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We describe a number of strategies for minimizing and calculating accurately the statistical uncer-
tainty in quantum Monte Carlo calculations. We investigate the impact of the sampling algorithm
on the efficiency of the variational Monte Carlo method. We then propose a technique to maximize
the efficiency of the linear extrapolation of diffusion Monte Carlo results to zero time step, finding
that a relative time-step ratio of 1 : 4 is optimal. Finally, we discuss the removal of serial correlation
from data sets by reblocking, setting out criteria for the choice of block length and quantifying the
effects of the uncertainty in the estimated correlation length.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) methods are a class of
stochastic ab initio techniques for solving the many-body
Schrödinger equation [1, 2]. They are capable of achiev-
ing accuracy comparable to that of post-Hartree-Fock
quantum-chemistry techniques but with a much lower
computational cost. The diffusion Monte Carlo (DMC)
method in particular has no close competitors for calcu-
lations of the energy of bulk periodic systems.
The utility of QMC stems from the fact that the cost

of achieving a given error bar scales as ∼ N3 for typical
systems [30], where N is the number of quantum parti-
cles. The method is most useful when studying systems
for which quantum-chemistry calculations are infeasible
and density functional theory does not give a sufficiently
accurate description of electronic correlation. The algo-
rithms are intrinsically parallel, allowing QMC to take
full advantage of developments in computer technology.
The variational Monte Carlo (VMC) algorithm, for ex-
ample, is almost perfectly parallelizable. Furthermore,
existing QMC implementations are easily extended to
different systems. One may apply the same basic algo-
rithms, changing only the form of the trial wave function
and the Hamiltonian, to systems comprising any combi-
nation of particles and interparticle interactions. Because
the trial wave function can be an explicit function of in-
terparticle distances, the Kato cusp conditions and other
correlation effects can be described compactly, without
the need for large expansions of many determinants and
other unwieldy functional forms [4]. For a comprehen-
sive overview of VMC and DMC, the reader is directed
to Refs. 1, 2, 5, 6.
The practical challenges facing QMC are largely con-

cerned with improving the efficiency of the algorithms
and the design of new trial wave functions. The compu-
tational expense of a large calculation necessitates care-
ful selection of the operational parameters. Typically one
has a certain amount of computer time available within

which one wishes to achieve the smallest possible statisti-
cal error in the final result. In addition, the extraction of
an accurate statistical error bar from serially correlated
data is itself nontrivial. In this paper, we outline how
to choose the optimal parameters and algorithms at the
different stages of a QMC calculation and describe how
to process the resulting data.
This paper is structured as follows. Section II gives

an analysis of the many related factors contributing to
the efficiency of VMC calculations. Section III describes
how to improve the efficiency of DMC time step extrap-
olation. In Sec. IV we discuss the calculation of accurate
error bars using the reblocking method and describe a
robust scheme for choosing block lengths. We demon-
strate in Sec. V that uncertainty in the estimated corre-
lation length results in an error in the statistical error bar
that can significantly enhance the probability of observ-
ing outliers. Finally, we draw our conclusions in Sec. VI.
We use Hartree atomic units (~ = |e| = me = 4πǫ0 = 1)
throughout this article.

II. EFFICIENCY OF VMC CALCULATIONS

A. Method

In this section, we discuss practical schemes for achiev-
ing maximal efficiency within the VMC method. We fo-
cus on three aspects of a VMC calculation. The first
is the sampling algorithm, which is how moves are pro-
posed. The second is the use of decorrelation loops, which
consist of additional moves for which we avoid evaluat-
ing the local energy. We will demonstrate that decorre-
lation loops can offer a twofold increase in efficiency. To
our knowledge, there are no quantitative investigations
of decorrelation loops in the literature. The third fac-
tor we consider is the choice of time step, which governs
the width of the transition probability density function
(PDF). Our findings are summarized by the set of rec-
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ommendations in Sec. II E.
Variational Monte Carlo is the simplest and least

computationally expensive QMC method. In the VMC
method, the expectation value of the Hamiltonian Ĥ with
respect to a trial wave function ΨT is calculated using a
stochastic integration technique, giving a variational es-
timate for the ground state energy,

〈ΨT|Ĥ |ΨT〉
〈ΨT|ΨT〉

=

∫

dR|ΨT(R)|2EL(R)
∫

dR|ΨT(R)|2 ≈ 1

n

n
∑

i=1

Ei , (1)

where EL(R) = Ψ−1
T (R)ĤΨT(R) is the local energy and

R is a vector describing all the particle positions. The
set {Ei}i=1,...,n contains n energies and is produced by
evaluating Ei = EL(Ri) at n points {Ri}i=1,...,n in con-
figuration space distributed according to |ΨT(R)|2.
Due to the finite number of samples n, the VMC es-

timate of the energy of Eq. (1) has a statistical error
∆0 = σ0(n/ncorr)

−1/2, where σ0 is the standard devia-
tion of the local-energy distribution and ncorr is the cor-
relation length [7] of the sequence of local energies.
The quantity σ0 only depends on the system and the

trial wave function, whereas ncorr also depends on the
sampling algorithm. Thus, for a given system, trial wave
function, and sampling algorithm, the statistical error
diminishes with the number of configurations sampled as
n−1/2. Suppose one VMC step takes a time Titer. A VMC
calculation is more efficient the less time it requires to
reach a given statistical error ∆0, so if a VMC run takes
a CPU time of T = nTiter to sample n configurations, an
appropriate measure of its efficiency is

E =
(

∆2
0nTiter

)−1
=
(

σ2
0ncorrTiter

)−1
, (2)

which is independent of n. The efficiency of a VMC calcu-
lation can be improved by reducing the product ncorrTiter.

