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ABSTRACT 
 
The problem of designing electromagnetic metamaterials is complicated by the pseudo-infinite 

parameter space governing such materials.  We present a general solution based on group theory 

for the design and optimization of the electromagnetic properties of metamaterials.  Using this 

framework, the fundamental properties of a metamaterial design, such as anisotropy or magnetic 

or electrical resonances, can be elucidated based on the symmetry class into which the unit cell 

falls.  This provides a methodology for the inverse problem of design of the electromagnetic 

properties of a metamaterial.  We also present simulations of a Zia metamaterial that provides 

greater design flexibility for tuning the resonant properties of the device that a structure based on 

a simple split-ring resonator.  The power of this Zia element is demonstrated by creating 

bianisotropic, chiral, and biaxial designs using the inverse group theory procedure outlined in 

this paper. 
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1. INTRODUCTION 
 

During the last few years, metamaterials (MMs) have received significant attention in 

research due to their anomalous electromagnetic properties [1] and, hence, their potential for 

unique applications.  In 1968, Veselago proposed the a particular class of MMs, referred to as a 

left-handed metamaterial (LHM), which had several unusual properties, phase and energy flux of 

opposing sign, a negative index of refraction, reversal of the Doppler effect, and flat lens 

focusing [2].  More generally, a MM is any artificial material that exhibits electromagnetic 

properties that are not necessarily displayed by the constituent elements.  This is primarily due to 

resonant effects arising from the periodic orientation of the individual elements, which are 

typically sub-wavelength in size.  Thus, electromagnetic MMs can theoretically exhibit any value 

of permittivity or permeability near the resonance frequency, including negative values.  This 

prospect has led to the proposal of applications ranging from superlenses [3] and the 

enhancement of antenna systems [4], to arguably even electromagnetic cloaking [5]. 

Despite the growing body of work involving MMs, little consensus has emerged 

regarding the optimal structure for producing a given set of electromagnetic properties, although 

a few general design templates such as the split-ring resonator (SRR) [6] have become popular, 

largely due to their relative ease of fabrication.  However, the number of different element 

designs that have been published almost rivals the number of groups investigating MMs.  The 

variety of designs is a reflection of the lack of a formalized method for designing such structures.  

Thus, MM design is often a cyclic process of “educated guesswork” and trial-and-error, making 

extensive use of numerical simulations that are occasionally combined with optimization 

techniques such as genetic algorithms. 

The problem of designing electromagnetic MM is complicated by the pseudo-infinite 

parameter space governing such materials.  If we consider a MM unit cell composed of a simple 

circular SRR on the six faces of a cube, there are 46 = 4096 possible orientations of the cell in the 
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most general case.  Even if we eliminate the orientations that are indistinguishable due to 

symmetry and invoke the quasi-static limit, the number of possibilities that would have to be 

tried in a brute-force approach only reduces to 128.  Given typical simulation times the order of 

tens of hours for a fully-vectorial numerical electromagnetic simulation for this type of structure, 

the problem quickly becomes intractable.  Additionally, such simulations only provide the net 

result with limited insight into the inter-element interactions. 

In this paper, we present general approach to the inverse problem solution based on group 

theory for the design and optimization of the electromagnetic properties of MMs.  There have 

been prior attempts at using group theory analysis for understanding MM behavior and inferring 

design such as the seminal work by Padilla [7] and a subsequently demonstration by 

Wongkasem, et al. [8].  These papers, however, lack the systematic inverse design route that is 

outlined here, and additionally assume erroneous interpretations of the character table and the 

coupling of the linear and axial modes that would make it virtually impossible to design a chiral 

or biaxial MM.  Nevertheless, group theory, when properly applied, can be used to predict 

electric and magnetic behavior of MM inclusions for any incident field, including the existence 

and isotropic nature of the electromagnetic constitutive relationship.  Using this framework, the 

fundamental properties of a MM design can be elucidated based on the symmetry class to which 

the unit cell belongs.  This provides a methodology for the design of the electromagnetic 

properties of a MM, as described in Section 2.  In Section 3, we introduce a new unit cell 

