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Abstract: In the area of bipedal locomotion, the spring loaded inverted pendulum (SLIP) model has been
proposed as a unified framework to explain the dynamics of a wide variety of gaits. In this paper, we present
a novel analysis of the mathematical model and its dynamical properties. We use the perspective of hybrid
dynamical systems to study the dynamics and define concepts such as partial stability and viability. With this
approach, on the one hand, we identified stable and unstable regions of locomotion. On the other hand, we
found ways to exploit the unstable regions of locomotion to induce gait transitions at a constant energy regime.
Additionally, we show that simple non-constant angle of attack control policies can render the system almost
always stable.

I. INTRODUCTION

One of the most accepted mathematical models for
bipedal running is the spring loaded inverted pendulum
(SLIP, for an extensive review see[1]). In a similar fash-
ion, the rigid inverted pendulum has been extensively
used to model bipedal walking[2]. In 2006, Geyer et
al.[3] propose the SLIP model as a unifying framework
to describe walking as well as running. The unified per-
spective proves useful for accurately explaining data from
human locomotion[3]. Additionally, it allows describing
both gaits (walking and running) in terms of dynamical
entities observed in a discrete map, obtained by inter-
secting the trajectories of the system with a predefined
section of lower dimension. Geyer associates these enti-
ties with limit cycles of the hybrid dynamical system[4, 5]
and named their attracting behavior as self-stabilization.
Though the nature of the observed dynamical properties
is not yet clarified, those results emphasize that bipedal
locomotion may be dictated solely by the mechanics of
the system. As a consequence, the control necessary for
locomotion is thus reduced to the swing phase of the leg,
showed in Fig. 1 between points A and B. The most pop-
ular control policy is to produce touchdowns at constant
angle of attack α (CAAP (α)), i.e. the angle spanned by
the landing leg and the horizontal.
In the last decade, many energy-efficient bipedal walk-

ing machines have been developed. Through careful de-
sign, they exploit the passive dynamics of their own body
to move forward, requiring little control or none[6–10].
However, the construction of bipedal machines capable
of exploiting passive dynamics in different gaits remains
an unsolved engineering challenge. In this context, Geyer
et al.[3] report that, in the SLIP model, it is not possible
to have multiple gaits at the same energy. The results
are based on simulations that do not cover all possible
initial conditions of the system. In addition, Rummel et
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al.[11] prove that walking and running is possible at the
same energy level. They use a new map that allows com-
paring different gaits with ease. The map is defined at
the vertical plane crossing the landing point of the foot
(Fig. 1). In this way, they find the self-stable regions, but
their intersection is empty. To concretize these ideas, let
us describe this region for the running map R.

ER
∞ = {x| x ∈ S ∧ (∃α| x = Rα (x))}, (1)

where the subscript in Rα denotes running using
CAAP (α) and S denotes the section where the map is
defined. Therefore, if for different gaits these stable re-
gions do not intersect, e.g. ER

∞ ∩ EW
∞ = ∅, we conclude

that a transition between the two gaits cannot occur if
the system is to remain in these regions. In other words,

x ∈ ER
∞ ∧ y ∈ EW

∞ ⇒

Rα (y) /∈ ER
∞ ∧ Wβ (x) /∈ EW

∞ ∀ α, β.
(2)

In this study, we will show how transitions between
gaits are found at points outside these stable regions. The
transitions require the selection of the angle of attack;
therefore CAAP’s are not suitable for this task. We will
also show evidence indicating that it is possible to find an
angle of attack θ that maps a point into a stable region,
e.g. x /∈ ER

∞ ∧
(

∃ θ, y | y 6= x, y ∈ ER
∞, y = Rθ(x)

)

. Ad-
ditionally, we introduce the concepts of partial stability
and viability that will be useful in the construction of the
transitions presented herein.

This paper is organized as follows. In section II, we de-
scribe the models used for our simulations, their represen-
tation in state variables and the definition of the discrete
map. Next, in section III, we introduce the new concepts,
and we show the regions where the transitions between
gaits exist. Later, in section IV, we discuss about the
requirements of a controller for the system and the im-
plications for robot design and bipedal locomotion. We
conclude the paper in section V with our conclusion.
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II. METHODS

As explained previously, we use the SLIP model to
study bipedal gaits. We adopt the framework in [12],
which is described in the language of hybrid dynamical
systems. Therefore, we reintroduce some notation and
definitions.