B. VMC sampling

The electronic configurations {Ri}i=1,...,n are gener-
ated using the Metropolis algorithm [8], where a move
from Ri to R

′

i is proposed with probability T (R′

i ← Ri),
and is accepted (i.e., Ri+1 = R

′

i) with probability

A(R′

i ← Ri) = min

(

1,
T (Ri ← R

′

i)

T (R′

i ← Ri)

|ΨT(R
′

i)|
2

|ΨT(Ri)|2

)

, (3)

or otherwise rejected (i.e., Ri+1 = Ri). In fact, if the
wave function can be factorized, one can greatly improve
efficiency using multi-level sampling [9]. All of our cal-
culations use two-level sampling, in which we accept or
reject the move first based on the Slater determinant part
of ΨT(R) and then (if the Slater part of the move was
accepted) based on the Jastrow factor [1].
A simple, commonly used choice for T (R′

i ← Ri) is
the product of Gaussian distributions of variance τ (stan-
dard deviation

√
τ ) for each of the Cartesian components

of the displacement of each electron. By analogy with
DMC, τ is often referred to as the VMC “time step,”
although there is no notion of time in the VMC formal-
ism. We shall restrict our analysis to the case of Gaussian
transition probabilities. Alternatives to this choice have
been proposed [10, 11], but these studies focus on the
statistical improvement for a given number of iterations,
and do not analyze the total efficiency. The simplicity
of the Gaussian distribution represents an efficiency ad-
vantage that is hard to offset with more exotic distribu-
tions. Nonetheless, the conclusions presented here should
mostly be applicable to other transition probabilities.

1. Configuration-by-configuration and electron-by-electron

sampling

In the sampling algorithm we have just described, to
go from Ri to Ri+1 we propose an entire configuration
move, and we accept it or reject it with a single deci-
sion. This is what we call configuration-by-configuration
sampling (CBCS).
However, it is possible to generate Ri+1 from Ri by

proposing N successive single-electron moves and accept-
ing or rejecting each of them individually. The result-
ing algorithm is electron-by-electron sampling (EBES),
which allows larger moves to be accepted, greatly re-
ducing ncorr. This comes at the cost of an increase in
Titer, because evaluating the N acceptance probabilities
in EBES takes longer than computing the single accep-
tance probability in CBCS.

2. Averaging local energies over proposed moves

It is possible to replace the average in Eq. (1) with
an expression where the local energies at R′

i and Ri are
multiplied by the acceptance and rejection probabilities,
respectively, and summed together. For CBCS, the ex-
pression is [12]:

〈ΨT|Ĥ |ΨT〉
〈ΨT|ΨT〉

≈ 1

n

n
∑

i=1

{A(R′

i ← Ri)EL(R
′

i)

+ [1−A(R′

i ← Ri)]EL(Ri)} . (4)

This expression is also a valid approximation to the VMC
energy, with the advantage that rejected moves con-
tribute to the sum, adding new data and improving the
statistics, especially when the acceptance ratio is low.
This translates into a reduction in ncorr. The evalua-
tion of the additional local energies increases Titer, how-
ever. We investigate the balance of these factors below
for CBCS.
We have avoided averaging the energy over proposed

moves in EBES since even with refinements it has been
found to be less efficient than the unmodified algo-
rithm [13].
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3. Decorrelation loops

It is possible to go from Ri to Ri+1 by proposing p
configuration moves in turn instead of just one. In this
scheme one generates a sample of n local energies by per-
forming a calculation consisting of pn moves and evalu-
ating the local energy at every pth configuration.

The cost of one step of a VMC calculation with a decor-
relation loop of length p is

Titer(p) = pTmove + Tenergy , (5)

where Tmove is the time it takes to propose and accept or
reject a single configuration move and Tenergy is the time
it takes to evaluate the local energy [31].

It is possible to establish the precise form of the corre-
lation length ncorr(p) as a function of p. When n → ∞,
ncorr is

ncorr = ncorr(1) = 1 + 2

∞
∑

k=1

Ak , (6)

where Ak is the autocorrelation of local energies sepa-
rated by k steps,

Ak =
1

σ2
0

〈

(El − 〈E〉)(Ek+l − 〈E〉)
〉

l
. (7)

If we assume that the autocorrelation is dominated by a
single exponential term, i.e., Ak = exp(−αk) then Eq.
(6) becomes

ncorr = 1 + 2

∞
∑

k=1

exp(−αk) = 1 + 2
exp(−α)

1− exp(−α) . (8)

Hence exp(−α) = (ncorr − 1)/(ncorr + 1), and the corre-
lation length at p is

ncorr(p) = 1 + 2

∞
∑

k=1

Apk

= 1 + 2
(ncorr − 1)

p

(ncorr + 1)
p − (ncorr − 1)

p , (9)

which falls off as p−1 if ncorr is large. From Eqs. (2),
(5), and (9) we can build the full expression for E , and
it is possible to find the value of p that maximizes E
analytically from estimates of Tmove, Tenergy, and ncorr.

The usefulness of decorrelation loops depends on how
costly it is to evaluate local energies and how much serial
correlation is present. Were it the case that local energies
took no time to evaluate (i.e., Tenergy = 0), the inclusion
of decorrelation loops would not increase the efficiency E ,
and if no serial correlation were present then ncorr(p) = 1,
and increasing p would simply increase the cost of each
step.