element called the “Zia” which offers similar inductive and capacitive paths as the SRR but with 

additional degrees of freedom for tuning its behavior and engineering a MM of a specific 

symmetry group.  In Section 4, we demonstrate the design of a bianisotropic MM using the Zia 

element based on the inverse problem methodology described in Section 2. A validation of the 

bianisotropic behavior is presented through numerical simulations of the design and the retrieval 

of its electromagnetic properties.  To further reinforce the power of the inverse group theory 
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methodology, the design of a chiral MM based on the Zia element and a validation of its 

behavior by numerical simulations is presented in Section 5, followed by a similar analysis of a 

biaxial MM Zia design in Section 6.  Concluding remarks and discussions are given in Section 7. 

 

2. GROUP THEORY APPROACH 

Group theory has been used extensively in chemistry, where molecules are classified by 

symmetry and the spectroscopic or molecular orbital properties identified according to their 

symmetry groups [9].  This branch of chemistry has a number of similarities to electromagnetism 

that allow for well-developed concepts from that field to be applied analogously to MM design.  

In molecular spectroscopy, molecules are grouped according to their symmetry, with groups of 

the same symmetry exhibiting the same molecular vibrational modes.  Thus, a molecule can be 

identified as, for example IR or Raman active, based solely on its symmetry group and without 

having to evaluate the actual modal solutions of the governing equations of motion. 

By making the comparisons that molecules in chemistry are analogous to MM elements 

in electromagnetics and similarly that molecular normal modes of vibration are analogous to the 

fundamental resonant electrical current modes, we can apply the principles of symmetry and 

point groups to MM designs (Figure 1).  Given these assumptions, the symmetry of a MM 

element is used to determine its point group, a character table is constructed based on the point 

group, and the generalized motion in terms of the normal modes of the element is found from the 

character table.  A point group is a collection of all of the possibly symmetry elements of a MM 

element, and the corresponding character table is a matrix representation of the various 

symmetries represented by the point group.  The details of the process for determining the point 

group of a molecule (MM element) is beyond the scope of this paper, but can be found in many 

chemistry textbooks [10].  As an example, a molecule belonging to the C2v point group, which is 

the same symmetry group as a basic single SRR, is shown in Figure 2 along with the 
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corresponding character table.  The first column on the table lists the point group symmetry 

under analysis (C2v) and its irreducible representations.  The following four columns list the 

symmetry operations of the C2v point group and the corresponding characters, followed by the 

equivalent irreducible representations in linear and quadratic terms of the Cartesian coordinates 

in the last two columns.  Figure 1 also illustrates the symmetry operations for the case of a 

simple C2v molecule, for example H2O.  The character of the molecule expresses the symmetry 

adapted linear combinations, in terms of the irreducible representations.  In molecular chemistry, 

this irreducible representation is combined with the matching atomic orbitals to generate the 

reducible representation corresponding to the symmetry-adapted linear combinations (SALCs) of 

orbitals for that molecule.  When applied to MMs, the reducible representation corresponds to 

the active current modes of the MM element. 

Given that group theory is based upon symmetry rules and symmetry operations, it 

imposes some restrictions on the system under analysis.  First, in the case of MMs it assumes 

that incident electromagnetic fields are quasi-static.  For the electromagnetic fields to be 

considered quasi-static, the unit cell dimension, a, has to be much smaller than the wavelength, λ, 

of the incident field, typically constrained as a/λ < 10.  The commonly accepted explanation of 

the fundamental physics governing MMs is that their anomalous electromagnetic properties arise 

from resonances among the MM elements that give rise to effective constitutive parameters at 

the excitation wavelength [11]-[13].  Second, because the form of the governing Maxwell’s 

equations, the solution of any electromagnetic problem strongly depends on its boundary 

conditions; if they are symmetric, the solution will also be symmetric.  This transforms the 

problem into a boundary value problem where one can predict the symmetry properties of the 

solution without actually solving Maxwell’s equations.  As an example of this principle, group 

theory could be used to predict which field distributions are allowed between two infinite parallel 

