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Abstract 

 

A dissipative particle dynamics (DPD) model for the quantitative simulation of 

biofilm growth controlled by substrate (nutrient) consumption, advective and diffusive 

substrate transport, and hydrodynamic interactions with fluid flow (including fragmentation 

and reattachment) is described. The model was used to simulate biomass growth, decay, and 

spreading. It predicts how the biofilm morphology depends on flow conditions, biofilm 

growth kinetics, the rheomechanical properties of the biofilm and adhesion to solid surfaces. 

The morphology of the model biofilm depends strongly on its rigidity and the magnitude of 

the body force that drives the fluid over the biofilm.  
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I. INTRODUCTION 

Dissipative particle dynamics (DPD) is a stochastic Lagrangian approach introduced by 

Hoogerbrugge and Koelman in 1992 [1]. DPD models are based on the idea that particles can 

be used to represent clusters of atoms or molecules instead of single atoms or molecules to 

provide a simple but robust way of coarse graining the molecular dynamics of dense fluid 

and soft condensed matter systems. DPD particle-particle interactions include conservative 

(non-dissipative) forces that arise from the conservative molecular interactions, and 

dissipative and fluctuating interactions, which are related by the fluctuation-dissipation 

theorem [2, 3]. The dissipative and fluctuating interactions originate from the internal 

degrees of freedom associated with individual DPD particles and together they function as a 

thermostat for the model. The grouping of atoms or molecules into a single DPD particle 

(coarse graining) leads to averaged effective conservative interaction potentials (purely 

repulsive potentials in the standard DPD model) between the DPD particles. Because the 

coarse grained DPD forces are much softer than the intermolecular and inter-atomic forces 

used in realistic molecular dynamics (MD) simulations, much longer time steps can be taken 

in DPD simulations, and the computational cost is substantially reduced. The coarse graining 

also reduces the computational burden, but this is less important than the time step increase. 

This makes DPD a very effective mesoscale particle simulation technique on length and time 

scales larger than those accessible to fully atomistic molecular dynamics (MD) simulations. 

DPD has been extensively used to investigate the effects of the size, shape and rigidity of 

large molecules, and their intermolecular interactions on the behavior of soft condensed 

matter [4-7]. In contrast to smoothed particle hydrodynamics (SPH), another popular particle 

model used in multiphase flow and reactive transport [8, 9], DPD provides a consistent way 
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to simulate the effects of thermal fluctuations on biological systems such as lipid bilayers 

[10] which can be very important at small scales. Recent improvements in the 

implementation of no-slip boundary conditions for particle models make DPD a more 

accurate and efficient way of simulating fluid flow in geometrically complex confined 

systems [11, 12]. Hence, DPD is an attractive approach for the simulation of biological 

systems on supra-atomic length and time scales. 

DPD has been used quite extensively to simulate the dynamic behavior of cell 

membranes, and lipid bilayers, which play very important roles in living cells [13-16]. 

Biofilm can be defined as a microbial community comprised of either a single or multiple 

species embedded in extracellular biopolymer that adheres to a solid substratum. Biofilm 

growth is important in medical applications including the development of tumors [17], the 

microbial contamination of prosthetic devices [18] and stents [19] and dental plaque [20]. 

Modeling the effects of nutrient and metabolic waste transport and fluid flow on biofilm 

development is challenging because of the complexity of the underlying coupled physical, 

chemical and biological processes that govern the evolution of biofilm structures over a wide 

range of scales [21]. Biofilm structure development can be conceptualized as a competition 

between “positive” processes that lead to biofilm volume expansion and “negative” processes 

[21] that lead to biofilm volume reduction. Typical “positive” processes include cell 

attachment, cell growth and division, in response to the transport of dissolved substrate via 

both advection and diffusion from or to the biofilm, and the secretion of extracellular 

polymeric substance (EPS). While typical “negative” processes include cell death, erosion 

(the removal of single cells or small cell clusters from the biofilm) and fracturing or 
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sloughing (the removal of a large number of living and/or dead microoranisms in a single 

event) due to liquid-biofilm hydrodynamic interactions. 