C. Automatic optimization of τ

Although the VMC algorithm is valid for any positive
time step, the efficiency of the method depends strongly
on τ . An appropriate time step for EBES VMC can
be very roughly estimated as being such that the root-
mean-square (RMS) distance moved by each electron at
each time step is equal to the most important physical
length scale in the problem. Assuming the acceptance
probability of electron moves is approximately 50%, the
RMS distance diffused is

√

3τ/2 in three dimensions. In
an electron gas the only physical length scale is the radius
rs of the sphere that contains one electron on average, so
the required time step is τ ≈ 2r2s /3. In an atom the
length scale is somewhere between the Bohr radius 1/Z,
where Z is the atomic number, and 1 a.u. However, it is
clear that these crude choices are far from optimal.
There are two commonly-used approximate methods

for choosing τ ; aiming to achieve an acceptance ratio of
50% (the 50% rule), and maximizing the diffusion con-
stant. Both can be implemented so that this optimization
occurs automatically and inexpensively at the beginning
of a VMC run.
In the “50% rule” it is assumed that the ratio a of

accepted moves to proposed moves is representative of
the sampling efficiency, and that a value of 50% is near-
optimal. In general, the two limits of 0% and 100% accep-
tance correspond to a failure to properly explore phase
space, but there is no particular reason why a = 50%
should correspond to optimal sampling.
The diffusion constant D can be computed as the av-

erage of the squared displacement between consecutive
configurations Ri and Ri+1 [32]. One might reasonably
assume that choosing τ to maximize D is an efficient
strategy, although maximization of D does not neces-
sarily correspond to optimal sampling. For example, in
a CBCS study of the homogeneous electron gas, rigidly
translating all of the electrons together results in a very
large diffusion constant but clearly corresponds to poor
exploration of phase space.

D. Empirical data and analysis

We shall consider four basic choices to be made
when performing a VMC calculation with a Gaussian
transition-probability density: whether to use CBCS or
EBES, whether to average local energies over proposed
moves, the value of the “time step” τ , and the length of
the decorrelation loop p.
In order to study the effect of these choices, we have

performed VMC calculations for a set of six representa-
tive systems: a pseudopotential N atom, an all-electron
O atom, a pseudopotential NiO molecule, an all-electron
N2H4 molecule, a three-dimensional homogeneous elec-
tron gas (HEG) composed of 38 electrons at a den-
sity parameter of rs = 1 a.u., and a 16-atom super-
cell of a pseudopotential C diamond crystal [33]. For
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each system, we tested two trial wave functions: one of
Slater-Jastrow form [1, 17] and another of Slater-Jastrow-
backflow form [18, 19].

System τopt popt aopt E50%/Eopt EDmax
/Eopt Ep=1/Eopt

N (pp) 0.20 3 55% 1.00 0.52 0.65

O 0.05 3 58% 0.94 0.40 0.68

NiO (pp) 0.20 5 44% 0.94 0.39 0.41

N2H4 0.05 3 64% 0.62 0.09 0.71

HEG 1.00 3 37% 0.93 0.96 0.73

Diamond 1.00 3 32% 0.94 0.66 0.60

TABLE I: Optimal parameters and comparison of different
efficiencies for EBES using Slater-Jastrow wave functions.
Pseudopotentials (pp) were used in some of the calculations.

System τopt popt aopt E50%/Eopt EDmax
/Eopt Ep=1/Eopt

N (pp) 0.10 8 32% 0.87 0.90 0.33

O 0.01 8 27% 0.82 0.82 0.64

NiO (pp) 0.02 36 17% 0.70 1.00 0.13

N2H4 0.01 13 16% 0.59 1.00 0.42

HEG 0.05 36 9% 0.54 0.88 0.47

Diamond 0.02 36 11% 0.25 0.79 0.13

TABLE II: Optimal parameters and comparison of different
efficiencies for CBCS using Slater-Jastrow wave functions.

For each system and wave function, we have performed
calculations using EBES and CBCS, and for CBCS we
have run calculations with and without averaging over
proposed moves. Finally, for each system, wave function,
and sampling method, we have performed 160 VMC cal-
culations covering 16 different values of τ and 10 different
values of p. In each case we have identified the maxi-
mum efficiency Eopt = E(τopt, popt). To assess the per-
formance of the “50% rule,” we have located the value
of the time step τ50% whose acceptance ratio is closest
to 50% and compared the efficiency E50% = E(τ50%, popt)
with Eopt. To assess the performance of maximizing the
diffusion constant, we have located the value of the time
step τDmax

with the maximum D and compared the ef-
ficiency EDmax

= E(τDmax
, popt) with Eopt. To assess the

importance of decorrelation loops, we have compared the
efficiency Ep=1 = E(τopt, 1) with Eopt. The results of these
comparisons are given in Table I for EBES and Table II
for CBCS, in both cases for the Slater-Jastrow wave func-
tion only; the data for the Slater-Jastrow-backflow wave
function are nearly identical and are not shown.
For the periodic systems the acceptance ratio in EBES

does not reach zero as τ is increased, and as a conse-
quence the efficiency presents a plateau in that region,
where we find that E is close to Eopt. In EBES we also
find that the “50% rule” consistently gives efficiencies

within 10% of the maximum, with the exception of the
N2H4 molecule, where the optimal acceptance ratio is
larger. Maximization of the diffusion constant in EBES
consistently gives time steps that are too large and yields
efficiencies below about 50% of the maximum possible
for finite systems, and between 65% and 95% of the
maximum for periodic systems. In CBCS, maximizing
the diffusion constant achieves reasonable efficiencies, of-
ten within 10% of the maximum value, while the “50%
rule” gives increasingly poor results as the system size
increases. Decorrelation loops improve the efficiency in
EBES by between 50% and 150%. In CBCS these be-
come more important and enhance E by up to a factor of
seven.

EEBES/ECBCS ECBCS/ECBCS2
System N

SJ SJB SJ SJB

N (pp) 5 1.05 0.90 1.22 1.24

O 8 1.47 1.07 1.10 1.17

NiO (pp) 16 1.65 1.22 1.38 1.52

N2H4 18 1.93 0.83 1.11 1.53

HEG 38 3.11 1.95 1.27 1.25

Diamond 64 4.70 2.36 1.14 1.24

TABLE III: Comparison of the efficiency of EBES and CBCS
for Slater-Jastrow (SJ) and Slater-Jastrow-backflow (SJB)
wave functions, and also for averaging local energies over
proposed moves (CBCS2) and computing a single energies
(CBCS).

