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Abstract

We discuss entropy production in nonequilibrium steady states by focusing on paths obtained

by sampling at regular (small) intervals, instead of sampling on each change of the system’s state.

This allows us to study directly entropy production in systems with microscopic irreversibility, for

the first time. The two sampling methods are equivalent, otherwise, and the fluctuation theorem

holds also for the novel paths. We focus on a fully irreversible three-state loop, as a canonical

model of microscopic irreversibility, finding its entropy distribution, rate of entropy production,

and large deviation function in closed analytical form, and showing that the observed kink in the

large deviation function arises solely from microscopic irreversibility.
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Introduction.— Entropy production is a hallmark of nonequilibrium steady states. While

entropy production is a system-dependent quantity, there emerge some remarkable universal

properties: for example, the probability distribution of the total entropy production satisfies

a detailed fluctuation theorem in large classes of systems (see, e.g., [1–5]), and a kink appears

in its large deviation function (and in that of related currents) at zero entropy production

[6–12]. Initially, this kink has been attributed to specific properties of the systems under

investigation, but a recent study indicates that it is a generic feature, related to the detailed

fluctuation theorem [13]. We note that in systems with microscopic reversibility one finds

numerical indications for the existence of a kink (defined as a jump of the first derivative of

the rate function), but no analytical proof has yet been given. In contrast, a discontinuity

in the derivative of the rate function is seen analytically for the asymmetric random walk

when the backstep rate goes to zero [6], i.e. when the system becomes irreversible.

Most published work on fluctuation theorems and the related large deviation functions

deals with systems that are reversible at the microscopic level: all transitions between states

are bi-directional. However, sheared granular systems and chemical reactions where the

products are cleared rapidly, are two of many important cases where microscopic reversibility

is broken. Few recent publications discuss fluctuation theorems for this type of systems.

Ohkubo has proposed a fluctuation theorem based on posterior probabilities [14], and Chong

et al. showed that an integral fluctuation theorem can be derived without microscopic time

reversibility [15].

Our aim in this letter is two-fold. First, we propose the study of entropy production

along trajectories sampled at regular (small) intervals, instead of the usual sampling on

each change of the system’s state. This novel sampling is equivalent to the traditional

technique, in the limit of vanishingly small intervals, and yields analogous results, including

the fluctuation theorems. The advantage is that it enables direct analysis of systems with

microscopic irreversibility, and is more easily implemented in experiments and numerical

studies. Second, we study the consequences of microscopic irreversibility by focusing on

the smallest, canonical example: a fully irreversible three-state loop. We thus find universal

features of the entropy production and related quantities, and demonstrate that the observed

kink in the large deviation function at zero entropy is a feature of irreversibility.

Entropy production and two kinds of sampling.— Consider a stochastic dynamical process

in a system with a discrete set of states, A,B,C, . . . , and with transition rates k(X, Y ) (from
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state X to Y ). We denote the steady-state probability of being in state X by ρ(X), and

consider only systems with ρ(X) > 0, for all states X .

Event sampling: Imagine the system starting from state X0 (at the steady-state), and

progressing through the sequence X1, X2, . . .XM . No other states occur between Xi and

Xi+1. The average time elapsed between two consecutive events is τi = 1/k(Xi, Xi+1).

This is the kind of trajectory, or path, employed in previous work on the subject (see, e.g.,

[4, 10, 13, 16]).

Interval sampling: We sample the system at M regular intervals, τ, 2τ, . . . ,Mτ , and

record its state at each sampling, thus defining a trajectory X0, X1, . . . , XM . The time gap

between consecutive points on the trajectory is constant, τi = τ . The system can be found

in the same state on consecutive samplings, and it could also visit any number of states in

between Xi and Xi+1 [17]. One should note that this interval-sampling is readily accessible

in experiments, where one usually cannot record every transition between states, as would

be needed for event-sampling.

The total entropy production, in the steady state, is given by [18]

stot = ln
ρ(X0)

ρ(XM)
+ ln

∏

i

ω(Xi−1, Xi)

ω(Xi, Xi−1)
, (1)

for either kind of trajectory. For interval sampling, ω(X, Y ) denotes the probability for

finding the system in state Y , after time τ , having started at state X (at time zero). For

event sampling, ω(X, Y ) is replaced by k(X, Y ).