A variety of conceptual models, numerical models and numerical approaches have been 

used to simulate biofilm growth and behavior. A continuum model, similar to a phase-field 

model, which treats both the liquid and the biofilm phase as continuous media, but with 

different diffusion coefficients, sD , was developed by Eberl, Parker and van Loosdrecht 

[22]. However, special attention must be given to the diffusion coefficient of the biofilm 

phase to account for the fact that biofilm spreading is significant only when the biomass 

density, bC , is close to the maximum biomass density, bmC . Grid-based cellular automata 

models have also been developed to simulate biofilm growth [21, 23, 24]. Knutson et al. used 

a lattice Boltzmann method to solve the Stokes equation for low Reynolds number fluid flow, 

a finite differences algorithm to solve the advection diffusion equation and a cellular 

automaton model for biofilm growth. This model takes into account the effect of fluid shear 

stresses on biomass growth [25]. Tartakovsky et al. used a smoothed particle hydrodynamics 

(SPH) method to solve governing transport equations while fluid-biofilm interactions were 

modeled via pair-wise short-range repulsive and medium-range attractive forces [26]. The 

hydrodynamic interactions between flow and biofilm structure can also be included in 

biofilm models by using a finite-element method to solve the stress and strain in the biofilm 

structure at each time step [24].  

In contrast to grid-based computational methods, DPD, as a particle method, has the 

advantages of rigorous mass and momentum conservation and more importantly, explicit 

interface tracking is not needed for complex geometries and topological changes. In this 

paper we describe a novel DPD model for the growth and deformation of biofilm in a 
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flowing fluid. The hydrodynamic interactions between the biofilm and liquid flow are 

expected to be important in this application and they are included naturally in the DPD 

model. The DPD model of biofilm development provides important insight that contributes 

to a better understanding of the mechanisms of biofilm formation, growth and cell death.  

 

II. DISSIPATIVE PARTICLE DYNAMICS MODEL OF BIOFILM   

A. Mathematical model of biofilm 

A mathematical model of biofilm development and behavior is needed to describe the 

associated underlying physical, chemical and biological processes in quantitative terms. The 

entire domain of interest is first divided into three phases, namely the liquid phase, the 

biofilm phase and the biofilm support (substratum) phase. Assuming that trace nutrients are 

present with adequate concentrations, the presence of two types of nutritional substrate, 

electron donors and electron acceptors, are generally required for biofilm growth. If there is 

an unlimited supply of one substrate (either electron donors or electron acceptors) then the 

biofilm growth is limited by the concentration of only one nutritional substrate, S [21, 27]. 

The concentration of the nutritional substrate, S, and the biofilm growth, and are governed by 

the advection-diffusion-reaction equation: 

2/s s s s sC t C D C r∂ ∂ + •∇ = ∇ −V ,       (1) 

where V is the liquid velocity, ( , )sC tx  is the concentration of substrate, S, at position x and 

time t, and sD  is the diffusion coefficient of substrate S in both liquid and biofilm phases (we 

assume equal diffusion coefficients in both phases). The substrate consumption rate in the 

biofilm phase, sr , in units of ( )3
skg m s , is the substrate consumption due to biofilm growth, 

where the subscript s indicates a substrate variable or parameter. The subscript b indicates a 
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biomass variable or parameter and the subscript bs is used for parameters associated with 

biomass-substrate coupling). Following Picioreanu, van Loosdrecht, and Heijnen [27],  we 

assume that for a single substrate, the consumption rate is given by the Monod function  

( )
m b s

s
bs s s

C Cr
Y K C
μ=

+
,         (2) 

where mμ  is the maximum biomass growth rate (s-1), sK  is the substrate saturation constant  

( )3
skg m , and bsY  is the biofilm yield coefficient ( b skg kg the mass of biofilm that can be 

generated from a unit mass of substrate). ( , )bC tx  is the biomass density in units of 3
bkg m . 