To represent the different phases of a gait, the model
is segmented into three sub-models. We will call these
sub-models charts[4] or phases see Fig.1. Each chart rep-
resents the motion of a point mass under the influence
of: only gravity (ff-chart or flight phase), gravity and
a linear spring (s-chart or single stance phase), gravity
and two linear springs (d-chart or double stance phase).
The point mass represents the body of the agent and
the massless linear springs model the forces from the legs
(Fig.1). A trajectory switches from one chart to another
when some real valued functions evaluated on it cross
zero (event functions[4, 13]). We define a running gait as
a trajectory that switches from the s-chart to the ff-chart
and back to the s-chart. A walking gait is defined as a
trajectory that switches from the s-chart to the d-chart
and back again to the s-chart. Switches from the ff-chart
to d-chart or vice versa are not included in this study.

A. Equations of motion in each chart

The motion in all the charts is governed by a system
of ordinary differential equations:

FIG. 1. (Color online) Illustration of the evolution of the
SLIP model for running and walking. The mass is represented
with a filled circle. The color of the fill indicates touchdown
event (black), takeoff event (white), and the crossing of the
section (pink (grey)). The landing leg is pictured with a thick
solid line, and the leg at takeoff is represented with a blurred
line. Due to the passive properties of these models, control
is necessary only during the swing of the leg, i.e. during free
fall while running and from point A to B while walking.

~̇X = ~Fi

(

~X
)

, (3)

where ~X is the vector of state variables and ~Fi is a force
function characteristic of each chart. Since all forces are
conservative, the energy of the system is constant. For
the ff-chart the state is described by the Cartesian coor-
dinates of the position of the point mass and its velocity
~Xff = (x, y, vx, vy)

T
,

~̇Xff =







vx
vy
0
−g






, (4)

where g is the acceleration due to gravity.
The state in the s-chart is represented in polar coor-

dinates ~Xs =
(

r, θ, ṙ, θ̇
)T

, where r is the length of the

spring and θ is the angle spanned by the leg and the hor-
izontal, growing in clockwise direction. Thus, the equa-
tions of motion are:

~̇Xs =











ṙ

θ̇
k
m
(r0 − r) + rθ̇2 − g sin θ

− 1

r

(

2ṙθ̇ + g cos θ
)











. (5)

It is important to note that θ(tTD) = α, i.e. the angular
state at the time of touchdown is equal to the angle of
attack. The parameter r0 defines the natural length of
the spring.
In the d-chart the state is also represented in polar

coordinates ~Xd =
(

r, θ, ṙ, θ̇
)T

, with the origin of coor-

dinates in the new touchdown point. The motion is de-
scribed by:

~̇Xd =





















ṙ

θ̇
k

m

[

(r0 − r) +

(

1−
r0
r

♂

)

(x
♂
cos θ − r)

]

+rθ̇2 − g sin θ

−
1

r

[

k

m

(

1−
r0
r

♂

)

x
♂
sin θ + 2ṙθ̇ + g cos θ

]





















(6)

r
♂
=

√

r2 + x2
♂
− 2rx

♂
cos θ, (7)

where x
♂
is the horizontal distance between the two con-

tact points and r
♂
is the length of the back leg.

B. Event functions

Event functions are functions on the phase space of
the system. An event occurs when the trajectory of the
system intersects a level curve of the event function. At
the time of the event, the current state of the system
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is mapped to the state of another chart. Some event
functions are parameterized with the angle of attack and
the natural length of the springs.
Switches from the ff-chart to the s-chart are defined

by:

Fff→s

(

~Xff , α, r0

)

:

{

y − r0 cosα = 0

vy < 0
, (8)

which means that the mass is falling and the leg can
be placed at its natural length with angle of attack α.
Therefore, the motion is now defined in the s-chart. The
switch in the other directions is simply:

Fs→ff

(

~Xs, r0

)

: r − r0 = 0. (9)

These are the only two event functions involved in the
running gait. The map from one chart to the other is
defined by:

x = −r cos θ y = r sin θ. (10)

It is important to have in mind that the origin of the
s-chart is always at the touchdown point.
For the walking gait, we have to consider switches be-

tween single and double stance phases. From the s-chart
to the d-chart, we have:

Fs→d

(

~Xs, α, r0

)

:

{

r sin θ − r0 cosα = 0

θ > π
2

, (11)

which is similar to (8) with the additional condition that
the mass is tilted forward. Additionally, if we consider
the sign of the radial speed, we differentiate between
walking gait W with ṙ < 0 and Grounded Running gait
GR, with ṙ > 0.
The switch from the double stance phase to the single

stance phase is defined by:

Fd→s

(

~Xd, r0

)

: r
♂
− r0 = 0, (12)

with r
♂
as defined in (7). The map from the d-chart to

the s-chart is the identity. In the other direction we have:

rd = r0 θd = α, (13)

x
♂
= r0 cosα− rs cos θs, (14)

where the subscripts indicate the corresponding chart.
If the system falls to the ground (y ≤ 0), attempts a

forbidden transition (e.g. d-chart to ff-chart), or renders
vx < 0 (motion to the left,“backwards”), we consider
that the system fails.

C. Simulation of the dynamics

The state of the model is observed when the trajectory
of the system intersects the section defined by S : θ = π/2.

In this way, the map Rα : S → S transforms points
through the evolution of the system from the s-chart to
the ff-chart and back again to the s-chart using an angle
of attack α. Similarly, the map Wα : S → S transforms
points through the evolution of the system from the s-
chart to the d-chart and back again to the s-chart using
an angle of attack α.
All initial conditions are given in the S section and in

the s-chart, i.e. only one leg touching the ground and ori-
ented vertically. Moreover, all the initial conditions are
given at the same total energy. The results are visual-
ized using the values of the length of the spring r and the
radial component of the velocity which, in S, equals the
vertical speed ṙ = vy (vx is obtained from these values
and the equation of constant energy). It is important to
note that all possible values of r, vy and vx, for a given
value of the total energy E, lay on an ellipsoid. Besides,
there is a transformation that maps the ellipsoid to a
sphere. This can be shown as follows: the total energy
in the section is,

E =
1

2
k (r0 − r)

2
+

1

2
m

(

v2x + v2y
)

+mgr (15)

Defining the parameters

L =

√

2

k

[

E −mg
(

r0 −
mg

2k

)]

, (16)

ω =

√

k

m
, (17)

the new variables

v̂x =
vx
ω
, (18)

v̂y =
vy
ω
, (19)

r̂ = r −
(

r0 −
mg

k

)

, (20)

transform equation (15) into,

L2 = v̂2x + v̂2y + r̂2 (21)

which defines a sphere. Therefore, all initial conditions
of r̂ and v̂y with constant energy, are defined inside a
circle. A Delaunay triangular mesh was created in the
circle with 65896 initial conditions as vertices (131245
triangles). Each vertex was transformed using Rα, GRα

and Wα with 400 values of α ∈ [55◦, 90◦]. To compute
the evolution of an arbitrary initial condition, we used
bilinear interpolation in the triangles of the mesh.
The model implementation and data analysis were

carried out in MATLAB(2009, The MathWorks), GNU
Octave[14] and Matplotlib[15]. Simulations were run for
constant energy, using the step variable integrator ode45
(relative tolerance: 1 × 10−6 and absolute tolerance:
1 × 10−8). Table I shows the values of the parameters
used.
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TABLE I. Values used for the simulations presented in this
paper.

Description Name Value
Mass m 80 kg
Elastic constant of linear springs k 15 kNm
Rest length of linear springs r0 1 m
Total energy E 820 J
Acceleration due to gravity g 9.81 m/s2

Angle of Attack α from 55◦to 90◦

III. RESULTS

In this section, we present the results of the analysis
on the data collected from the models as described in
section II C. Aiming to define a controller, we introduce
some important properties of the dynamics of each gait,
namely finite stability for a given CAAP and viability.