If the sampling rate is large enough, 1/τ ≫ maxX,Y k(X, Y ), the most likely outcome

for consecutive samplings is Xi = Xi+1, and on the rare occasions that Xi 6= Xi+1 no

other states are visited in between. Repeated visits to the same state do not contribute

to the entropy (1), so as τ → 0 interval sampling becomes equivalent to event sampling.

Moreover, many of the properties found with the usual event sampling are reproduced by

interval sampling, even for finite τ . For example, the detailed fluctuation theorem [4, 5],

P (stot)/P (−stot) = exp(−stot), holds for both types of paths. A major advantage of interval

sampling is that it lets us discuss situations of microscopic irreversibility: X → Y , but

Y 6→ X , and we focus on this idea.

The 3-state loop.— For the sake of clarity, and for a chance at a full analytical solution, we

wish to study the simplest nonequilibrium system (with microscopic irreversibility). A two-

state system with non-trivial steady state (i.e., ρ(A), ρ(B) > 0) is, per force, an equilibrium
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system. Thus, we are led to consider the 3-state system: A → B, B → C, C → A, where

we assume that all the rates are equal to 1, thus defining our unit of time. We later argue

that despite its simplicity, this can be viewed as a canonical model for irreversibility.

Using the rate equations for the system, one finds,

ω0 =
1

3
+

2

3
e−3τ/2 cos

(√
3

2
τ

)

,

ω+ =
1

3
+

1

3
e−3τ/2

[

− cos

(√
3

2
τ

)

+
√
3 sin

(√
3

2
τ

)]

,

ω− =
1

3
+

1

3
e−3τ/2

[

− cos

(√
3

2
τ

)

−
√
3 sin

(√
3

2
τ

)]

,

(2)

where ω0 ≡ ω(A,A) = ω(B,B) = ω(C,C) denotes the neutral transitions, ω+ ≡ ω(A,B) =

ω(B,C) = ω(C,A) are the forward transitions, and ω− ≡ ω(A,C) = ω(B,A) = ω(C,B) the

reverse transitions. Although these exact expressions can be employed in the subsequent

calculations, we are interested in the limit τ → 0, and in effect we use their lower-order

expansions: ω0 = 1−τ +τ 2/2+ . . . , ω+ = τ−τ 2+ . . . , and ω− = τ 2/2−τ 3/2+ . . . . We have

verified carefully that the final results are not affected. Note that the ratio ω−/ω+ ≈ τ/2,

for the “forbidden” reverse direction, vanishes as τ → 0.

Probability distribution of entropy production.— Since ρ(A) = ρ(B) = ρ(C) = 1/3, the

first term on the rhs of (1) does not contribute to stot. The remainder, which we denote

simply by s, is the entropy produced in the thermal bath coupled to our system. Of the

three types of terms that appear inside the product describing s, ω0/ω0, ω+/ω−, and ω−/ω+,

only the last two contribute to s, in equal and opposite amounts. Thus, s assumes a discrete

spectrum of values: sm = mds, with ds = ln(ω+/ω−) and m = 0,±1,±2, . . . ,±M , where

m = N+ −N− is the excess number of forward (N+) over reverse (N−) transitions.

The probability pm of obtaining sm = mds, is the sum of the weights of all the trajectories

consistent with that value. The weight of a trajectory with N+-forward, N−-reverse, and

N0-neutral transitions is ω
N0

0 ω
N+

+ ω
N

−

−
. All values of N+, N−, N0 must be counted, subject to

the constraints N+ − N− = m and N+ + N− + N0 = M . For any finite M , one can work

out explicit (cumbersome) expressions. Alternatively, the sums can be easily worked out

numerically, see Fig. 1.

The problem can be approached more elegantly using the generating function p(z) =
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FIG. 1: The probability pm as a function of m, the total number of forward and reverse transitions,

for the 3-state loop where paths are sampled over M intervals of length τ = 0.001. In order to

make the different curves obtained for different values of M more easily distinguishable, we plot

− ln(pm)/(Mτ) where Mτ is the total length of the path. One should note the emergence of a kink

for increasing values of M .

