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Spacing distribution functions for the one-dimensional point-island model with
irreversible attachment
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We study the configurational structure of the point-island model for epitaxial growth in one
dimension. In particular, we calculate the island gap and capture zone distributions. Our model is
based on an approximate description of nucleation inside the gaps. Nucleation is described by the
joint probability density pXY

n (x, y), which represents the probability density to have nucleation at
position x within a gap of size y. Our proposed functional form for pXY

n (x, y) describes excellently
the statistical behavior of the system. We compare our analytical model with extensive numerical
simulations. Our model retains the most relevant physical properties of the system.

PACS numbers: 68.55.Ac,68.35.-p,81.15.Aa,05.40.-a

I. INTRODUCTION

The study of the theory of the submonolayer film
growth is of great general interest, in part because its
application in the construction of microelectronic de-
vices. In epitaxial growth, monomers are deposited onto
a substrate at a constant rate. The monomers diffuse
until they are captured by an island or another diffu-
sive monomer. The islands are just clusters of immobile
monomers. The size of an island depends on the number
of monomers which have attached to it. Thus, the is-
land size increases in time due to the capture of diffusing
monomers. These kinds of systems exhibit many inter-
esting non-equilibrium phenomena, as discussed in, e.g.,
Refs. [1, 2]

There are basically two kinds of models which have
been developed to study these systems: In the extended
island model, the islands occupy more than one site on
the lattice, and their shape is not trivial [2–7]. In the
simpler point-island model, the islands just occupied one
site in the lattice, and their size is simply the number
of monomers which belong to the island [8–16]. In this
paper, we focus on the point-island model, which is very
accurate for low coverages. A major advantage of this
simplification is that it produces better statistics than
the extended island model.

In our model only the monomers are mobile, the is-
lands formed by two or more monomers are completely
static (stable). In the literature this condition is usu-
ally denoted “critical nucleus size” i = 1 (where i is the
size of the largest unstable island). In our irreversible-
growth model, monomers must land or hop onto an al-
ready occupied site in order to be incorporated [8, 13]; in
an alternative model features incorporation of monomers
arriving at sites adjacent to the island [16].
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The quantities that are commonly used to describe the
evolution of the point-island model are the density of
monomers, N1; the density of islands with size j, Nj ;
the rate of deposition of monomers, F ; and the diffusion
rate of monomers D. The evolution of this system is fre-
quently described in terms of the coverage θ = F t, where
t is the time. We restrict our studies to the aggregation
regime, where there is a quasi steady-state.

We are particularly interested in the spacing (gap) dis-
tribution functions between islands p̂(k)(S), the capture

zone distribution P̂ (S), and the island-island pair corre-
lation function G(r). As usual, p̂(k)(S)dS is the probabil-
ity that for an island at the origin we find another island
at a distance between S and S + dS, with the condition
that there are k additional islands inside the gap between
them. The standard definition for the scaled spacing is
s = S/ 〈S〉, with 〈S〉 the average of S. The scaled spacing
distributions are given by

p(k)(s) = 〈S〉 p̂(k)(s 〈S〉). (1)

On the other hand, we use the definition for P̂ (S) given
in [8]. Then, in our one-dimensional (1D) system, the
capture zone of an island is simply the distance between
the midpoints of the gaps to the left and to the right of
the island.

The functional forms of p(0)(s) and P (s) for arbitrary
dimension and critical nucleus size have been the subject
of recent discussion and some controversy [8, 17–19]. A
particular issue is whether the generalized Wigner sur-
mise (GWS)

Pβ(s)=aβs
βe−bβs
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adequately describes the distribution and the reliability
the simple relationship between β and i deduced with
mean field [17] and later refined with more sophisticated
arguments [19]. There is still no general consensus about
them even in the case of i = 1 in one dimension (1D).
In this paper we calculate analytically and numerically
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the spacing distribution functions p(k)(s) for k ≥ 0, a
meaningful concept for capture zones in 1D but less so
in higher dimensions. All previous studies focus just in
p(0)(s) [1, 10, 17]. We specially focus in their functional
forms in the limit of large and small values of s, where
deviations from the form of Eq. (2) were observed in
painstaking computations in 1D and 2D, see Ref. [8]. We
propose an analytical model to find approximate expres-
sions for these functions. Our model is based on a de-
tailed description of the nucleation mechanism, following
principally Blackman and Mulheran [1], hereafter BM.
We also calculate the pair correlation function G(r). In
all cases our model is compared with several numerical
simulations. This paper is organized as follows: In Sec. 2
we discuss briefly some implications of the 1D model. In
Sec. 3 we provide an accurate description of the nucle-
ation process. In Sec. 4 and Sec. 5, we calculate approxi-
mately the spacing distribution functions, while in Sec. 6
we calculate the island-island pair correlation function.
In Sec. 7, we assess the viability of applying Eq. (2) to
experimental data. In Sec. 8, we give conclusions.

II. 1D POINT ISLAND MODEL

In the 1D case, we have a ring divided into independent
sections called gaps. Each gap starts and ends with an
island. Within the gaps, there may be several monomers
performing random walks. A monomer inside of a par-
ticular gap must eventually either merge with one of the
islands at the ends of the gap or combine with another
monomer to nucleate a new island. In no case can the
monomer reach a different gap.