In Table III we compare the maximum efficiency en-
countered in EBES EEBES with that in CBCS ECBCS for
Slater-Jastrow (SJ) and Slater-Jastrow-backflow (SJB)
wave functions. The fifth and sixth columns of Table III
show the comparison for CBCS when a single energy is
evaluated per configuration move (ECBCS), and where av-
erages of local energies over proposed moves are carried
out (ECBCS2).
EBES is more efficient in all cases, with the excep-

tion of the backflow calculations on the pseudopotential
N atom and the all-electron N2H4 molecule. The im-
provement in efficiency that EBES offers over CBCS in-
creases with system size. Averaging energies over pro-
posed moves is found to be less efficient in every case.

E. Recommendations

Our key finding is that decorrelation loops increase the
efficiency of EBES by roughly a factor of two and that of
CBCS by much more. One can use the expressions in Sec.
II B 3 to determine the optimal loop length p, although
in practice a decorrelation period of p = 3 delivers near-
optimal efficiency in the EBES algorithm for a wide range
of systems.
Based on the data presented in Sec. II D, we sug-

gest that EBES should nearly always be used in VMC,
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the only possible exception being for small systems with
fewer than about 20 electrons when backflow is used.
(Even in this case, CBCS is not much more efficient than
EBES.) When using EBES, one should use the “50%
rule” to optimize the time step τ . If CBCS is used, one
should maximize the diffusion constant to optimize the
time step τ . Finally, we find that accumulation methods
which average local energies over proposed moves are less
efficient for every system tested.

III. OPTIMIZING DMC TIME-STEP

EXTRAPOLATION

DMC is a Green’s function projector method for solv-
ing the Schrödinger equation in imaginary time. In DMC,
the ground state distribution is represented by the den-
sity of walkers (points in configuration space) rather than
by an analytic function. Propagation of a population of
walkers in imaginary time projects out the ground-state
component of the initial DMC wave function [1, 20].

The DMC algorithm is only accurate in the limit of
small time step τ . However, the computational effort
required to achieve a given error bar goes as 1/τ , ruling
out the use of infinitesimal time steps in practice. Hence,
where high accuracy is required, two or more finite time
steps {τi} are generally used and the ground-state en-
ergy is obtained by extrapolating to τ = 0 [1, 2]. Here
we explain how the statistical error in a zero-time-step
extrapolate may be minimized by a judicious choice of
time steps {τi}, and the prudent deployment of a limited
total computing time between those time steps.

For sufficiently small τ , the DMC energy scales lin-
early with the time step as E(τ) = E0 + κτ . Suppose
we calculate E(τ) at R different time steps {τi} in the
linear-bias regime, where each E(τi) has an associated
statistical uncertainty ∆i. The error bars fall off with
the time step τi and the CPU time devoted to the cal-
culation Ti as ∆i = C/

√
τiTi, where C is a constant. To

determine the ground-state energy at zero time step E0,
we minimize the χ2 error of the linear fit,

χ2 =

R
∑

i=1

[E(τi)− E0 − κτi]
2

∆2
i

=
1

C2

R
∑

i=1

Tiτi[E(τi)− E0 − κτi]
2 (10)

with respect to κ and E0. Setting
∂χ2/∂κ = ∂χ2/∂E0 = 0, we obtain

E0 =
2
∑R

i=1

∑R
j=1 E(τi)TiTjτiτ

2
j (τj − τi)

∑R
i=1

∑R
j=1 TiTjτiτj(τj − τi)2

. (11)

Assuming the data are Gaussian-distributed, the square

of the standard error in the extrapolate E0 is

∆2
0 ≈

R
∑

k=1

∆2
k

[

∂E0

∂E(τk)

]2

= 4C2
R
∑

k=1

Tkτk

[

∑R
j=1 Tjτ

2
j (τj − τk)

∑R
i=1

∑R
j=1 TiTjτiτj(τj − τi)2

]2

.

(12)

As expected the standard error falls off as the time steps
{τi} are increased and as more time {Ti} is dedicated
to the calculations. However, τ should not be increased
beyond τmax, the limit of the region in which the bias
is linear. The effort allocated to the calculations cannot
be increased indefinitely because one is constrained by

the total time T =
∑R

i=1 Ti for all of the simulations.
We now minimize ∆2

0 subject to the constraint that T is
fixed.
Let us first suppose that we are to perform just R = 2

simulations. We start by fixing the time steps τ1 and τ2,
and minimizing ∆2

0 with respect to the run lengths in the
presence of a Lagrange multiplier to constrain the total
run time T . This yields the optimal simulation durations

T1 = Tτ
3/2
2 /(τ

3/2
1 + τ

3/2
2 ) and T2 = Tτ

3/2
1 /(τ

3/2
1 + τ

3/2
2 ).

This deployment attempts to reduce the error bar on
the calculation with the smallest time step beyond the
distribution of effort T1/T = τ2/(τ1 + τ2) that would
ensure error bars of equal size. Without loss of generality,
we now assume that τ2 > τ1, with τ2 = τmax pinned near
the boundary of the linear regime, and we search for the
optimal time step τ1. Using the optimal durations T1 and
T2, minimization of ∆2

0 reveals that the optimal choice
of time step is τ1 = τ2/4. The corresponding optimal
physical run times are therefore T1 = 8T/9 and T2 =
T/9. The full dependence of the final error upon the
relative time step τ1/τ2 is shown in Fig. 1.
Now suppose that more than two time steps are used to

perform the extrapolation. We find that ∆2
0 is minimized

when all the computational effort is dedicated to the two
points that are nearest to having a relative time step of
4 and have the largest maximum value of τ . Computa-
tional effort should therefore be focused solely on that
optimal pair as long as the linear regime is well-defined.
There is thus no advantage to using more than R = 2
data points.
Our scheme is the optimal extrapolation procedure

when the extent of the linear regime is known. The strat-
egy is thus highly applicable to studies of many similar
systems where the linear regime can be assumed to be the
same for multiple runs. For systems where the behavior
of the time step bias has not been established, one has
no alternative but to perform multiple runs over a wide
domain of time steps and determine where the spectrum
first increases superlinearly. In such cases, one can use
the RMS distance diffused by an electron over a single
step as an initial order-of-magnitude estimate for where
the linear regime begins. For all-electron atomic systems,
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DMC, T2 / T1 = (τ1 / τ2)
3/2