The liquid velocity field, V, is given by the incompressible Navier-Stokes equations,  

0∇ • =V ,          (3) 

2/ t P ρ ν∂ ∂ + •∇ = −∇ + ∇V V V V .       (4) 

Equations (3) and (4) describe mass and momentum conservation in the liquid phase, 

where P is the pressure field, ρ  is the liquid density and ν  is the kinematic viscosity. The 

kinetic model describing the biofilm growth and/or decay in the biofilm phase is written as, 

 ( )b bs s s bdC dt Y r m C= − ,        (5)  

where sm  is a maintenance coefficient with a unit of ( )s bkg kg s⋅  representing the biomass 

decay effect. Biomass spreading is important in the biofilm kinetics model. The biomass 

density has a maximum value, bmC , and whenever the biomass density, bC , grows larger 

than the threshold value, bmC , the extra biomass is redistributed giving rise to biofilm volume 

expansion. The original set of equations (1)-(5) can be rewritten in a dimensionless form by 

introducing the characteristic length, cl , and velocity, cv , (time '
c ct l v= ) as the units of 

length and velocity and substituting Eq. (2) into Eq. (5) leading to the equations 
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( )' ' 2
1 4 2/s s s e b s sc t c c P k k c c k c∂ ∂ + •∇ = ∇ − +v ,      (6) 

' 0∇ • =v ,          (7) 

' ' ' ' ' 2 '/ et p R∂ ∂ + •∇ = −∇ + ∇v v v v ,       (8) 

( )'
1 2 3b b s sdc dt k c c k c k= + −⎡ ⎤⎣ ⎦ ,       (9)  

where the dimensionless numbers 1k - 4k  are defined as, 1 m c ck l vμ= , 2 s smk K C= ,  

3 bs s mk Y m μ= , and ( )4 bm bs smk C Y C= . smC  is the maximum substrate concentration in the 

system, and it is used for the purpose of normalization. The dimensionless substrate 

concentration and biomass density are normalized by s s smc C C=  and b b bmc C C= , and they 

both lie in the range 0 to 1. The Reynolds number is defined as, e c cR v l ν=  and the Péclet 

number is defined as e c c sP v l D= . The dimensionless velocity and pressure fields are 

'
cv=v V  and ' 2

cp P vρ= . The dimensionless number 1k  is the ratio between the biofilm 

growth velocity and the characteristic fluid flow velocity. The dimensionless number 3k  is 

the ratio between the biofilm decay rate and the biofilm maximum growth rate, and 4k  is the 

ratio between the maximum biomass density and the biomass yield from the liquid with the 

maximum substrate concentration of smC . Further reduction of this set of dimensionless 

equations ((6)-(9)) by introducing a new time scale '' '
1t t k=  and velocity scale  

'
1k=v v , gives 

( )'' 2
4 2/s s s eb b s sc t c c P k c c k c∂ ∂ + •∇ = ∇ − +v ,     (10) 

0∇ • =v ,          (11) 

'' 2/ ebt p R∂ ∂ + •∇ = −∇ + ∇v v v v ,       (12) 
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( ){ }''
2 3b b s sdc dt c c k c k= + −  ,       (13)  

where the new set of equations contains only three dimensionless numbers, 2k , 3k , 4k ,  and 

two dimensionless constants, 2
eb m cR lμ ν= and 2

eb m c sP l Dμ= . The corresponding 

dimensionless time, velocity, and pressure fields are defined as ''
mt tμ= , ( )m clμ=v V  and 

( )2
m cp P lρ μ= . Some relevant time scales in the DPD model can be identified from Eqs. 

(10)-(13). For example, the time scale for biofilm decay is 31bd kτ =  and the time scale for 

biofilm growth is ( )2bg s sk c cτ = + , with a range of ( )2 1 bgk τ+ ≤ < ∞ , depending on the 

substrate concentration, sc . A lower substrate concentration, sc , leads to slower biofilm 

growth and a longer growth time scale, bgτ . The critical substrate concentration required for 

biomass to keep growing, obtained from Eq. (13) by equating the time scales τbg and τbd 