conducting plates.  Since any valid solution of the field has to have both vertical and horizontal 
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symmetries, as the parallel plates do, group theory can predict that field distributions having 

corresponding symmetries are allowed while asymmetric ones are not.  Thus, group theory 

makes is possible to find the electric and magnetic properties of any shape without having to 

solve any equations of motion, as long as it posses symmetry and is a good conductor.  Based on 

this group theory approach, the forward problem for determining the properties of a MM can be 

described by the following methodology.  The symmetry point group of the MM is first 

determined based on symmetry operations, which specifies the character table of the symmetry 

group.  This character table determines what electromagnetic behaviors are possible in the MM.  

The reducible representation of the MM topology is then calculated to determine which modes of 

the character table will actually be active, corresponding to the resonant current modes that can 

be coupled to as constrained by the type of excitation that is assumed.  The response of the MM 

design can be confirmed by numerical simulations. 

The power of this technique is fully revealed in the inverse problem approach, where the 

topology of the elements of a MM can be engineered from its desired electromagnetic 

constitutive tensor.  The method, summarized in Figure 3, starts with the selection of a desired 

electromagnetic constitutive tensor, in which the tensor elements that are active (i.e., possibly 

nonzero for ζ, ξ, and off-diagonal ε  and µ terms or possibly non-unity for diagonal ε  and µ 

terms) can be specified, although their actual values cannot be determined by group theory alone 

but rather must be tuned by the geometrical and material properties of the actual MM elements.  

The chosen electromagnetic tensor mandates the form of the electromagnetic interactions that 

produce that behavior, which determines the linear and axial terms that must be present in the 

character table of the corresponding MM elements.  This necessary set of terms allows for the 

elimination of symmetry groups that do not meet the desired electromagnetic response 

constraints, reducing the number of possible symmetry groups (the number of options remaining 

after the reduction may be only one).  The symmetry group that is chosen (most often the one 
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having the least complexity) specifies the character table and hence symmetry operations that 

correspond to any MM element belonging to that symmetry group.  Next, a MM element 

topology is chosen that belongs to the selected symmetry group, which can often be constructed 

of two or more simpler topologies of a closely related symmetry group (as an example, the case 

with the C2v Zia geometry that is essentially composed of two C2 Zia rings, described in detail in 

Section 3).  The reducible representation of the MM element is calculated to ensure the activity 

of the requisite normal modes, which may mandate modification of the topology until the desired 

behavior is produced.  The actual design topology can still take any form that has the correct 

geometrical symmetry, but is often further constrained by fabrication and/or simulation 

capabilities.  Once a topology is selected, the electromagnetic constitutive tensor elements can be 

optimized through a cycle of simulating electromagnetic response of the resulting metamaterial 

and retrieving the tensor elements from the calculated S parameters. 

The constitutive relationship between the electric and magnetic fields in many materials 

can be expressed as tensor of the following form: 

                                                     (1) 

with similar forms for the µ, ζ, and ξ sub-tensors.  Here ε and µ are the regular tensor relations 

between the electric or magnetic flux density (D and B, respectively) and the electric or magnetic 

field intensity (E and H, respectively) typically referred to as the permittivity and permeability, 

respectively; while ζ and ξ are the crossed relations between flux densities and field intensities 

representing the magneto-electric effect.  As an example of how these tensor elements can be 

determined, consider again the analogy between molecular orbitals and currents in MM 

elements.  Since electric field is linear with current, it will transform under symmetry operations 
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as the position vector r, i.e. the linear Cartesian coordinates x, y, z.  On the other hand, the 

magnetic field is axial with the current, and consequently will transform under the rotation Rx, 