∑

m pmz
m. In our case, the generating function is clearly

p(z) =
(

ω0 + ω+z +
ω−

z

)M

,

since its trinomial expansion yields all the possible combinations subject to the constraint

N+ +N− +N0 = M , and the zm-terms are precisely those where N+ −N− = m.

Upon making the substitution z = e−µds = (ω−/ω+)
µ, the generating function assumes

its usual interpretation:

p(e−µds) = 〈exp(−µs)〉 =
(

ω0 + ω1−µ
+ ωµ

−
+ ωµ

+ω
1−µ
−

)M
. (3)

The time evolution of this generating function is described by a linear operator whose lowest

eigenvalue, ν(µ), allows one to compute quantities of interest [4, 6, 13]. For now, we ignore

the linear operator itself, since we can obtain ν directly, from

ν(µ) = lim
T→∞

[

− 1

T
ln〈exp(−µs)〉

]

,
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where T = Mτ is the total time length of each trajectory. We thus obtain

ν(µ) = −τ−1 ln
(

ω0 + ω1−µ
+ ωµ

−
+ ωµ

+ω
1−µ
−

)

. (4)

Interestingly, in our case this limit is achieved for any value of M . This helps us discuss

T → ∞ (M → ∞), even as τ → 0, for we can take the two limits independently. The

fact that ν(µ) = ν(1 − µ) is a manifestation of the detailed fluctuation theorem [1–4].

The eigenvalue ν(µ) is plotted in Fig. 2, for the case of τ = 0.001. Using the low-order

approximations for the ω’s we get

ν(µ) ≈ 1− (τ/2)µ − (τ/2)1−µ , (5)

which compares very nicely with (4) when τ → 0.

-0.5 0 0.5 1 1.5
µ

-20

-10

0

ν(
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FIG. 2: The eigenvalue ν(µ), plotted as a function of µ, for τ = 0.001. The top of the curve

becomes flatter as τ → 0.

The mean entropy production rate can now be derived from ν(µ):

〈ṡ〉 = dν/dµ|µ=0 = τ−1(ω+ − ω−) ln(ω+/ω−) ≈ ln(2/τ) , (6)

where we have used ω0 + ω+ + ω− = 1, and the last expression is the dominant behavior as

τ → 0. The fact that the approximate limit is the same as the entropy produced in a single
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forward transition is in agreement with the notion that backward steps are exceedingly rare

as τ → 0 and do not contribute to the average.

The mean entropy production may also be computed from

〈ṡ〉 = τ−1
∑

X,Y

ρ(X)ω(X, Y ) ln
ω(X, Y )

ω(Y,X)
. (7)

In general, the sum is dominated by the states P,Q yielding the fastest diverging

ω(P,Q)/ω(Q,P ) ratio, as τ → 0. The dominant contribution comes from an irreversible

transition, P → Q and Q 6→ P , since ω(Q,P ) → 0, as τ → 0, in that case. It is in this

sense that our model is canonical, for it suffices to focus on the effect of a single (dominant)

irreversible transition, and ours is the smallest model that accomplishes that.

The fluctuation function, χ(σ), of the scaled entropy, σ = s/〈ṡ〉T , is derived from an

extremum of the Legendre transform of ν:

χ(σ) = max
µ

{ν(µ)− 〈ṡ〉σµ} . (8)

It is possible to obtain a full analytic derivation of χ(ν) for our simple model, but this results

in cumbersome expressions. Instead, we illustrate the technique for the limit of small τ . The

two derivations yield virtually indistinguishable curves, for τ . 0.001, while more insight is

gained from the simpler approximation.

We begin by rewriting (the approximate) ν(µ) as

ν(µ) = 1− x− τ

2
x−1 ; x ≡ (τ/2)µ ,

and find µ∗ that maximizes ν(µ)− 〈ṡ〉σµ, using the approximate limit 〈ṡ〉 = ln(2/τ);

x∗ =
σ +

√
σ2 + 2τ

2
, µ∗ =

ln x∗

ln(τ/2)
.

