid, apparent equilibration can be found by setting c∗k = ceqk :
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Ns

τk∗ e
−τ∗

k!
= Ns

(z − 1)zk

(zN+1 − 1)
, (25)

where τ∗ and z are determined by Eqs. 11 and 22, respectively.

Figure 5(a) shows the relative difference (c∗k−ceqk )/ceqk for fixed N = 6 and σ as a function

of the discrete cluster size k. Generally, we find that many values of 0 < σ < 1 give

rise to at least one value of k at which quenched cluster concentrations equal equilibrium

concentrations. In the above example, N = 6 and σ = 0.35633, and clusters of size k = 4 (red

arrow) quickly quench to their equilibrium values. Fig. 5(b) plots the numerical solution to

Eq. 4 for ε = 10−10, N = 6 and σ = 0.35633. For simplicity, we have plotted only c3(t), c4(t),

and c5(t). Note that even though c∗4 = ceq4 (dashed line), c4(t) does suffer a small transient

perturbation due to the rearrangement of all other clusters ck 6=4 at time t ∼ ε−1 temporarily

disturbing the balance of c4(t). Figs. 5(c) and (d) illustrate the behavior for σ = 0.86293.

Here, Fig. 5(c) predicts that c1 quickly reaches its equilibrium value. Fig. 5(d) explicitly

plots c0(t), c1(t), and c2(t) for σ = 0.86293. Figs. 5(a) and (c), also suggest that c∗4 ≈ ceq4

over a wide range of values of σ. For the finite processes we have considered, we find that

at most two sizes k, out of N , can exhibit accelerated equilibration, provided σ and N are

precisely tuned. We expect the qualitative aspects of these results to hold when binding

and/or unbinding rates are weakly cluster size-dependent, allowing our analysis to apply in

scenarios of weakly cooperative ligand-receptor binding [24].

VI. CONCLUSIONS

In this work we have analyzed a simple and mathematically tractable model of heteroge-

neous nucleation to describe ligand-receptor binding in closed systems, such as within cells

or organelles. A complete analysis in terms of the parameters (M,N,Ns) in the ε → 0+ limit

shows how dramatically differently the system behaves in a monomer-rich environment com-

pared to a seed-rich one. In the latter case, when binding sites outnumber initial monomers

(σ < 1), we find that after an initial transient ∼ tmax, cluster densities first approach c∗k,

approximating the quenched concentrations when ε = 0 and all free monomers have been

depleted. This long-lived metastable distribution eventually coarsens to a very different

equilibrium distribution ceqk at much later times tc ∼ 1/ε. Surprisingly, when parameters

(σ and N) are finely tuned, it is also possible that c∗k ≈ ceqk , for particular k−clusters, re-
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sulting in much shorter coarsening times. We find that clusters of up to two specific sizes

may appear to reach their equilibrium concentrations by t ∼ (1). Our results have general

implications for ligand-receptor kinetics and suggest practical ways of tuning (M,N,Ns) in

experiments to accelerate the equilibration of specific clusters by stabilizing their metastable

sizes.

There are potentially many physical realizations of our analysis. In the hemoglobin ex-

ample mentioned in the Introduction, Ns would correspond to the concentration of oxygen-

binding hemoglobin metalloproteins, while M would represent the oxygen molecule concen-

tration. Here, each hemoglobin binds at most N = 4 oxygen molecules, and typically there

is an excess of oxygen ligands (M ≫ NsN) except perhaps under the most extremely hy-

poxic conditions. However, there are many other scenarios in which ligand concentrations

can be comparable or lower than the total number of binding sites (M ∼ NsN). Examples

where ligand depletion often occurs include transcription factor binding, radioligand analysis

[28, 29], and signal transduction [30]. In this last example, the dynamic range of receptor

concentrations predicted by our analysis puts bounds on the chemical signalling that can

arise from up-regulation of receptor expression.

A number of extensions of our analysis can be further investigated. Certain forms for

cluster size-dependent attachment and detachment rates, pk and qk, can be incorporated

into the analysis. For example, if pk ∼ k, certain products and sums in Eqs. 18, 19, and

20 can be analytically expressed or approximated to derive variations to Eq. 22 and the

associated concentrations ceqk . Furthermore, for small numbers of clusters, the mean-field

results derived from the Becker-Döring equations may deviate from the expected cluster size

distributions arising from fully stochastic simulations [22]. We expect our mean-field results

to be qualitatively valid when cluster correlations are included in the dynamics. A careful

quantitative investigation of stochastic effects will be included in future work.
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