( bg bdτ τ= ) is ( )2 3 31c
sc k k k= − . The time scale associated with the substrate diffusion is 

d ebPτ =  and the time scale associated with consumption (or reaction) is ( ) ( )2 4c s bk c k cτ = + , 

with a range of 2 4 ck k τ≤ . The time scales for substrate advection and fluid momentum 

diffusion can be defined as 1aτ = v  and m ebRτ = . Biofilm growth is an intrinsically 

multiscale phenomenon characterized by multiple time and length scales. The balance 

between substrate transport and consumption in Eq. (10) determines the substrate 

concentration level sc , which in turn controls the biofilm growth rate through Eq. (13). This 

makes the problem of biofilm growth and decay similar to mineral precipitation and/or 

dissolution problems [28, 29]. By making the time scale of substrate diffusion comparable to 

the shortest substrate consumption time scale ( 2 4d k kτ = ), a dimensionless number (similar 

to the Damköhler number Da in a mineral precipitation and/or dissolution)  
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2

4 2
m c bm

eb
s bs s

l CGR k P k
D Y K

μ= = ⋅         (14)  

can be introduced, and this dimensionless ratio has an important influence on biofilm growth. 

The value of GR characterizes two growth regimes, with a low value of GR corresponding to 

the reaction limited regime and a high value of GR corresponding to the diffusion limited 

regime. Appropriate velocity, concentration and pressure boundary conditions associated 

with Eqns. (10)-(13) must be provided to complete the definition of the model.  

 

B. Dissipative particle dynamics biofilm model 

Standard dissipative particle dynamics (DPD) uses an ensemble of particles to represent 

fluids [1]. DPD particles move due to the combination of conservative (non-dissipative), 

,Cf dissipative, ,Df fluctuating (random) ,Rf and external, ,extf  forces. The equation of motion 

for the DPD particles is  

int/ ( ),ext C D R ext ext C D R
i i i i i i i i i ij ij ij

j i

m d dt
≠

= + = + + + = + + +∑v f f f f f f f f f f   (15)   

where iv  is the velocity of particle i and im  is its mass. In models for single phase fluid flow, 

the conservative forces between particles are usually given by a simple purely repulsive form 

such as ijij
C
ij rrS rf ˆ)/1( 0−=  for 0ij ij ir r= = − <jr r r  and 0=C

ijf  for 0rrij ≥ , where S  is the 

strength of the particle-particle interaction, 0r  is the cutoff range of the particle-particle 

interactions, and ijr̂  is the unit vector pointing from particle j to particle i 

( jijiij xxxxr −−= /)(ˆ ) . The total conservative force acting on particle i is the sum of the 

conservative forces between particle i and all other neighboring particles within the cutoff 

distance, 
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,ˆ)/1(
0,

0∑ ∑
≠ <≠

−==
ij rrij

ijijij
C
ij

C
i

ij

rrS rff         (16)     

where ijS is the strength of the interaction between particle i and particle j. The dissipative 

particle-particle interactions are given by ,ˆ))(( ijijijij
DD

ij rW rvrf ⋅= γ  where γ  is a viscosity 

coefficient and ,ijij vvv −=  for 0rrij <  and 0=D
ijf  for 0rrij >  so that 

0,

ˆ( )( )
ij

D D D
i ij ij ij ij ij

j i j i r r
W rγ

≠ ≠ <

= = − ⋅∑ ∑f f r v r .     (17)    

The random force is given by ˆ( )R R
ij ij ijW rσ ζ=f r  for 0rrij <  and 0=R

ijf  for 0rrij > , where σ  is 

the fluctuation strength coefficient and ζ  is a random variable selected from a Gaussian 

distribution with a zero mean and a unit variance so that  

.ˆ
0,

ij
R

rrij

R
ij

ij

R
i W

ij

rff ζσ∑∑
<≠≠

==              (18)      

The random and dissipative particle-particle interactions are related through the fluctuation-

dissipation theorem [3], which requires that TkB2/2σγ = . Here, Bk  is the Boltzmann 

constant, T is the prescribed DPD simulation temperature, and 2))(()( rWrW RD = , where 

( )DW r  and ( )RW r  are r-dependent weight functions, both vanishing for 0r r≥ . In standard 

DPD models, simple weighting functions defined as ( )2 2
0( ) ( ) 1D RW r W r r r⎡ ⎤= = −⎣ ⎦  

(for 0r r< ) are used. The combination of dissipative and fluctuating forces, related by the 

fluctuation-dissipation theorem [2] acts as a thermostat, which maintains the temperature of 

the system, measured through the average kinetic energy of the particles at a temperature of 

T, provided that the time step used in the simulation is small enough.  