DMC, T2 / T1 = τ1 / τ2

FIG. 1: (Color online) The uncertainty in the extrapolated
DMC energy against relative step size, τ1/τ2. The solid
line and circles show the uncertainty in the extrapolated re-
sults obtained with the optimal relative run times [T1/T2 =

(τ2/τ1)
3/2], and the dashed line and the triangles with the

effort distributed such that the energies have equally sized er-
ror bars (T1/T2 = τ2/τ1). The symbols are DMC data from
the one-dimensional HEG. The error bars are normalized by
∆τmax, the error bar of a DMC run at the upper time step τ2
if all of the computational resources (T1+T2) were dedicated
to it.

for example, one would expect the linear regime to occur
for time steps less than of the order τ = 1/(3Z2), where
Z is the largest atomic number occurring in the system.
This choice of time step ensures that the RMS distance
diffused is equal to one Bohr radius of the largest atom
under study. For a homogeneous electron gas, where the
only physically-significant length scale is defined by the
density, the equivalent time step would be τ = (r2s )/d,
where rs is the radius of the sphere (circle in 2D) that
contains one electron on average, and d is the dimension-
ality. Time step bias is reduced when the modifications
of Ref. 6 are made to the DMC Green’s function, and
also when higher-quality wave functions are used.
If one has accumulated a significant set of results for

τ < τmax in determining the extent of the linear regime,
the prescription for minimizing the error in the extrap-
olate has the potential to differ from the two-run pro-
cedure. If one has a large amount of computing time
remaining after determining τmax, the two-run approach
is unchanged. In the event that little computing time
remains after determining τmax, one should devote the
remaining time to the run whose contribution falls the
quickest with computer time, i.e., the run i with the
most negative value of ∂∆0/∂Ti, which may be found
from Eq. (12).
Avoiding higher order fitting functions and using only

data from within the linear regime for the extrapolation
is the most robust strategy. Though the formalism here
can be extended to study higher-order fitting functions,
finding the appropriate regimes for higher-order terms
would require a larger amount of computational effort
and there is a danger of numerical stability and branching

problems affecting calculations for very large τ . Linear
extrapolation is always an option since the leading-order
term in the bias is known to be O(τ).

We highlight the benefits of the two-run extrapola-
tion procedure with an example calculation on the 1D
HEG. Once the maximum allowed time step τmax in the
linear regime had been determined, pairs of runs were
performed at τ2 = τmax and incrementally smaller time
steps τ1. The pairs of runs were each performed using the
same total amount of computing time. The time was dis-
tributed either to ensure equal-sized error bars or accord-
ing to the prescription T1/T2 = (τ2/τ1)

3/2 to guarantee
minimal final extrapolated error. The simulation times
were sufficient to ensure that the data could be reblocked
for accurate error estimates. The final extrapolated en-
ergy estimates all agreed to within the expected uncer-
tainty, consistent with the assertion that all of the time
steps are within the linear regime. The results shown in
Fig. 1 highlight that, for the range of τ2/τ1 tested, there is
strong agreement between the analytical prediction and
the DMC results. In particular, the error bar on the ex-
trapolate with the optimal distribution of effort is clearly
minimized by the choice τ2/τ1 = 4. The distribution of
effort according to T1/T2 = (τ2/τ1)

3/2 yields a modest
computational advantage over the choice T1/T2 = τ2/τ1.

In summary, to minimize the statistical error bar on
the DMC energy extrapolated to zero time step, one
should perform one DMC calculation at the largest time
step τmax for which the bias is still linear in the time step
and a second DMC calculation with time step τmax/4.
Eight times as much computational effort should be de-
voted to the latter calculation as to the former. One
could use a similar approach to optimize the efficiency of
extrapolating to infinite population or to infinite system
size in a QMC study of condensed-matter systems.

IV. REBLOCKING

The use of small time steps in DMC results in serially-
correlated data. For accurate estimates of the statisti-
cal uncertainties of DMC expectation values, the serial
correlation must be accounted for. Here, we investigate
reblocking [21], which is advantageous due to its compu-
tational convenience and ease of implementation. We
propose a scheme for the choice of block length such
that accurate error bars may be reliably determined when
an estimate for the correlation length is unavailable and
must be obtained directly from the data.

For most random processes used in Monte Carlo meth-
ods the serial correlation is purely positive, so that
the standard error (treating all samples as independent)
should be multiplied by an error factor ηerr ≥ 1. Let the
new estimate of the standard error be ∆, and let ν be n
divided by the estimated correlation length, i.e., ν ≤ n
measures the estimated effective number of steps. We
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may express ∆ as