The spatial distribution of the islands, i.e., the distri-
bution of the sizes of the gaps, is given by the spacing
distribution functions p(k)(s). The simplest case corre-
sponds to the nearest-neighbor distribution p(0)(s), which
represents the probability density to find a gap with an
scaled size s between two islands with no additional is-
land in between.

The pair correlation function G(r) is related to p(k)(s)
by

G(r) =

∞∑
k=0

p(k)(r). (3)

As noted, the length of the capture zone of an island
is simply the distance between the midpoints of the gaps
to the left and to the right of the island. In our 1D
model, the next-nearest neighbor distribution p(1)(s) is
related to P (s) as follows. Consider Fig 1, where the
black squares represent islands. Let S1 + S2 be the dis-
tance between the islands A and B. Then p̂(1)(S1 + S2)
is the probability density to find a gap with size S1 + S2

given that there is an additional island inside the gap.
From its definition, it is clear that p(1)(s1 + s2) is related
to the capture zone distribution P ((s1 +s2)/2) according
to

P (s) =

∫ ∞
0

dx p(1)(x) δ
(
s− x

2

)
= 2 p(1)(2s), (4)

where x = s1 + s2.
Thus, the capture zone distribution and the next-

nearest spacing distributions are equivalent in one di-
mension.

FIG. 1. Relation between P (s) and p(1)(s). Black blocks are
islands, while white regions are gaps.

III. SPATIAL DESCRIPTION OF THE
NUCLEATION

In order to find an expression for p(0)(s), we must de-
scribe the creation mechanism of new gaps. To reach an
appropriate description of the nucleation, we make the
following definitions: Let pXYn (x, y) be the joint probabil-
ity density that a given new nucleation occurs at position
x inside a gap of length y. Of course x < y; otherwise
pXYn (x, y) = 0. Let pXn (x) be the probability density that
a given nucleation occurs at position x inside a gap of any
size. Then

pXn (x) =

∫ ∞
x

dy pXYn (x, y). (5)

Similarly, the probability density pYn (y) that a given nu-
cleation occurs anywhere inside a gap of length y is given
by

pYn (y) =

∫ y

0

dx pXYn (x, y). (6)

Finally, the probability density that, a nucleation occurs
at position x in a gap of length y under the condition
λ = x/y is

pΛ
n(λ) =

∫ ∞
0

dy

∫ y

0

dx pXYn (x, y) δ

(
λ− x

y

)
=

∫ ∞
0

dy y pXYn (λy, y). (7)

The formation of a new island depends directly on the
probability that two monomers reach the same site of
the lattice at the same time. This quantity is of course
related to the density of monomers inside the gap. In
BM, the average density of monomers, n1(x, y), inside of
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(a) (b)

FIG. 2. (Color online) Behavior of (a) the normalized reduced density n(λ = x/y) (see Eq. (10)) and (b) the probability
pΛ(λ = x/y)) that a nucleation occurs at position x in a gap of length y, for different values of R. The agreement between the
analytical model and the numerical data is excellent overall. There are some slight differences near the maximum of pΛ(λ).

a gap of length y was approximated by using its expres-
sion in the stationary state. In this regime there is quasi-
equilibrium between the deposition of new monomers and
their merging with existing islands. We neglect the de-
position onto the top of islands. Then n1(x, y) satisfies
a one-dimensional diffusion equation with the boundary
conditions n1(0, y) = n1(y, y) = 0. This leads to

n1(x, y) = (2R)−1x(y − x), (8)

with R = D/F [1]. By using this expression and the
assumption that the probability of a new nucleation at x
is proportional to n1(x, y)2, we have

pΛ
n(λ) = 30λ2(1− λ)2, (9)

where λ = x/y [1]. While we have neglected the inter-
action among monomers within a gap, a more refined
estimate of pΛ

n(λ) can be made by taking them into ac-
count and using the full multiparticle density [20, 21]. We
tested numerically the validity of this approximation. As
seen in Fig. 2, there is excellent agreement between the
numerical data and the analytical equations. Note that
in Fig. 2 we plotted the normalized reduced density n(λ)
given by

n(λ) =

∫ ∞
0

dy

∫ y

0

dx
12Rn1(x, y)

µ3
p(0)(y) δ

(
λ− x

y

)
(10)

instead of n1(x, y). Here µ3 is the 3rd moment of p(0)(y)
and the factor 12R/µ3 guarantees the correct normaliza-
tion of n(λ) in the interval 0 ≤ λ ≤ 1. From its definition,
it is clear that n(λ) gives the average density of monomers
inside of a gap at the relative position λ = x/y. A major
advantage of n(λ) is that it does not depends explicitly
on the length of the gap, in contrast to n1(x, y). The nu-
merical simulation of the point-island model was carried

out following the standard procedures [1, 9, 10]. In our
simulations we took a lattice with length L = 2 × 105

sites (with periodic boundary conditions) and gathered
statistics from over 5000 realizations.

Since pΛ
n(λ) vanishes for λ = 0 and 1, a new island

is unlikely to form near the boundaries of a gap. This is
the origin of the effective repulsive force between adjacent
islands. As we shall shortly see, this implies that for small
values of s, p(0)(s) ∝ sα. We expect that α = 2 because
pΛ(λ) ∝ λ2 for λ→ 0.