 12

 In the current DPD biofilm model, three types of DPD particles are used to represent the 

three distinct phases (liquid, biofilm, and substratum). The solution of the Navier-Stokes 

equations (Eqs. (11) and (12)) is approximated by the low Mach number flow of a slightly 

compressible fluid represented by the DPD particles. The velocities and positions of the DPD 

particles are found from Eq. (15) using a modified velocity Verlet algorithm to integrate the 

equation of motion [30]. The liquid-biofilm and liquid-substratum particle-particle 

interactions should be strong enough to prevent the penetration of the liquid particles into the 

biofilm and substratum regions and this simulates the no-slip boundary condition on the 

liquid-biofilm and liquid-substratum interfaces.  

The masses of substrate and biomass carried by DPD particle i are specified by the 

substrate concentration, ,s ic , and the biomass density, ,b ic ; and the changes in the substrate 

concentrations in the liquid and biofilm DPD particles are  given by the advection-diffusion-

reaction equation (Eq. (10)). The DPD representation of Eq. (10)  

 ( ), 5 , ,1
, , , ,

2 ,

( ) 2 ( )s i b i s iR c R
ij ij s j s i ij ij s i s j

j i j i s i

dc k c c
W r c c W r c c t

dt k c
λ ζ α λ−

≠ ≠

= − + Δ −
+∑ ∑ , (19) 

is similar to the DPD representation of the heat conduction equation [31-33], where ijλ  is the 

inter-particle diffusion constant between particles i and its neighbor j , which can be related 

to the continuum molecular diffusion coefficient. A simple mean field theory calculation 

yields an a priori estimate for the substrate diffusivity in the DPD model 

system, 2DPD
s DPD ij cD rρ λ∝ , where DPDρ  is the particle density and cr  is the cut off distance 

[33]. The first term on the RHS side of Eq. (19) is a dissipative term that represents the 

diffusive exchange of substrate between neighboring DPD particles due to the concentration 

differences. It also takes into account the random exchange of substrate between DPD 
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particles due to thermally induced concentration fluctuations through the second term. tΔ  is 

the time step used in the DPD simulations, α  is a material constant representing the 

magnitude of the concentration fluctuations, cζ  is a random variable of the same type as ζ  

in Eq. (18), but it is uncorrelated with ζ . The reason why the factor of 1 2t−Δ  is used in Eq. 

(19) is because the average of a random fluctuation acting over a time step of length tΔ  is 

proportional to 2/1tΔ , and this can be represented as a randomly selected constant with a 

magnitude proportional to 1 2t−Δ  acting over a time of tΔ  [30]. The DPD equation for 

evolution of the biomass density obtained from Eq. (13) is: 

( ){ }, , , 2 , 3b i b i s i s idc dt c c k c k= + − .       (20) 

 For the DPD particles that represent biofilm , 0b ic > , and , 0b ic =  for all liquid and 

substratum DPD particles. Biomass spreading is important for biofilm volume expansion. If 

any DPD particle has a biomass density, ,b ic , that exceeds the maximum biomass density bmc  

(a normalized biomass density of unity), the excess biomass is instantaneously transferred to 

the nearest fluid DPD particle within the cutoff distance and this fluid DPD particle is 

spontaneously changed to a biofilm type DPD particle. The excess biomass is assumed to be 

lost if there are no fluid DPD particles within the cutoff range. In practice, biomass grows 

primarily near interface between the biomass and the fluid, and it decays in the interior of the 

biomass domain. If a DPD biofilm particle does not have any fluid particles within the cutoff 

range, it is very probably well inside the biomass domain where the biomass is decaying. 

Therefore, it is very unlikely that excess biomass will be discarded in a simulation. This 

biomass spreading algorithm is similar to the discrete rules used to redistribute biomass in 
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some cellular automata models [23], where a search for “free-space” among the nearest-

neighbor elements is also carried out.  

  

III. RESULTS AND DISCUSSION  

A. Non-deformable biofilm growth   

2D DPD simulations of biofilm growth and fluid flow with ~6000 DPD particles in a 

narrow channel with a width of 20 (half width of 10a = ) and length of 50 were performed. 