A. Finite stability and Viability

Finite stability describes the set of initial conditions
where the system can do a maximum amount of steps
(sequential applications of the map) before failing, using
CAAP. For example, we can define for W

EW
n = {x| x ∈ S ∧ (∃α| y = Wn

α (x) , n ≥ 1, y ∈ S)}.
(22)

That is, at a given state x = (r, vy) in S there is a
CAAP (α) such that the system can do at most n steps
before failing. The region EW

0 are all the points in the
section where applying W produces a failure. The exis-
tence of EW

n implies that a controller of the system may
not need to take a decision at each step. In addition, the
controller may exploit this alleviation by planning future
angles of attack. Viability describes how easy is to choose
the future angle of attack. The level of ease is measured
in terms of the size of the interval of angles that can be
chosen to avoid a failure of the system. For the running
gait this region is defined as:

V R (∆α) ={x| x ∈ S∧

(∃α ∈ Iα, ‖Iα‖ ≥ ∆α | y = Rα (x) , y ∈ S)},
(23)

where Iα denotes a real interval and ‖ · ‖ measures its
length. In a real system, it is required that a viable angle
of attack exists for a definite interval, since real sensors
and actuators have a finite resolution and are affected by
noise.
Fig. 2 shows the finite stability regions for each gait.

The stable region of R, as reported in [12] (vy = 0) is
not visible. Although ER

∞ may have some area of at-
traction, due to the resolution we used for the angles of

attack (described in section II C) we do not see it in our
results. Based on results not presented here, we estimate
that the resolution in the angle of attack to detect such
basin for the current energy is ∼ 10−4. In despite of
the low resolution in the angles, the system can perform
an average of 10 steps in R, and at least 25 steps (maxi-
mum calculated) in GR and W . This means that running
is more difficult at this energy level than the other two
gaits. Particularly for GR and W , we see that there is
a plateau with the maximum number of steps. This is
the evidence of the self-stable regions of these gaits, and
the plateau is related to the basing of attraction of that
region.
Fig. 3 shows the V i(∆α) regions for each gait i. Com-

paring with Fig. 2, we see that in general long partial
stability implies wider options for the angle of attack.
Particularly, transitions are found near these regions of
high viability and long partial stability, as will be de-
scribed in the next section.
Fig. 4 shows one of the strongest results presented here.

For each gait i, there is at least one angle of attack that
maps the current state of the system into Ei

∞, and this
angle exists for an extense region of S. This implies that
if we consider control policies with variable angle of at-
tack, almost any point in the section can be rendered sta-
ble. For this region the optimal control policy requires
two angles: the first one maps the point to Ei

∞; the sec-
ond angle, keeps the system in this region.

B. Transition regions

As it was shown in the previous section, the only way of
producing transitions between gaits is to put the system
in a region with finite stability (due to the empty inter-
section of the Ei

∞ regions reported in [12], see Fig 4). In
Fig. 5 we show transitions starting at Ei

n and arriving
at V j (2◦) for i 6= j and (i → j) = {(R → GR), (GR →
W ), (W → GR), (W → R)}. We show the transitions
that will be used in the next example, however transitions
between two any gaits are possible. It shall be noticed
that wherever two regions of different gaits intersect, the
transition is trivial.
Finally, Fig. 6 and Fig. 7 show one example of three

transitions for a given initial condition. The trajectory
has a total of 26 steps and the angle sequence is

α =
(

81.8865, 88.500, 62.400, 72.350, 71.1003, 71.000,

74.400, 72.130, 74.0004, 78.0002, 76.500, 69.000, 81.7284
)

(24)

where the exponent indicates how many times the angle
was used. The path of the center of mass in the Cartesian
plane is also shown in the figures.
All together we have shown that the SLIP model can

be easily controlled to present transitions between gaits.
To find transitions we must search for an intersection be-
tween the future of the starting region and the desired
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FIG. 2. (Color online) Finite stability regions. The figures show initial conditions for R, GR and W that can do multiple steps
under CAAP before failing. A region in white corresponds to Ei

0 for gait i.

FIG. 3. (Color online) Viability regions for each gait. The figures show the range of angles of attack that can be selected in
each initial condition that allows the system give at least one more step. Colors indicate the size of the window, spanning from
0◦to 10◦.

objective region. Depending how these regions are de-
fined, it may be the case that multiple steps are required
to achieve a successful transition.