BM also proposed that pYn (y)/FM (y) ∝ y5, where
FM (y) is the number of gaps with size y given that there
are M gaps. FM (S) is naturally related to p(0)(s) by
FM (S) = (M2/L)p(0)(s). We calculate numerically this
quotient for different values of R. As shown in Fig. 3, our
numerical results suggest that pYn (y)/FM (y) ∝ yγ with
γ ≈ 3 for s > 1.7 and γ ≈ 4 for s < 1.7 rather than γ = 5.
A similar result was found in Ref. [16] for submonolayer
deposition in 2D. Their numerical results suggests that
γ(s) ≈ (4 + s)/(2 + s). Hence, for small gaps we have
γ ≈ 2 while for large gaps γ ≈ 1.

Implicitly in BM, the probability density pYn (y) was
written as

pYn (y) =

(∫ y

0

dxn2
1(x, y)

)
p(0)(y) ∝ y5p(0)(s). (11)

Underlying Eq. (11) are the following two approxima-
tions: First, the integral is based on the law of mass
action; Fig. 2 justifies this. Second, BM supposed that
pYn (y) can be written as the product of the probability to
have a nucleation inside a gap of size y and the number of
gaps FM (y) with this size. Our numerical results, shown
in Fig. 3, do not support that simplification.

Following our previous observations, pXYn (x, y) can be
written as the independent product of the probability
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FIG. 3. (Color online) Behavior of the quotient pYn (s)/p(0)(s).
It seems that there are two different regimes, one for small
gaps and the other for large gaps.

pYn (y) to nucleate inside a gap with size y and the condi-
tional probability pΛ

n(x/y)/y that this nucleation occurs
at x. After some algebra we find

pXYn (x, y) =
30

µγ
x2(y − x)2yγ−5p(0)(y), (12)

where µγ is the γth moment of p(0)(y). It is easy to show
that Eq. (12) satisfies the form of pΛ

n(λ) given in BM. The
condition pYn (y)/p(0)(y) ∝ yγ is satisfied as well. From
Eqs. (5), (6) and (12), it is straightforward to show

pYn (s) =
sγ

µγ
p(0)(s) (13)

and

pXn (s) =
30 s2

µγ

∫ ∞
s

dy

y5−γ p
(0)(y)(y − s)2. (14)

Equations (13) and (14) describe the mechanism of for-
mation of new islands. Equation (13) shows that the
probability of nucleation inside a gap of size y is the prod-
uct of the number of such gaps and yγ . As we will see
γ 6= 5 in contradiction to Eq. (11). Equation (14) shows
how pXn (s) depends on the number of monomers inside
the gap; for small s, pXn (s) ∝ s2, consistent with the law
of mass action. The vanishing of (y − s)2 as y → s and
s2 as s→ 0 reflects that nucleation does not occur at the
gap borders because ipso facto the monomer concentra-
tion vanishes there.

IV. NEAREST-NEIGHBOR SPACING
DISTRIBUTION p(0)(s)

Following BM, it is possible to find an analytical ex-
pression which relates p(0)(y) with pYn (s) and pXn (s): The

effect of one single nucleation is described by

FM+1(S)− FM (S) = −pYn (S) +Rn(S), (15)

with

Rn(S) =

∫ ∞
x

dy

∫ Y

0

dx pXYn (x, y) (δ(x− S) + δ(x− y + S))

=

∫ ∞
x

dy
(
pXYn (S, y) + pXYn (S − y, y)

)
. (16)

Due to the symmetry of pΛ(λ) around its maximum,
pXYn (S, y) = pXYn (S − y, y). Thus,

FM+1(S)− FM (S) = −pYn (S) + 2 pXn (S). (17)

Finally, taking into account the relation between FM (S)
and p(0)(s), we find

s
dp(0)(s)

ds
+ 2 p(0)(s) = −pYn (s) + 2 pXn (s). (18)

From Eqs. (13), (14) and (18) we can write

s
dp(0)(s)

ds
+

(
2 +

sγ

µγ

)
p(0)(s) =

60 s2

µγ

∫ ∞
s

dy
(y − s)2

y5−γ p(0)(y).

(19)
This integro-differential equation can be written in the
following integral form

p(0)(s) =
2 e
− sγ

γµγ

s2

∫ s

0

dy y pXn (y) e
yγ

γµγ , (20)

where pXn (y) is given by Eq. (14). BM attributed the
exponential tail of p(0)(s) to the fact that pYn (s) ∝ yγ ,
regardless of the form of pΛ

n(λ). We recall that, in their
case, γ = 5. Consequently, they claim that, for large
values of s, p(0)(s) ∝ exp(−s5/5µγ). Furthermore, the

exponential tail of p(0)(y) depends on the value of γ in
the ratio pYn (s)/p(0)(s) ∝ sγ regardless the form of pΛ

n(λ).
This means that the fragmentation process for large val-
ues of s depends on the probability of choosing the gap
to fragment, while for small values of s, it depends ex-
clusively on the probability of choosing the place of frag-
mentation.