Periodic boundary conditions were applied along the flow direction. The density of the fluid 

was set to 4ρ = , and the prescribed temperature for the DPD simulations was set to 

1.0Bk T = . The dissipative and random coefficients were chosen to be 4.5γ =  and 3.0σ =  to 

satisfy the fluctuation-dissipation theorem and the conservative force parameter between 

fluid-fluid particles was set to 18.75ffS = . The DPD parameters were chosen to match the 

compressibility of water [30]. The fluid flow calculations have been validated in the previous 

work [11]. Fluid-wall (or substratum), fluid-biofilm interaction was  18.75fw fbS S= =  - the 

same as the fluid-fluid interaction. Here the subscripts indicate the various types of DPD 

particle-particle interactions (ff represents fluid-fluid interaction, fw represents fluid-

substratum interaction, and fb represents fluid-biofilm interaction). The entire domain was 

divided into 60 30×  bins and data was collected and averaged for each bin to obtain the 

average flow field. Stable flow and concentration fields were first established and then a 

certain number of biofilm particles (8 in the current simulations) were inoculated on the 

lower substratum surface to represent the initial adhesion of microbes. The biomass starts to 

grow due to absorption of substrate from the surrounding liquid. Periodic boundary 

conditions were applied along the flow direction: a fluid particle exiting the right boundary is 
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reinserted into the computational domain through the left boundary with a fixed substrate 

concentration of 1.0 prescribed at the boundary.  

 The Reynolds number ebR  in Eq. (12) is related to the kinematic viscosity DPDν  of the 

DPD fluid under investigation 1 DPD
ebR ν= , with 0.23DPDν =  determined from previous 

work.[11] The Péclet number ebP  in Eq. (10) should be related to the dimensionless diffusion 

coefficient DPD
sD  of the DPD fluid by 1 DPD

eb sP D= . The DPD diffusion coefficient, DPD
sD , is 

approximately related to the inter-particle diffusion constant ffλ  by 3 40DPD
s ffD ρλ≈  for 2D 

simulations [33]. In principle, there are two contributions to DPD
sD : one is from the exchange 

of solute between adjacent DPD particles, and the other from the random motion of the DPD 

particles. The effective diffusion coefficient is the sum of the two contributions. However, 

the second contribution is negligible for large DPD
sD . An external body force of magnitude g , 

acting along the channel axis, was imposed on each fluid particle to initiate and sustain the 

flow. By varying the magnitudes of ffλ  and g , DPD fluids with various diffusion 

coefficients and flow velocities can be generated. In the current simulations, a value of 

3.3ffλ = (or equivalently 1DPD
sD ≈  and 1ebP ≈ ) and 0.02g =  were used as a reference. The 

dimensionless numbers 2 0.0875k =  and 3 0.09k =  were used in all simulations, and various 

values for the constant 4k  were selected to simulate different biofilm growth regimes.  

For the sake of simplicity, the biofilm structures were first assumed to be non-deformable, 

and the positions of the biofilm particles were fixed (once a liquid DPD particle is 

transformed into a biofilm DPD particle due to local biomass spreading, it is not allowed to 

move). Figures 2-4 show the time development of non-deformable biofilm structures 
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simulated with 4 2.0k = , 5.0 and 10.0. The gravity driven fluid flow is from left to right, with 

red (dark gray) representing the substratum (channel wall), blue (light gray) representing the 

flowing liquid and green (white) representing the biofilm phase. The flow velocity vector 

field is indicated by black arrows, and the concentration field is represented by white 

contours from 0.0 to 1.0 with increments of 0.1. A smaller 4k  (or smaller GR) leads to faster 

growth in the biofilm phase and a compact biofilm structure (characteristic of the reaction-

limited regime) was developed (Fig. 2). The separate biofilm clusters grow and merge into a 

large continuous biofilm. At larger 4k  or GR, biofilm growth becomes slower, and a more 

sprawling structure, characteristic of diffusion-limited growth, is formed (Figs. 3 and 4). The 

biofilm growth becomes biased towards the bulk liquid because the biofilm consumes 

substrate and the substrate concentration is highest near the most exposed upstream parts of 

the biofilm.   