Ry, Rz symmetry operations.  Thus, the four quadrants of the electromagnetic constitutive tensor 

are accessed as shown in Figure 4, with the understanding that linear terms correspond to 

currents in straight wires that can interact with an incident electric field of suitable orientation, 

and axial terms correspond to current loops that can interact with an incident magnetic field of 

suitable orientation.  The diagonal ε terms are provided by independent r modes (where r 

represents either x, y, or z), and diagonal µ terms by independent Ri modes (indicating the x, y, or 

z rotational modes); multiple terms that are not enclosed in parentheses indicate simultaneous, 

uncoupled modes.  The ζ and ξ terms are provided by ri,Ri modes (simultaneous linear and axial 

motions), and the off-diagonal ε and µ terms by (ri,rj) (i≠j, i.e. coupled linear motions) and (Ri,Rj) 

(i≠j, i.e. coupled rotational motions) modes, respectively.  This interpretation differs from that of 

Ref. [7], which considered the ri,rj modes to be coupled linear motions, and did not provide 

interpretations for the (ri,rj) notation.  To our understanding, this is an error on the behalf of the 

authors, where the (ri,rj) notation should indicate coupled linear motions (and hence off-diagonal 

ε  and µ terms) and the ri,rj notation should indicate multiple independent linear motions that 

exist for a single mode of a symmetry group.  This can be understood intuitively by considering 

that it is not physically meaningful for linear and rotational modes to be coupled, hence ri,Ri 

modes are never seen enclosed in parentheses. 

 

 
3. ZIA METAMATERIAL 

 
To alleviate the limitations of the SRR design, we have developed a design that retains 

much of the ease of fabrication inherent in the SRR, while adding the ability to independently 

modify the electric and magnetic response.  In addition, the topology of our design maintains the 
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inductive and capacitive paths of the SRR, which give rise to electrical and magnetic resonances, 

respectively, while providing additional degrees of freedom for tailoring the symmetry properties 

of the element, and hence the MM constructed from it.  This design, based on a well-known 

geometry called the Zia [14] shown in Figure 5, was chosen because it combines a ring structure 

that gives it inductance with tunable capacitances across the arms that intersect the ring.  While 

the SRR design has the benefits of relatively easy fabrication and simulation, it is limited by its 

topology to only a few degrees of freedom, primarily the gap width and the metal trace thickness.  

This limitation makes is difficult to tune the electric response of the MM without simultaneously 

changing the magnetic behavior, thus limiting the functionality of the device. 

The Zia design can have essentially infinite variants, such as the C2h and C2n examples 

shown in Figure 5.  Additionally, two or more Zia rings of one symmetry can be combined to 

create a design belonging to a symmetry group; the design marked as C2v in Figure 5 consists of 

two C2h symmetry rings, stacked on top of each other in the planar direction, with one ring 

rotated by an angle of 90º with respect to the other.  This design allows for tuning of the 

electrical resonance, by altering the capacitive arms intersecting the ring in length and/or 

number, independently of the magnetic resonance, which can be tuned by changing the radius of 

the ring and/or adding more than one concentric ring.  Thus, the electric and magnetic 

resonances of the inclusions, and consequently the resonance of the MM, can be aligned without 

rotating the polarization. 

To illustrate the power of this group theory design methodology [15], we detail the 

design of three different metamaterial elements with engineered electromagnetic behavior and all 

based on this Zia element, with focus on the application of the inverse problem solution to each 

MM design.  The highlighted examples include bianisotropic, chiral, and biaxial metamaterials. 

 

4. DESIGN AND SIMULATION OF A BIANISOTROPIC METAMATERIAL 
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Of particular interest in the realm of MMs is the possibility of constructing a 

bianisotropic material [16], in which the electric and magnetic fields are coupled and the 

coupling depends on the direction of the incident wave, since such a material is a promising 

candidate for creating a left-handed MM.  Assuming that reciprocity holds, i.e. ζT = -ξ, a possible 

electromagnetic constitutive relationship that describes a bianisotropic material can be written as 

[17]: 

                                    (2) 

Based on the argument made in the previous section, Eq. (2) implies that the corresponding 

symmetry group must have r , R, and ri,Rj modes, specifically z; Rz; x,Ry; and y,Rx, where an 

electric field in the y-direction yields a magnetic field in the x-direction and vice versa.  The C2v 

group is simplest symmetry group that fits the necessary specifications for these required 

linear/axial modes, as can be seen from the character table in Figure 2.  As mentioned in the 

previous section, the Zia design shown in Figure 5 can be engineered such that it falls into the 