From Eqs. (14) and (20) it can be shown that in the
limit s � 1, p(0)(s) = (15/µγ)s2 + O(s3) and pXn (s) =
(30/µγ)s2 +O(s3). In the opposite limit s→∞ we have

p(0)(s) ∝ s−2 exp(−sγ/γ µγ) (see Appendix).
As noted in BM, an integro-differential equation like

Eq. (19) is hard to solve analytically or numerically.
However, it can be solved easily in an statistical way:
A line of length L is taken and an array of points on
the line is generated. Each new point is introduced via
weighted random number generation. First, a pair of ex-
isting points is selected between which to introduce the
new point. The selection is weighted by the γth power
of the separation of the points. We used γ = 3, 4 and
5. Then, the actual position in the gap for insertion x
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(a) (b)

FIG. 4. (Color online) Comparison of the statistical solution of Eq. (20) and the numerical simulation of the point-island model

with i = 1. In (a) we show the first four spacing distribution functions and (b) shows the behavior of p(0)(s) for large values of
s.

(a) (b)

FIG. 5. (Color online) The behavior of p(k)(s) and pXn (s) are shown in (a) and (b), respectively. There is excellent agreement
between Eqs. (24) and (25), respectively, and the numerical data from the simulation of the point-island model.

is selected with weighting given by the function pΛ
n(x/y).

We use L = 10000 and gather data for 100 particles and
50000 realizations. Henceforth, we call this procedure
the statistical solution of Eq. (19).

We also seek a simple approximate expression for
p(0)(s) which can be used instead of the statistical so-
lution of the integro-differential equation. In order to
find it, we focus on the known moments of p(0)(s). The
first two moments are chosen to satisfy the standard nor-
malization conditions. In Ref. [1], it was shown that in
the aggregation regime the density of monomers, N1, is
related to the islands density, N , according to

µ3 = 12N2N1R ≈ 1.6, (21)

where µ3 is the third moment of p(0)(s). There is an-
other condition which can be extracted from p(0)(s). In
the aggregation regime, the spacing distribution func-
tions have only a weak dependence on time. Because
of this we can interpret the point-island model as a one-
dimensional system in which the particles (islands) inter-
act with their nearest neighbors under a potential v(s).
In the limit of small coverage and small values of s, we
can write p(0)(s) ≈ exp[−v(s)/kB T ]. For simplicity, we
henceforth set the temperature to be kB T = 1. It fol-
lows that v(s) ≈ −2 ln(s). It is easy to check the validity
of this approximate equation from our results for p(0)(s).
The average interaction energy per particle u is constant;
using the maximum entropy method (MEM) [22–24], we
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can approximate u by

u =
1

〈S〉

∫ ∞
0

dS v(S) p
(0)
MEM

(
S

〈S〉

)
. (22)

To determine p
(0)
MEM(s), we take note of four independent

conditions: two normalization conditions, the third mo-

ment of p(0)(s) and the average of v(s). Then p
(0)
MEM(s)

is given by

p
(0)
MEM(s) = eC1+C2s+C3s

3+C4ln(s2), (23)

where Ci are constants. We conclude that an approxi-
mate analytical form for p(0)(s) is

p
(0)
MEM(s) = As2e−B s−C s

3

, (24)

with A, B and C constants to be determined.
By using Eqs. (18) and (24), we can calculate pXn (s),

finding straightforwardly

pXn (s) ≈ p(0)(s)

2µγ

(
sγ + 4µγ − µγB s− 3µγC s

3
)
. (25)

Fig. 4(a) shows the spacing distribution functions
p(k)(s) calculated from the simulation of the point-
island model and the results of the statistical solution of
Eq. (19) with γ = 3, 4 and 5. In all cases the agreement
is good for small values of s and still good for interme-
diate values of s with γ = 3 and 4. However, none of
them describe correctly p(0)(s) for large values of s (see
Fig. 4(b)). To improve the model we choose γ = 4 for
s < 1.7 and γ = 3 for s > 1.7, as prompted by Fig. 3.
This two-regime model, hereafter termed TRM, gives an
excellent fit with the point-island model even for large
values of s (see Fig. 4).

Fig. 4(b) reveals the important result that p(0)(s)
does not decay as a Gaussian but instead more like
exp(−C s3). This form differs from the ones proposed
previously in Refs. [1, 17] but is consistent with Eq. (24).

In Fig. 5 we see that Eq. (24) gives excellent results for
p(0)(s) even for large and small values of s. In Fig. 5(a)
we show the results of a least-squares fit to calculate the
extra parameter of Eq. (24). In Fig. 5(b) we use Eqs. (25)
to calculate pXn (s). The agreement with the numerical
data is excellent.

V. HIGHER SPACING DISTRIBUTION
FUNCTIONS

Now we turn to higher-spacing distribution functions.
Equation (4) and the weak correlation between gaps sizes
yields the standard approximate equation for P (s)

P (s) ≈ 2

∫ 2s

0

dx p(0)(x)p(0)(2s− x), (26)

This equation was used satisfactorily in Refs. [1, 17] to
calculate P (s) from p(0)(s). Numerical evidence there

supported the validity of this approximation, which is
usually called the independent interval approximation
(IIA). The solutions given by Eqs. (24) and (25) will be
called the analytical model. In Ref. [25] there is addi-
tional numerical evidence confirming the validity of the
IIA in this kind of model. In IIA the expression analo-
gous to Eq. (18) for p(1)(s) is

s
dp(1)(s)

ds
+ 3 p(1)(s) = −qYn (s) + 4 qXn (s), (27)

where we use

qYn (s) =

∫ s

0

dx p(0)(s− x)pYn (s) (28)

and

qXn (s) =

∫ s

0

dx p(0)(s− x)pXn (s). (29)

Equation (28) represents the probability density that a
new nucleation event occurs inside a gap (such as the one
shown in Fig. 1), while Eq. (29) is the analog of pXn (s)
for this kind of gap. In the IIA qYn (s) and qXn (s) are
written as convolution products. The p(1)(s) shown in
Fig. 5 was calculated by using Eq. (24) and the IIA. We
find excellent agreement even for small and large values
of s. There are some small discrepancies (less than 6%)
near the maximum of p(1)(s).