 Substrate necessary for biofilm growth must diffuse through a thin layer in which the 

substrate concentration gradient is high to reach the biofilm cells. This concentration 

boundary layer is closely correlated with the hydrodynamic boundary layer generated by the 

no-slip boundary conditions and hydrodynamic screening of the recessed parts of the biofilm-

fluid interface by those parts that protrude into the flowing fluid. The concentration contours 

in Figs. 2-4 reveal that the thickness of the concentration boundary layer (for example the 

separation distance between concentration contours from 0.0 to a small concentration, δ  on 

the order of 0.1) increases with 4k , and a steep concentration gradient was found for fast 

biofilm growth at smaller 4k . The transition from compact growth for small values of 4k  to 

more extended growth for larger values of 4k  is similar to the transition from compact 

reaction-limited precipitation to dendritic diffusion-limited precipitation as the rate of the 
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interface kinetics increases and the growth rate becomes limited by the rate of transport of 

solute to the interface. The thickness of the concentration boundary layer determines the 

resistance to mass transfer in the layer and a thinner boundary layer promotes the diffusive 

substrate transport from the liquid to biofilm phase and leads to faster growth and a more 

compact and smooth biofilm structure. 

 Figure 5 shows the biomass density distribution corresponding to the last snapshot (d) in 

Figs. 2-4. This figure shows only the “live” biomass (it does not take into account the organic 

material that remains after live biomass decays). An interesting finding is that the thickness 

of the biofilm layer that has nonzero live biomass density increases with 4k . For a smaller 

4k , substrate can penetrate further into the biofilm and biomass can grow in a thicker layer, 

while for a large 4k , substrate can penetrate only a small distance into the biofilm, and the 

live biomass is concentrated into a thin layer near the surface. In this situation the internal 

mass diffusion inside the biofilm phase has no significant effect on the substrate conversion. 

Under these conditions, biofilm growth is similar to a surface reaction process in which the 

total substrate absorption is proportional to the total surface area of the biofilm phase [21]. A 

detailed analysis indicates that the thickness of the layer into which substrate can penetrate is 

related to the characteristic substrate diffusion length in the biofilm phase which is given by 

2 2DPD
s ch D GRτ≈ = , where cτ  is the time scale of substrate consumption.  

 The effect of flow velocity on biofilm development is illustrated in Fig. 6. The 

average flow velocity in the channel was changed by changing the gravitational body force, 

im g , that is applied to each liquid DPD particle to drive the liquid through the channel. 

Substrate transport is enhanced by increasing the flow velocity, and biofilm branches situated 

further from the flow inlet can obtain more substrate and grow much faster. This leads to a 
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more compact biofilm structure. In general, the overall growth rate is higher for larger flow 

velocities The thickness of the concentration boundary layer also decreases with increasing 

flow velocity, which results in an increased substrate concentration gradient near to the 

biofilm surface and enhancement of the substrate mass transfer into the biofilm phase. 

However, a higher flow velocity leads to higher shear stresses on the biofilm structure and 

within the biofilm.  

 

B. Deformable biofilm growth 

In order to model deformable biofilm, an interaction potential between biofilm DPD 

particles is needed. Simple Lennard-Jones, biharmonic, and finite extensible nonlinear elastic 

(FENE) potentials have a long history in molecular dynamics studies of solids [34, 35]. In 

this work, a simple harmonic potential with an equilibrium distance, er , that is smaller than 

the cutoff distance, 0r , at which the force falls abruptly to zero and the “bond” between the 

two particles is effectively ruptured, was used to model the interactions between biofilm 

DPD particles, and this results in a soft solid-like biofilm structure. The harmonic potential 

energy and force between biofilm particles i and j are given by: 

2( )
2

bb
ij ij e

e

Se r r
r

= − − ,                                (21) 