C2v symmetry category, and hence should demonstrate the bianisotropic behavior we seek.  To 

illustrate how suitable MM element belonging to this group can be designed, we start with the 

Zia element and follow the decision chart shown in Figure 6.  The unaltered Zia element by itself 

is immediately excluded from the first two sets of groups, those of low and high symmetry.  A 

single Zia ring has a C2 axis as its highest-order rotation axis, but is also has a perpendicular C2 

axis that designates it as a D group symmetry.  To break this rotational axis, a second identical 

Zia ring is stacked centered with the first ring but rotated by 90°.  Since this design (far right of 
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Figure 5) clearly does not have a horizontal mirror symmetry plane, it satisfies the requirements 

for the C2v symmetry group. 

 To find the resonant modes of the Zia design, each symmetry operation of the character 

table of the C2v point group must be applied to a set of basis currents chosen for a given Zia 

design.  The basis vectors can be represented as current segments of the simplified Zia topology, 

as shown in Figure 7 for a given set of assumed bases.  Next, the effect of each symmetry 

operation on the current basis elements can be tabulated, as shown in Table 1, and the number of 

Table 1. Effect of C2v Symmetry Operations on the Current Basis Elements 

 
 
times each irreducible representation occurs, am, calculated as: 

                                                         (3) 

where h is the number of symmetry operations in the point group, ni is number of symmetry 

operations in each class i, χ is the character of a reducible representation, and χm is character of 

the irreducible representation.  This calculation performed for the Zia design represented in 

Figure 7 results in a reducible representation that can be written as Γ = 4A1 + 6A2 + 5B1 + 5B2.  

The modes of the Zia design are generated by applying the symmetry operations, as shown in the 

following expression 
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(4) 

where φ’ represents a mode of the element.  Finally, the four modes represented in the reducible 

representation are shown in Figure 8 for one of the equivalent topologies possible as allowed by 

the C2v point group symmetry operations.  Note that group theory guarantees that if either the 

electric or magnetic field is coupled and resonates, the other field (either magnetic or electric) 

will be coupled and resonate as well, ensuring that both effects will be tied together and thus 

occur at the same frequency. 

To test the validity of the behavior predicted by group theory, simulations of the Zia 

design were performed using the commercial software package CST Microwave Studio™.  The 

frequency domain solver was used for this application, with unit cell (i.e. periodic) boundary 

conditions implemented to simulate an infinitely large sheet in the in-plane directions of the 

MM.  The single-layer thick Zia structure was modeled with 1µm thick traces composed of gold 

in air as host material; with nominal dimensions listed in Table 2 corresponding to the 

parameters in Figure 9.  Plane waves were launched perpendicular to the MM the sheet from 

both sides and using in two polarizations: vertical linear and horizontal linear.  Although at the 

wavelength of excitation the MM appears essentially identical from either side of the sheet, both  

Table 2. Dimensions of Zia element parameters shown in Figure 9. 
Parameter d rir fw fl fg rw period, a side 
Dimension 50µm 100µm 10µm 100µm 1µm 10µm 4rir = 400µm 0 (centered) 

 
ports were allowed to be the source to verify the reciprocity of the MM.  Same-polarization and 

cross-polarization terms were also calculated to study whether the design preserves the incident 

polarization or imposes an abnormal polarization rotation.  Thus, a total of sixteen S-parameters 
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results were calculated for each two-port simulation, four corresponding to the various S-

parameters for each polarization multiplied by the four possible self- and cross-polarization 

permutations.  Each parameter has the form Si,p,j,q, where i represents the output port number (1 

or 2), p represents the polarization measured at the output port (vertical or horizontal), j 

represents the input port number (1 or 2), and q represents the polarization radiated at the input 

port (vertical or horizontal); for instance, S2,v,1,h represents the transmission coefficient from port 

1 radiating a horizontally polarized wave to port 2 detecting a vertically polarized wave.  Since 

according to Eq. (2) the polarization of an incoming wave is preserved by this MM (no rotation 

of polarization), it is expected that .  Furthermore, since this is a passive 

MM possessing C2v symmetry, we can further predict that  and 

.  This behavior can be deduced from Figure 10, where the 

simulated S-parameters are plotted for frequencies from 67-800GHz.  Three groups of terms can 

clearly be distinguished: the two same-polarization groups, between 0dB and roughly -30dB; and 

the cross-polarization group, below -30dB. 