It can be shown that in IIA, the spacing distribution
for small values of s can be written as p(k)(s) ∝ sαk with
αk = 3n + 2. In particular, this means that P (s) ∝ s5.
This result agrees with BM’s results but differs from the
exponent reported in Ref. [17].

VI. PAIR CORRELATION FUNCTIONS

The island-monomer pair correlation function g(r) is
given by

g(r) =
N1(r)

N1
, (30)

where N1(r) describes the monomer density at a distance
r from an specified island. From this definition of g(r) it
is clear that g(r) ∝ r for small values of r and g(r) → 1
for r → ∞. In Refs. [1, 26], N1(r) was calculated by
using a diffusion equation corresponding to modeling the
sea of islands as an uniform sink. In this way, they found

g(r) = 1− e−r/ξ, (31)

with ξ the average distance a monomer travels be-
fore being captured by an island or another monomer.
The island-island pair correlation function is defined as
G(r) = N(r)/N , withN(r) the density of islands at a dis-
tance r from the center of a specific island. In this case
we have G(r) ∝ r2 for small values of r; G(r) naturally
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FIG. 6. (Color online) Pair correlation function G(r).

satisfies the same condition as g(r) for large values of r.
It is well known [27, 28] that, at least in two-dimensional
systems, G(r) and g(r) satisfy the approximate relation

G(r) ≈ gi+1(r). (32)

If we extrapolate this observation to our 1D case, we have
G(r) ≈ g2(r). By using Eqs. (31) and (32) we can obtain
an expression for G(r). These equations predict that g(r)
and G(r) grow monotonically. However, our numerical
results, displayed in Fig. 6, show a weak oscillation near
r = 1. This oscillation has been observed experimen-
tally in two-dimensional systems [28–30]. Both models—
the one given by the statistical solution of Eq. (19) with
our TRM and the one given by Eq. (24) plus the IIA—
reproduce correctly this oscillation. The behavior of G(r)
is shown in Fig. 6. In the analytical model we use Eqs. (3)
and (24). The solution for G(r) obtained from the sta-
tistical solution of Eq. (19) is plotted as well. The agree-
ment between these calculations and the numerical sim-
ulation is evident. The calculations even reproduce the
weak oscillations.

In a test of the validity of Eq. (32), measuring g(r)
directly from the simulation, we did not find good agree-
ment with the numerical results. Since G(r) ≈ g2(r)
arises from the assumption that dN(r)/dt ∝ N1(r)i+1,
apparently the law of mass action is not reliable for the
whole ring, even though it is valid for the gaps.

VII. VIABILITY OF GENERALIZED WIGNER
SURMISE (GWS) FOR EXPERIMENTAL DATA

A. Comments from preceding analysis

While the main goal of this paper has been to fully
characterize the spacing distribution of point islands in
1D, particularly their tails, an underlying motivation of
much of our work has been to glean physical information
from experimental data. For that, the number of real-
izations are generally less than 1000, often significantly
less. Hence, the noise in the tails is too large to assess
the effects discussed above. Fits to data are largely de-
termined by the range 0.5 < s < 2.5. In that range, the
agreement between Eq. (2) and our numerical results is
excellent, as seen in Fig. 7. For the 1D problem with
i = 1 treated here, the fitted values of β are 1.5 and 4 for
p(0)(s) and P (s), respectively (for details see Ref. [17]).
As is especially clear from the inset, the fit in the tails is,
unsurprisingly, not very good. According to the mean-
field-like argument in Ref. [17], the capture zone (CZ)
distribution can be described by a Fokker-Planck equa-
tion which has Pβ(s), with β = 2(i + 1) in 1D, as its
stationary solution. In the associated Langevin equation

ds

dt
= K

(
β

s
−B s

)
+ η, (33)

there is a repulsive force K β/s and an attractive force
proportional to s. Here, K is a kinetic coefficient and η
arises from the random component of the external pres-
sure. The latter is responsible for the Gaussian tail of
P (s) while the repulsive force dominates the behavior of
P (s) for small values of s. The assumption of Gaussian
decay underestimates the attractive force which leads to
a consequent underestimation of the repulsive force. For
example, in the case of p(0)(s) this leads to β = 1.5 rather
than value β = 2 given exactly in Eq. (9) and within error
in Fig. 2(b).

While the GWS does not describe well the tails of
the observed distributions, it does a considerably bet-
ter in the more central part of the distribution (typically
0.5 < s < 2); that part is more germane to analysis of
experimental data since the data in the tails is often so
sparse (often below the proper 5 hits per histogram bin)
that noise makes its use suspect for quantitative analysis.