(The other root of the quadratic equation for x yields unphysical, complex values.) Finally,

putting x = x∗ and µ = µ∗ in ν(µ)− 〈ṡ〉σµ, we obtain

χ(σ) = 1−
√
σ2 + 2τ + σ ln

(

σ +
√
σ2 + 2τ

2

)

. (9)

It is easy to check that this satisfies the symmetry relation χ(−σ) = χ(σ)+〈ṡ〉σ, yet another
manifestation of the detailed fluctuation theorem.

The limiting form of χ(σ) is universal:

χ(σ) −→ 1− σ + σ ln σ, as τ → 0 ; σ > 0 , (10)
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and χ(σ) → ∞ for σ < 0, as τ → 0. The origin of the kink [6] in χ(σ) resides in
√
σ2 + 2τ ,

Eq. (9), which tends to |σ| as τ → 0. Moreover, at the same limit, the logarithmic term

diverges for σ < 0, but not for σ > 0. The kink can be best explored through the derivatives

of χ(σ) [13]:

χ′(σ) = ln

(

σ +
√
σ2 + 2τ

2

)

,

χ′′(σ) =
1√

σ2 + 2τ
−→ |σ|−1 ,

(11)

as τ → 0. Note the existence of the limit τ → 0 for χ′′(σ) for all σ 6= 0. For finite τ the

magnitude of the apparent jump in χ′ is found to be of order χ′(1)−χ′(−1) → ln(2/τ). The

large deviation function χ(σ) and its derivative are plotted in Fig. 3.
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FIG. 3: The large deviation function (a), and its derivative (b), as a function of σ, for τ = 10−7.

The kink is more pronounced the smaller the value of τ .

For our simple model, we were able to find the generating function (3) by inspection. For

other systems, in general, it can be expressed as a matrix product,

〈e−µs〉 = uRMv; RX,Y = ω(X, Y )1−µω(Y,X)µ , (12)

where u = (ρ(A), ρ(B), . . . ) and v is a column vector of ones. Then, for T → ∞,

ν(µ) = −τ−1 lnλ(µ) , (13)

where λ(µ) is the largest eigenvalue of R.

N-state ring.— It is easy to generalize the foregoing results to an N -state ring: A1 →
A2, A2 → A3, . . . , AN → A1, (N ≥ 3), where all rates are 1. The key ingredient arises from
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the fact that the forward transition probability (after time τ), from Ak → Ak+1, is then ≈ τ ,

while the “forbidden” transition probability, for Ak → Ak−1, is τN−1/(N − 1)! ≡ δNτ . All

of the results valid for N = 3 can be then extended to general N , expressed as a function of

δN . In particular,

ν(µ) = 1− δµN − δ1−µ
N , (14)

from which follows

〈ṡ〉 = ln(1/δN) , (15)

χ(σ) = 1−
√

σ2 + 4δN (16)

+σ ln

(

σ +
√
σ2 + 4δN
2

)

,

χ′(σ)|τ→0 = − ln

(

σ +
√
σ2 + 4δN
2

)

. (17)

The results χ(σ > 0)|τ→0 = 1− σ + σ ln σ, and χ′′(σ)|τ→0 = 1/|σ|, are universal.

Event sampling.— The N -state ring can be analyzed also with event sampling, only that

then one must postulate [13] a small back reaction rate ǫ for the “forbidden” transitions

Ak → Ak−1. It is easy to show that

ν(µ) = 1 + ǫ− ǫµ − ǫ1−µ , (18)

for all N ≥ 3. Thus, the results from event sampling agree with those of interval sampling,

in the limit of τ → 0, provided that one sets ǫ = δN = τN−2/(N − 1)! (for the N -ring). This

physical meaning of the small rate ǫ is new to our work—indeed, for event sampling there

is no coherent prescription on how to choose independent ǫ’s for the various irreversible

transitions.

Conclusion.— In this letter we have proposed the use of interval sampling, a novel tech-

nique for studying entropy production in nonequilibrium steady states. Most importantly,

interval sampling allows direct analysis of systems with microscopic irreversibility, and is

more easily implemented in experiments. We then focused on the smallest model possessing

irreversibility — the three-state loop — and argued that it may serve as a canonical example

for systems with microscopic irreversibility, such as driven granular systems, in general. In

this way, we were able to identify universal features of entropy production, including its

large deviation function and the kink at zero entropy production, which is seen to arise from

irreversibility.
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