∆ = ηerr
√

var[Ei]/n =
√

var[Ei]/ν, (13)

where var[Ei] is the sample variance of the n data points
{Ei} and the error factor ηerr is the square root of the
estimated correlation length [7]. As each step of a QMC
calculation is associated with a time step τ measured in
physical units, a correlation time in physical units can
be defined as tcorr = τncorr(τ). In the limit τ → 0, the
integrated correlation time tcorr becomes independent of
τ and takes a value characteristic of the system under
study.
To estimate ηerr from a set of data points Ei, there

are several commonly-used approaches: computing the
correlation length, reblocking, or using resampling tech-
niques like the jackknife and bootstrap methods [7, 21–
23]. Here we have focused on the reblocking method be-
cause it is computationally convenient (and conceptually
very simple) to apply reblocking continuously as local ob-
servable data are appended to the stored results, vastly
reducing memory requirements [24]. A naive calculation
of the correlation-corrected statistical error necessitates
the storage of O(n) observable values, whereas reblocking
on-the-fly reduces this to O[log(n)].
Reblocking is a method in which a sequence of n se-

rially correlated data points is divided into contiguous
blocks of length B, and the raw data are averaged within
each of these blocks, defining a new data set of length
n/B. The naive variance of the reblocked estimate of the
mean is larger than that of the original data, although the
mean itself is unchanged. The estimated error initially
increases with B, reaching a plateau once the serial cor-
relation has approximately been removed from the data.
When B approaches n, the plot becomes very noisy due
to the small number of blocks.
The reblocking analysis of a typical DMC run is shown

in Fig. 2. The fundamental difficulty in interpreting this
kind of data is the choice of an appropriate block size.
In the case presented here, the run time of 900000 time
steps was sufficiently long to form a clear plateau in the
reblock plot. However, individually inspecting the re-
blocked data of each calculation to make a choice by eye
is neither objective nor efficient. Table IV shows the es-
timated correlation lengths from reblocking the Li data
with different block lengths.
A simple yet robust algorithm for automatically choos-

ing the best block size is as follows. Following Ref. 7, the
block size

Bopt =
3

√

2nn2
corr (14)

offers an appropriate balance between the systematic and
the statistical error in the estimate of the standard error
for any set of n data points with the integrated correla-
tion length ncorr. If a good estimate for ncorr is available
before the data are analyzed, it is best to use this and
thereby make the choice of the block size independent of
the statistical data themselves. In many studies, several
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 = 6.3 ± 0.2

Best block size = 2048

FIG. 2: (Color online) Reblocking analysis of a typical DMC
run (Li atom, with τ = 0.01 a.u. and 900000 time steps). The
optimal block size is chosen by the algorithm described in the
text.

log2 B Estimated ncorr

1 1.762(4)

2 3.140(9)

3 5.51(2)

4 9.34(5)

5 14.7(1)

6 21.0(2)

7 28.9(5)

8 34.0(8)

9 36(1)

10 39(2)

11 40(3)

12 37(3)

13 42(6)

14 44(8)

TABLE IV: The estimated correlation length found from re-
blocking DMC data with block size B. The system was the
Li atom with τ = 0.01 a.u. and 900000 time steps.

runs on similar systems are needed or the knowledge of
tcorr can be used to extrapolate ncorr to small time steps.
In such cases it is best to estimate ncorr once and reuse
it for the choice of Bopt in subsequent calculations, pro-
vided that the physical system and wave-function quality
(and thus the correlation length) are unchanged. The er-
ror factor ηerr obtained in each case can then be used to
double-check the transferability of the estimated correla-
tion length without influencing the choice of Bopt, so that
there is no bias from manually making a data-dependent
choice.
If an independent estimate for ncorr is not available, it

has to be obtained from the analyzed data themselves. In
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this case, the estimated correlation length η2err depends
on the choice of B, so the condition for Bopt becomes
recursive. We consider block sizes that are powers of 2
and start with the largest block size possible, decreasing
B and examining the error factor. The optimal block size
is then the last value of B for which the inequality B3 >
2nη4err(B) is satisfied. We may restrict B to powers of 2
since the block length is expected to be logarithmically
distributed.
In a reblocking analysis for n data points, the relative

error in the error factor for a given block size depends
only on the number of blocks as

δηerr (B)

ηerr (B)
=

√

B

2n
. (15)

Assuming that a user would typically expect at least one
significant digit in the standard error, we can further de-
fine a straightforward criterion for the success of a re-
blocking analysis: if Bopt < n/50, the analysis can be ac-
cepted as successful, otherwise the reliability of the result
is questionable and one should gather more data. Except
for systems with distinct correlation times at extremely
different scales, this criterion is expected to be reliable
in all typical cases occurring in QMC. More than one
correlation time might occur in weakly bound molecules;
the longest correlation time is defined by the size of the
molecule and the shortest is determined by the Bohr ra-
dius of the nucleus with the highest atomic number. In
such cases, it may be necessary to accumulate more data;
the block size should clearly be determined by the longest
correlation length.
In summary, when using reblocking to remove serial

correlation from QMC data, one should ideally obtain
an accurate estimate of the correlation length separate
from the data being analyzed and use Bopt =

3

√

2nn2
corr

to determine the block length [7]. If this is not possible,
one should aim to satisfy the inequalities B3 > 2nη4err(B)
and Bopt < n/50 for a reliable and accurate estimate of
the error.
All methods of accurately calculating the error bar

from serially-correlated data implicitly estimate the cor-
relation length. The noise and associated uncertainty in
estimates of the correlation length introduce error into
the estimated statistical error bar. In the next section
we describe how this can increase the apparent number
of outlying results.

V. OUTLIERS IN QMC RESULTS

A. Introduction

In this section, we investigate the frequency with which
“outliers” occur in QMC results. We define an outlier as
a result located more than a given number of estimated

error bars from the underlying mean value. For example,
one may fit a straight line to DMC energies at small τ .

If there are sufficient data points, the linear fit is a good
estimate of the underlying mean; one would usually ex-
pect, by the central limit theorem (CLT), a fraction 0.32
of the points to deviate from the fitted function by more
than a single error bar. Here we address the observation
that QMC estimates can lie outside statistical error bars
of the underlying mean more often than one would expect
were the error bars correctly describing the width of an
underlying Gaussian distribution. We will demonstrate
that uncertainty in the estimated correlation length is
largely responsible for this effect.
We begin with direct observation of the numbers of

outliers for two systems, the C atom and the Si crystal.
By performing a large number of short VMC calculations
for each system, we count directly the number of energies
occurring more than Q error bars from the underlying
mean, where the error is estimated separately for each
run. Each estimate of the statistical error is also implic-
itly an estimate of the correlation length, as described by
Eq. (13).
To complement the direct approach, we then derive an

analytic expression for the fraction of points expected to
lie more than Q error bars from the mean under the as-
sumption that the distribution of local energies is Gaus-
sian. The resulting expression depends on the distribu-
tion of estimated correlation lengths. Finally, we com-
pare the expected result from this purely Gaussian model
process with that found earlier from VMC, forming con-
clusions about the validity of the Gaussian assumption
and the origin of outliers.