We address two questions about the applicability of the
GWS. First, is there a significant difference in the values
of β calculated from the whole range of data and from the
reduced interval 0.5 < s < 2? We find β(all) = 4.229 for
the entire set of data and β(sig) = 4.222 for the reduced
range. Since this difference is insignificant, β can be cal-
culated from just the data in the central region. Second,
is the GWS is a reasonable approximation of P (s) in the
range 0.5 < s < 2, especially in comparison with other
analytical models? While there is no unique measure of
“goodness of fit”, we adopt as our quantitative diagnostic
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(a) (b)

FIG. 7. (Color online) The behavior of P (s) and p(0)(s) are shown in (a) and (b), respectively. It is clear that the GWS is an
excellent approximation to these distributions for intermediate values of s.

the standard Pearson’s reduced chi-square statistic [31]:

χ̃2 =
1

N− n− 1

n∑
j=1

(
P obs(sj)− P exp(sj)

)2
P exp(sj)

, (34)

where P obs(s) is the probability of the capture zones with
size s observed from the numerical data, and P exp(s) is
that expected from the analytical model; in the prefactor,
distinguishing this reduced χ̃2 from χ2, N is the number
of bins (typically 239) and n is the number of fitting
parameters. Another possible metric, e.g., would be the
area between each model curve and the numerical data,
i.e., the sum over |P obs(sj)− P exp(sj)|.

In Table I we use χ̃2 to compare fits obtained from four
different analytical models for the capture zone distribu-
tion in 1D. We consider the GWS with β = 4 suggested in
Ref. [19] (GWS-0), the best fit using the single-parameter
GWS (GWS-1), the MEM+IIA result given by Eq. (26),
the single-parameter gamma distribution (ΓD)

Πα(s) =
αα

Γ(α)
sα−1e−αs, (35)

the generalized gamma distribution (GΓD)

Πβ,ν(s) = Aβs
βe−Bβs

ν

, (36)

and finally our TRM. Note that with ν = 2 Eq. (36)
reduces to the GWS while for ν = 1 it becomes ΓD.
Clearly, the reduction factor in transforming χ2 to χ̃2 in
Eq. (34) is here a trivial multiplicative factor since N �
n. However, in addition to computing χ̃2 using the whole
range of the data, we also find χ̃2 using just the data in
the interval 0.5 < s < 2. In this process, the reduction
factor is significant in making subsequent comparisons.

Based on Eq. (34) the GWS is better than the ΓD
and the MEM+IIA but worse than the GΓD and the

TABLE I. Values for the χ̃2(all) and χ̃2(sig) for four different
analytical models in 1D. In the case of the ΓD we have used
β = α− 1; thus, α ≈ 2β + 1 of GWS-1, as noted in Ref. [32].

ΓD GWS-0 GWS-1 GΓD MEM+IIA TRM

103 χ̃2(all) 5.155 0.429 0.145 0.038 1.691 0.161

103 χ̃2(sig) 2.483 0.353 0.218 0.0285 2.076 0.162

ν 1 2 2 1.815 NA NA

β 8.612 4 4.229 4.650 NA NA

TRM. Additionally, the GWS gives a value of β similar
to that of GΓD. We recall that in the MEM+IIA model,
P (s) ∼ s5, which is closer to the GΓD result than the
β of GWS. With the extra adjustable parameter, the
GΓD gives the smallest χ̃2, but at the price of non-integer
values for β and ν. Not only is the TRM excellent overall,
it has nearly identical χ̃2 for the full and central ranges
of s. It is curious that for GWS-1, χ̃2 is larger for the
central range than for the full one.

It is noteworthy that the mean-field reasoning of
Ref. [17] succeeds in 1D. This mean-field argument is
based on knowledge of n(r), which in 1D is n(x, y) =
(2R)−1x(y− x). Similarly, Shi et al.[8] found that in 1D
P4(s) only modestly underestimated the asymptotic peak
height of the distribution for their two versions of the
point island model with irreversible growth. The peak
of P (s) obtained from the TRM is approximately 1.29,
which is close to the value 1.31 reported in Ref. [8] for
the limit R→∞.
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B. Extension to 2D

The maximum entropy method can also be applied in
the case of deposition in 2D. We have two normaliza-
tion conditions on the capture zone distribution P (s):∫∞

0
dsP (s) = 1 and

∫∞
0
ds sP (s) = 1. We can find an

additional condition: It is long known that in the ag-
gregation regime, the densities of monomers and islands
evolve as N1 ∼ θ−

1
3 and N ∼ θ

1
3 , respectively [33]. On

the other hand, the density of monomers, n(r), inside of
a circular capture zone with radius rc is given approxi-
mately by [16]

n(r) = 0.25R−1
(
r2
isl − r2

)
+ 0.5 r2

c R
−1 ln

(
r

risl

)
, (37)

where risl is the radius of the island and r is the distance
from the cell center. As before, R = D/F . Then, neglect-
ing logarithmic corrections, the number of monomers in-
side a capture zone with radius rc is proportional to r4

c ,
i.e., the square of the area of the capture zone. Conse-
quently N1 ∼ 〈S2〉N . The analog of Eq. (21) for this
case is

µ̃2 ∼ N1N, (38)

where µ̃2 is the second moment of P (s), which is constant
in the aggregation regime. Finally, since P (0) = 0, it is
reasonable to write

P
(2D)
MEM(s) ≈ Asβ e−B s

2−C s, (39)

where A, B and C are constants. Fig. 8 shows a com-
parison between Eq. (39) and numerical simulations of
island nucleation in 2D. According to Ref. [19], as well as
Ref. [18], P3(s), the GWS with β = 3 = i+2 (rather than
the original mean field result β = 2 = i + 1 in Ref. [17])
is a good approximation for P (s); hence, we include it in
Fig. 8. In 2D the GWS evidently approximates P (s) well
for intermediate values of s but differs substantially from
the numerical simulations for small and large values of s.
However, Eq. (39) gives an even better approximation for
P (s) over the whole range of s (see Fig. 8). Based on the
numerical results of Ref. [18], we use β = 4 to calculate

the P
(2D)
MEM(s) shown in Fig. 8.