ˆ(1 / )ij ji bb ij e ijS r r= − = −f f r  for rij < r0,                                 (22)   

fij = 0 for  rij > r0                                

The biofilm particle interaction strength, bbS , and the equilibrium distance, er , control the 

mechanical properties of the biofilm. In the model, the interaction between a liquid DPD 

particle and a biofilm DPD particle is assumed to be equal to the liquid-liquid interaction 
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( fb ffS S= , with purely repulsive interactions between liquid and biofilm particles). For a 

given geometry and gravitational acceleration, the rigidity of the biofilms is controlled by the 

magnitude of biofilm-biofilm DPD particle-particle interactions. The structure of the 

deformable biofilm responds to changing flow conditions. Two typical scenarios for 

deformable biofilm structures incorporating nutrient substrate transport, biofilm growth, and 

hydrodynamic interactions are shown in Fig. 7. The biofilm-biofilm interaction strength was 

first set to 2bb llS S=  and the gravitational force was set to 0.005g = . The biofilm structure 

was strongly deformed and stretched in the fluid flow direction by the shear stress exerted by 

the flowing liquid at the liquid-biofilm interface, and biofilm bodies can detach very easily as 

seen in Fig. 7. This leads to a flat and smooth biofilm structure. For a deformable biofilm, the 

arms of the structures grown at large GR stretch and bend in the liquid, and eventually break 

at high flow velocity. At an even larger flow velocity, larger stresses at the biofilm-

substratum interface can lead to detachment of the entire biofilm body from the substratum. 

This sloughing process can significantly change the biofilm morphology.  

 

V. CONCLUSIONS  

 A dissipative particle dynamics model for biofilm structure formation has been developed. 

The model incorporates fluid flow, substrate diffusion and advection, biofilm growth, and/or 

deformation. In DPD model, no interface tracking is needed to simulate the complex 

interface dynamics associated with biofilm growth, biofilm deformation and the advection of 

biofilm fragments. A two-dimensional version of the model was used to investigate biofilm 

growth in a narrow channel. The simulation results demonstrate the effects of flow velocity, 

growth parameter, and hydrodynamic interaction on the biofilm growth regime and 
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morphology. It would be straightforward to extend the model to three spatial dimensions, but 

the simulations would require substantially more computational effort.  
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Figure 1. A schematic representation of the DPD biofilm model. Open circles represent 

liquid DPD particles flowing through a channel, filled circles indicate the immobile DPD 

particles used to represent the solid substratum and partially filled circles represent the 

biofilm DPD particle. 

 

Figure 2. (Color online) DPD simulation of the growth of non-deformable biofilm for 

4 2.0k =  and 0.02g = . The snapshots were taken at time t = 30, 60, 90, 120. White lines are 

isoconcentration contours with increment of 0.1 ranging from 0 (close to biofilm) to 1.0 

(close to inlet). Black arrows are the flow velocity vectors and scaled by the magnitude. 

 

Figure 3. (Color online) DPD simulation of the growth of non-deformable biofilm for 

4 5.0k =  and 0.02g = . The snapshots were taken at time t = 60, 120, 180, 240. White lines 

are isoconcentration contours with increment of 0.1 ranging from 0 (close to biofilm) to 1.0 

(close to inlet). Black arrows are the flow velocity vectors and scaled by the magnitude. 

 

 

Figure 4. (Color online) DPD simulation of the growth of non-deformable biofilm for 

4 10.0k =  and 0.02g = . The snapshots were taken at time t = 200, 300, 400, 500. White lines 

are isoconcentration contours with increment of 0.1 ranging from 0 (close to biofilm) to 1.0 

(close to inlet). Black arrows are the flow velocity vectors and scaled by the magnitude. 

 

Figure 5. (Color online) Plot of biomass density (Cb) spatial distribution corresponding to the 

last snapshots (d) in Figures 2, 3, and 4. Wall particles are not shown for clarity. Red color 
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(white) represents the highest biomass density and blue (dark gray) color represents the 

lowers biomass density. 

 

Figure 6. (Color online) DPD simulation of the growth of non-deformable biofilm for 

4 5.0k =  at various flow velocities with 0.005g = , 0.02, and 0.05. White lines are 

isoconcentration contours with increment of 0.1 ranging from 0 (close to biofilm) to 1.0 

(close to inlet). Black arrows are the flow velocity vectors and scaled by the magnitude. 

 

Figure 7. (Color online) DPD simulation of the growth of deformable biofilm for 4 5.0k =  

with 0.005g =  shows the detachment of a part of biofilm body from bulk biofilm structure.  
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