B. VMC calculations

We have performed a large number of VMC calcu-
lations for two typical systems; the all-electron carbon
atom and a periodic crystalline silicon system. For the C
atom we performed 5×104, 2×104, and 104 calculations
of length 200, 500, and 1000 steps, respectively. The Si
system used a periodic simulation cell containing 54 sil-
icon atoms, where the 1s22s22p6 electrons are described
by pseudopotentials. For the Si system, we performed
1.5 × 105, 7.5 × 104, and 3 × 104 calculations of length
100, 200, and 500 steps, respectively.
A short calculation yields an energy and estimated

error. From the data we estimate the probability
P
(

δĒ > Q∆
)

of observing a VMC energy Ē at a po-
sition more than Q∆ from the true mean E0, where
δĒ = |Ē−E0| and ∆ is the estimated error bar, itself also
a random variable. The underlying mean E0 is calculated
accurately using a much longer run. If the error bars ex-
actly described the width of an underlying Gaussian dis-
tribution, one would expect P

(

δĒ > Q∆
)

= erfc(Q/
√
2).

The symbols in Figs. 4 and 5 show the deviation of the
VMC results from this ideal case.
By estimating the statistical error bar for each run, we

are able to estimate pind, which is the distribution of the
estimated effective number of steps ν = n/η2err, where n
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FIG. 3: (Color online) Distribution of ν = n/η2
err from per-

forming 5×104 all-electron VMC calculations for the C atom.
Each calculation consisted of n = 200 steps and the error fac-
tors were obtained by reblocking. The dashed lines show the
accurate effective number of steps, ν0, and the effective num-
ber of steps corresponding to no serial correlation, ν = n.

is the number of VMC steps and ηerr is the error fac-
tor of Eq. (13). An example kernel estimate of pind is
shown in Fig. 3; one can see that ν is occasionally larger
than n. This is clearly unphysical, stemming from noise
in the estimate of the correlation length, and results in
underestimation of the statistical error bar. The distri-
bution pind appears to decay at large ν as ν−A, where A
is between 4.5 and 6.5.

C. Gaussian model

We now attempt to replace VMC sampling with an
ideal process where the underlying distributions are
Gaussian. Our starting point is the distribution of lo-
cal energies, ploc, from which energies are drawn at suc-
cessive points along the random walk in configuration
space. The quantity of interest is again the probability
P
(

δĒ > Q∆
)

of observing a sample mean energy Ē at a
position more than Q∆ from the true mean E0.
Let us assume that the distribution of local energies is

Gaussian,

ploc(EL) =
1√
2πσ0

exp

(−(EL − E0)
2

2σ2
0

)

, (16)

where σ2
0 is the variance of the distribution. Consider

drawing n samples {Ei}i=1,...,n from the PDF of Eq. (16)
using the Metropolis algorithm; this yields ν0 ≤ n inde-
pendent samples due to serial correlation. For this simple
case the sample mean, Ē = (1/n)

∑n
i=1 Ei, has the dis-

tribution

pave(Ē) =

√

ν0
2πσ2

0

exp

(−(Ē − E0)
2

2σ2
0/ν0

)

. (17)

The statistical error bar on Ē is calculated from the same
set of local energies as the estimate itself. However, since
estimates of the correlation length are subject to noise,
there is uncertainty in the effective number of indepen-
dent samples. Although this leaves Ē unaffected, it does
influence the estimated error. As before, we define ν as
the random estimate of ν0 and again refer to the PDF
pind from which ν is drawn.
It is well-known that a sum of squares of normally-

distributed random numbers follows the chi-square dis-
tribution [25]. Since the error bar ∆ is related to the
sample variance through Eq. (13), we can write down
the bivariate PDF perr for ∆ and ν,

perr(∆, ν) =
∆ν−2 exp

[

− ν(ν−1)∆2

2σ2

0

]

pind(ν)

(

ν(ν−1)
σ2

0

)
1−ν

2

2
ν−3

2 Γ
(

ν−1
2

)

, (18)

where ∆ is only allowed to take positive values and Γ is
the Gamma function. It is straightforward to find analyt-
ically the probability of observing an energy more than
Q error bars from the mean as a function of Q and ∆.
This is done by integrating Eq. (17),

2

∫

∞

E0+Q∆

dĒ pave(Ē) = erfc

(

Q∆

σ0

√

ν0
2

)

. (19)

To find the desired probability, P
(

δĒ > Q∆
)

, we evalu-
ate the expectation value of Eq. (19) with respect to the
distribution of ∆ and ν,

P
(

δĒ > Q∆
)

=

∫

∞

2

dν

∫

∞

0

d∆ perr(∆, ν)

× erfc

(

Q∆

σ0

√

ν0
2

)

, (20)

where we have used the fact that the sample mean and
sample variance are independent for Gaussian distributed
random variables [26, 27]. To evaluate the integral of Eq.
(20), we require the distribution pind and an accurate
estimate of the true effective number of steps, ν0. We
will take these quantities from the VMC results of Sec.
VB, so that the integral of Eq. (20) represents an ideal
Gaussian process accompanied by the uncertainty in the
number of independent samples (and thus the correlation
length) that we observe in VMC. The integral of Eq. (20)
can then be evaluated numerically.