For the GWS, we compare again the values of β cal-
culated from the fits using the whole range of data and
the restricted range 0.5 < s < 2: β(all) ≈ 3.07 and
β(sig) ≈ 3.04. Again, we evidently can calculate β just
as well using only the data from the restricted range. In
Table II we quantify with the reduced Pearson’s χ̃2 the
goodness of the fits obtained from some analytical mod-
els for the capture zone distribution in 2D. In particular,
we consider the GWS with β = 3 suggested in Ref. [19],
Eq. (39) given by the MEM, and the generalized gamma
distribution (GΓD). For the GΓD, we consider not only
the best fit (yielding β ≈ 3.86 and ν ≈ 1.59) but also
the particular parametrization β = 4 and ν = 1.5 sug-
gested by the Evans group [18] and hence denoted GΓE.

FIG. 8. (Color online) Capture zone distribution in 2D with
i = 1. The GWS describes correctly the behavior of P (s)
for intermediate values of s. The maximum entropy method
gives an excellent approximation for P (s) even for large and
small values of s.

The one-parameter gamma distribution (ΓD) is also in-
cluded. Again we compute χ2(all) using the whole range
of the data and χ2(sig) using just the data in the interval
0.5 < s < 2. Our results are summarized in Table II.

TABLE II. Values for the χ̃2(all) and χ̃2(sig) for four different
analytical models in 2D.

ΓD GWS-0 GWS-1 GΓE GΓD MEM

103 χ̃2(all) 3.010 1.660 1.726 0.402 0.334 0.518

103 χ̃2(sig) 1.722 0.826 0.873 0.381 0.287 0.294

ν 1 2 2 1.5 1.585 NA

β 6.277 3 3.065 4 3.860 4

Clearly the GWS is inadequate outside the range 0.5 <
s < 2, the χ̃2(all) given by the GWS is around five and
four times as large as the ones given by the GΓD and
GΓE(ν = 1.5), respectively. In the 2D case, the values
of χ̃2 of the GWS are closer to the ones given by the
best fit possible of GΓD than it does in 1D. However, the
discrepancies between the GWS and the numerical data
yield an underestimation of the key parameter β. In fact,
the difference between the accepted values of β and the
ones given by the GWS in 2D is 25%. The χ̃2(sig) for
the GWS is around 3 and 2 times as large as the ones
given by the GΓD and GΓE, respectively. This suggests
that the GWS can be used as a first approximation for
the CZ distribution in the range 0.5 < s < 2. One of the
main goals of the experiments on epitaxial growth is to
determine the “critical nucleus” size i from the experi-
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mental data. Then, in order to estimate i, it is necessary
to assume an approximate functional form for P (s) and
then make a fit to find an approximate value for i. Un-
fortunately, the functional form of P (s) depends on i in a
non trivial way. The GWS can be used as a first approx-
imation to determine i from experimental data because
most of these data are inside the range where the GWS
is a reasonable approximation.

We emphasize that the different analytic fitting func-
tions must be expected to yield different values of β,
i.e. the exponent associated with the power-law rise for
s � 1. In Table II the values of β for the two GWS fits
is considerably smaller (by about 1) than the βs from
GΓ and MEM functions, even though all provide decent
accounting of the central region. The functional forms
incorporate different underlying assumptions, and only
the GWS has been related, if approximately, to the crit-
ical nucleus i. Hence, there is considerable subtlety to
extracting i from the values of β obtained by fits to ex-
pressions other than GWS.

In 2D χ̃2(sig) is invariably smaller than χ̃2(all). How-
ever, for GΓD and GΓE, they are relatively close, indi-
cating the most consistent fit over the whole range, while
the GWS is significantly better in the central region. The
GWS is notably better than the ΓD, often used to ana-
lyze froths [34] and quantum dot distributions [35].

In contrast to 1D, the mean-field reasoning of Ref. [17],
with nucleation probability ∝ n2(r) (and constant n(r)),
is not viable in 2D. In 2D the better estimate of n(r)
given in Eq. (37) comes from solving the diffusion equa-
tion; however the radial extent of a CZ fluctuates sig-
nificantly (as a function of polar angle) around its mean
value rc = (S/π)1/2. Furthermore, the island is not usu-
ally at the geometric center of the CZ. Hence, Eq. (37)
generally does not adequately approximate the local den-
sity of monomers inside a CZ. In 1D newly nucleated CZs
obtain their “area” from just two existing CZs, while in
2D several existing CZs often contribute. Most of these
nucleations occur near the CZ boundaries, which gener-
ally are not well described as circles.