IV. DISCUSSION

There are two important aspects regarding the vi-
ability regions. First, it is important to notice that
V i(∆α) enclose the Ei

∞ region, and the points that can
be mapped to stable regions in one step (Fig. 4) . Sec-
ond, as it can be seen in Fig. 3, the bigger the range
of the angle of attack is, the smaller the viability region
is. We can take advantage of these properties to stabilize
the system more easily. The selection of an appropriate
∆α e.g. 2◦ defines a set of V i(∆α) inside the section S,
where the controller has at least a range of 2◦ to select
an appropriate angle of attack. Moreover, the agent can
select conservative angles, step by step, to bring itself to

the Ei
∞ region (Fig. 5).

Despite the relief to the controller induced by the vi-
ability region, the selection of the ∆α can generate re-
gions that do not intersect; e.g. in Fig. 4 we can see that
V i(2◦) does not intersect any other region, which makes
the gait transition more difficult to carry out. In order to
cope with this situation, we look at the future of all the
initial conditions in Ei

n. As it is presented in Fig. 5, we
found that there are some initial conditions, that under
a set of angles of attack, are mapped from Ei

n to Ej
n (e.g.

ER
n to EGR

n ). What is also important is that the region
where we can find these initial conditions are inside the
viability region (Fig. 5).
In these terms, the controller has two purposes. First,

based on the state on the S section, it has to select the
gait, and the angle of attack to keep the agent stable.
Thus, the controller needs to have the knowledge of all
the V R(∆α), and the desired ∆α to identify which gait
has to be selected; the angle of attack can be selected
based on the gait model. Second, the controller has to be
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FIG. 4. (Color online) Points that can be mapped to stable
regions in one step. The figures show the initial conditions
that can be mapped to a small neighborhood of the stable
region Ei

∞, |vy | < 1× 10−3 (vy = 0, dashed horizontal lines).
Color indicates the angle chosen. Regions V i(2◦) are marked
with solid lines.

FIG. 5. (Color online) Transitions regions landing in ∆α ≥
2◦. All the initial conditions that have a future inside the
region with ∆α ≥ 2◦ of the objective gait are plotted with
black dots. The same region of the starting gait is given as a
reference and appears shaded. Colors in the objective region
indicate the angle of attack used to perform the transition.
Wherever two regions of different gaits intersect, the transi-
tion is automatically given.

able to produce gait transition when it is needed. Hence,
the transition regions should be known by the controller
and with a model of the gait, the angle of attack re-
quired can be selected. We expect that this approach
can be used to handle uneven terrain, given that these
irregularities can be modeled (under certain restrictions)
as a change in energy.

All these results are conditioned to the selection of the

FIG. 6. (Color online) Transition sequence. The plot shows
a trajectory with three transitions. The Regions V i (2◦) are
shown shaded with self-stable regions in dotted line. The
arrows indicate the order of the sequence and the step number
is given. The angle of attack sequence is given in (24).

FIG. 7. Transition time series. The figure shows the motion
of the point massa in the plane is shown together with the
crossing of the section (filled circles 6). Transition points are
indicated with a vertical line.
a An animation of these transitions can be seen in
http://www.ifi.uzh.ch/arvo/ailab/people/hamarti/GaitT.avi

S section. This means that we are analyzing the system
in only one point in the whole trajectory. From what we
see in these results, in some regions the trajectories are
very close. It would not be a surprise that these trajec-
tories of R, W , and GR cross each other in another point
along their continuous evolution, but given that we are
looking just at the S section, this cannot be anticipated.
Nevertheless, the selection of this section establishes the
angle of attack as a natural control action to stabilize the
system and to generate the transitions.

V. CONCLUSION

In the present study we have taken advantage of the
perspective of hybrid dynamical systems to represent lo-
comotion as a process generated by several charts. Al-
though, this view makes evident a bigger set of connec-
tions among the charts, in this paper we take into ac-
count a small subset (s-chart to ff-chart, and s-chart to
d-chart) which allow us to discover new alternatives to
perform gait transitions. The development of the maps
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W1

α, GR
1

α, R
1

α is fundamental to identify important re-
gions in the S section that bring the system to stable
locomotion and to a gait transition. The present results
bring new ideas about plausible mechanisms that biped
creatures could use to carry out gait transitions and sta-
ble locomotion. These mechanisms exploit the passive
dynamics of the system, which reduces the amount of
energy needed to control the system. These features are
also present in biped machines with compliant legs, and
as suggested in this paper, these mechanisms can be ex-

ploited to develop stable gaits and gait transitions.
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