D. Results

Figures 4 and 5 show the actual fractions of outliers
from the VMC calculations compared with those pre-
dicted by Eq. (20), which used pind and ν0 from the
VMC calculations but otherwise assumed a model Gaus-
sian process. The fraction of points occurring more than
Q error bars from the mean has been offset by erfc(Q/

√
2)
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FIG. 4: (Color online) Enhancement to the probability of
observing an energy more than Q error bars from the mean
for 54-atom (216-electron) bulk Si. The square, circular and
triangular symbols show the results of VMC calculations of
n = 100, 200 and 500 local energies, respectively. The number
of calculations for each set was (1.5× 107)/n. The lines show
the results of evaluating the integral of Eq. (20), where ν0 and
pind were determined from the VMC data.
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FIG. 5: (Color online) Enhancement to the probability of
observing an energy more than Q error bars from the mean for
the C atom. The circles, squares and triangles represent all-
electron VMC calculations with n = 200, 500, and 1000 local
energies, respectively. The number of calculations for each set
was 107/n. The lines represent the results of evaluating the
integral of Eq. (20), where ν0 and pind were determined from
the VMC data.

in the figures to highlight the deviation from the re-
sult when the correlation length is known exactly, i.e.,
pind(ν) = δ(ν − ν0).
When n takes smaller values, the uncertainty in the

correlation length is greater and the fraction of points
which may be classified as outliers is larger. A poor trial
wave function could also contribute to the effect by reduc-

ing the sampling efficiency. In the case of the C atom, in-
stead of the 0.13 probability of observing an energy more
than 1.5 error bars from the mean that one would expect
on the basis of Gaussian statistics, the VMC results are
consistent with a 0.25 probability (for runs of 200 local
energies). For the C and Si systems, estimating the er-
ror bars for each short run using a single more accurate
estimate of the correlation length (from a single longer
run or by averaging the estimates from each shorter run),

results in a return to P
(

δĒ > Q∆
)

= erfc(Q/
√
2).

For systems exhibiting singularities in the local energy,
the CLT converges only very slowly and one might ex-
pect the non-Gaussian character of pEL

to play a role
in determining the frequency with which outliers are ob-
served [28]. Singularities in the local energy arise when
the description of the wave-function nodes is inexact, as
is the case for the C and Si systems considered here, and
when the cusp conditions are unfulfilled.
We find that the contribution from the non-Gaussian

parts of the energy PDF towards the frequency of out-
liers is statistically insignificant. The evidence for this
is twofold; first, the integrals based on a purely Gaus-
sian ploc agree very well with the VMC data, suggesting
that uncertainty in the correlation length is almost solely
responsible for the effect. Secondly, attempting to fit a
function with power law tails (of the form suggested in
Ref. 28) to the VMC energies yields very small values
for the weight under the tails (usually within error bars
of zero), even though the distribution of local energies is
itself manifestly non-Gaussian [34].
In conclusion, when there is too little data to make an

accurate estimate of the correlation length, the estimated
error is subject to an uncertainty that increases the prob-
ability of observing outliers. For isolated calculations of
a single run, the problem amounts to the gathering of
sufficient data for an accurate estimate of the correlation
length. Where dependence upon several parameters is
being investigated for large systems, one should calcu-
late accurately the correlation length from a single long
run or by averaging many estimates from shorter runs.
The accurate estimate of the correlation length can then
be interpreted as the square of the error factor, ηerr, and
used to calculate the error bars on related calculations
in two ways: either by guiding the choice of block length
(B3 = 2nη4err) or by multiplying the unreblocked error by
ηerr; the two estimates should be roughly consistent.

VI. CONCLUSIONS

In this paper we have developed and carefully tested
new ways of improving the efficiency of QMC calcula-
tions.
Our analysis of VMC efficiency shows that the use of

decorrelation loops approximately doubles the efficiency
of EBES, with a loop of three moves providing the great-
est benefit for a wide range of systems. The improvement
in efficiency for CBCS is much greater. However, we find
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that EBES rather than CBCS yields a higher efficiency,
except in small systems where backflow transformations
are used. Of the automatic schemes for optimizing the
time step that we have considered, attempting to achieve
a move acceptance ratio of 50% leads to the greatest ef-
ficiency within EBES.
For the extrapolation of DMC energies to zero time

step there is a clear optimal strategy. One must first
find the largest time step τ2 for which the energy can be
considered to vary linearly with time step. One should
then minimize the error in the extrapolate by performing
calculations at two different time steps; the first at τ1 =
τ2/4 with computational effort 8T/9, and the second at
τ2 with computational effort T/9, where T is the total
computing time available.
The reblocking method of removing serial correlation

from QMC data offers a significant computational advan-
tage over other methods. Ideally, when choosing a block
size, one should estimate the correlation length for a sys-
tem independently of the serially-correlated data them-
selves. The optimal block length B should be chosen such
that B3 > 2nη4err and B < n/50 [where n is the number
of data points and ηerr is the error factor of Eq. (13)].
This allows automated data processing with a warning
criterion for insufficient data that works reliably in the
absence of multiple correlation periods occurring on dis-
tinctly different scales.
Finally, we note that uncertainty in the correlation

length leads to estimated error bars that have the po-
tential to increase the probability of observing outliers in
QMC results. The size of the effect is dependent on the

system and wave function. One can alleviate the prob-
lem by calculating the statistical error using an accurate
estimate of the correlation length from a longer run. Oth-
erwise, our findings highlight the importance of sufficient
statistics-gathering and caution when interpreting DMC
results for large systems.

Quantum Monte Carlo techniques are not as widely
used as other methods due to their computational ex-
pense and the complexity of carrying out a calculation.
In addition to improving the statistical and computa-
tional efficiency of QMC calculations, the strategies we
have described are straightforward to automate. With
the implementation of such schemes, QMC has the po-
tential to evolve into a true black-box tool. This will
facilitate wider use of the method and improve its relia-
bility.
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