VIII. CONCLUSIONS

BM [1] proposed that pYn (y)/FM (y) ∝ yγ with γ = 5.
However, we find that γ = 3 and 4 give much better
agreement with our numerical simulation. For example,
if we choose γ = 4 from Eqs. (12) and (24) it is possible to
write an analytical expression for the probability density
pXYn (x, y) in terms of p(0)(s). In Fig. 9 we show the re-
sults of calculating pXYn (x, y) numerically compared with
our analytical model. The contour plots are quite simi-
lar. However, there is a small difference in the location
(x, y) of the maximum value of pXYn (x, y): In the analyt-
ical model it is located at approximately (0.7,1.5), while
in the numerical simulation it is at (0.7,1.3).

However, neither γ = 3 nor γ = 4 describe the statisti-
cal behavior of the system for large values of s. Further-

more, the TRM gives an excellent quantitative descrip-
tion of the statistical behavior of the point-island model
even for large values of s, as shown in Fig. 4. This means
that a complete description of the system requires to take
into account that γ is a function of s, i.e., the probabil-
ity to choose a gap pYn (y) is different for large and small
gaps, see Fig. 3.

We find that the spacing distribution p(0)(s) decays
like exp(−B s3) instead of exp(−B s5) as in BM or
exp(−B s2) as in Ref. [17]. It seems that this is con-
sequence of the confinement of the diffusive monomers
within the gaps. An analysis of Eq. (19) shows that the
tail depends exclusively on the probability to choose the
gap pYn (y). This suggests that the statistical behavior
of the system for large values of s is dominated by the
breakup of the biggest gaps where γ ≈ 3. Meanwhile,
the behavior of p(0)(s) for small values of s depends on
the probability to choose the position of the nucleation
inside the gap pΛ

n(λ).
Fig. 5 shows that the maximum entropy principle can

be used to find an excellent analytical approximation for
p(0)(s). Equation (24) gives an excellent fit of the numer-
ical data, even for large and small values of s, in fact bet-
ter than other approximate expressions [1, 17]. We find
that by using the IIA and Eq. (24), we can easily handle
expressions for p(k)(s) with k > 0. Those expressions ac-
curately describe the numerical data, even the weak oscil-
lation in G(r). Apparently, for small values of s the spac-
ing distribution function satisfies p(k)(s) ∝ s3 k+2. We
show that Eq. (18) and (24) provide an excellent approx-
imation for pXn (s), as seen in Fig. 5. While pΛ

n(λ) ∝ n2(λ)
leads to G(r) ∝ g2(r) for small values of r, this relation
is not satisfied for values of r near the maximum of G(r).

From our previous results, it is possible to calculate the
capture number, σs, of an island with size s in the ag-
gregation regime. As usual [1, 12], σs can be determined
from

σs =
1

N1

(
dn1(x, y)

dx

∣∣∣∣
x=0+

− dn1(x, y)

dx

∣∣∣∣
x=0−

)
, (40)

where N1 is the density of monomers and
(dn1(x, y)/dx)|x=0+[−] represents the derivative of
n1(x, y) at the right [left] boundary of the island. By
using the approximation given previously for n1(x, y),
we found

σs =
yCZ

N1R
, (41)

where yCZ is the length of the capture zone. In the point-
island model the capture numbers naturally do not de-
pend on the size of the island. This result also implies
that the distribution of σs has the same form of p(1)(s)
and not that of p(0)(s) as was suggest in Ref. [11]. There
the authors supposed that the size of the gap at the left
and the right of an island are equal. A better first ap-
proximation for the distribution of σs can be obtained if
we calculate p(1)(s) from p(0)(s) through a convolution
product, as in Fig. 5(a).
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(a) (b)

FIG. 9. (Color online) Behavior of pXY
n (x, y) from (a) the numerical simulation and (b) Eq. (12) with γ = 4. The data used

in this figure were generated with R = 106 and θ = 0.5

A major result of our analysis, consistent with
Refs. [17, 18], is that obtaining an appropriate descrip-
tion of the nucleation mechanism is the crucial ingredient
to arriving at an excellent approximation for the spacing
distribution functions of the point-island model. Finally,
we emphasize that in spite of its mathematical simplic-
ity, the GWS with the suitable selection of β is a good
approximation for P (s) in 1D and 2D. Because of this,
it is reasonable to use the GWS to analyze experimental
results for epitaxial growth.
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Appendix A: Behavior of p(0)(s) for small and large
values of s

An expansion of Eq. (14) around s = 0 shows that
pXn (s) ≈ (30/µγ)s2 for small values of s. By using this

result in Eq. (19), we found p(0)(s) ≈ (15/µγ)s2. This
result is a consequence of the fact that pΛ(λ) ≈ 30λ2 as
λ→ 0.

From our numerical results, it is reasonable to propose
p(0)(s) ≈ Asα e−B sρ for large values of s, where A, B, α
and ρ are constants. By using this ansatz in Eq. (14) it
is clear that for large values of s, pXn (s)� p(0)(s). Thus,
Eq. (19) takes the form

(2 + α)−B ρ sρ +
sγ

µγ
≈ 0, (A1)

which implies α = −2, B = (ρµγ)−1 and ρ = γ. The

behavior of p(0)(s) for large values of s is fully determined
by the probability to choose the gap to fragment.
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