As mentioned in the previous section, group theory predicts bianisotropic behavior for a 

MM with elements having C2v symmetry; however, no actual information is provided about 

either the existence of resonances or their location in the EM spectrum.  In fact, the case could 

exist where no resonances are found in the effective medium regime (i.e. where the unit cell 

period << λincident), resulting in a design with no actual MM behavior.  To better understand why 

no resonances appeared for this design in the effective medium regime, the Zia element currents 

from the simulations, shown in Figure 11, were compared with the mode predictions in Figure 8.  

The calculated currents agree with the predictions as expected, and highlight the reason for the 

lack of resonance in the structure.  As seen in Figure 11, there is no current circulation around 

the Zia due to lack of return path for the current to form a closed loop.  Instead, currents travel 
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upwards on both sides of the structure to accumulate positive charges on the top during one half 

period, then travel downwards to accumulate positive charges at the bottom during the other half 

period.  Thus, to achieve a net current flow while preserving the C2v symmetry, a bisecting rod 

was added to the design as illustrated in Figure 12, giving rise to two current loops.  Currents are 

allowed to circulate by means of the capacitances provided by the fingers of the modified Zia 

design and can now be excited by an incident electric field via the central “antenna” rod, while 

the loop itself supplies a path for inductance and coupling to a magnetic field.  Using this design 

that provides both a capacitive on the upper Zia ring and an inductive path on the lower ring, 

resonant is guaranteed with its location in frequency dependent only on the physical dimensions 

of the modified Zia, namely, the thicknesses and lengths of the fingers and rings, and the 

separations among the fingers and rings.  It has been previously reported that an electric field 

that crosses the gaps (perpendicular to the gaps) is necessary to obtain a resonance [18].  

However, this turns out to be highly dependent of the topology of the MM element; resonant 

behavior is more dependent on symmetry of the paths parallel to the electric field than the 

orientation of the capacitive gaps.  In fact, the existence and intensity of a resonance depends 

upon the shape of the paths that form the loop which the current flows around.  If a closed path 

that is asymmetric with respect to the electric field can be found, a current will flow around it; 

and if a gap (or capacitance) exists along the path, a resonance, and hence MM behavior, is 

possible.  Thus, a resonance can be observed despite the fact that the electric field is oriented 

parallel to the capacitive gaps instead of crossing them.  This effect explains the appearance of 

currents on the right ring in Figure 12 and not on the left ring. 

The values of the four constitutive relations of the MM were obtained using a retrieval 

code that was developed to extract these values from the calculated S-parameters.  Since it is 

assumed that the Zia MM design is generally bianisotropic, a simple isotropic retrieval code is 

not suitable.   Thus, a code was developed that is able to recover the refractive index n and the 
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input impedance Z for both directions of propagation, as long as they are perpendicular to the 

faces of the MM.  This is significant because although the Zia MM is reciprocal and thus has 

identical forward and backward refractive indices, the forward and backward wave impedances 

need not be the same.  The impedance and can be calculated directly as: 

             (5) 

where t refers to transmission coefficients and r refers to reflection coefficients, and the 

refractive index can be found through the relationship: 

                              (6) 

where k is the wave number and d is the thickness of the MM layer; care should be taken to 

ensure that the correct branch is chosen when inverting the cosine function.  Note that the 

transmission and reflection coefficients are directly related to the S-parameters as t- = S12, t+ = 

S21, r+ = S11, and r- = S22.  The constitutive parameters εxx, µzz, ξxy, and ζyx can be found for a 

wave with perpendicular incidence from the impedance and refractive index as: 

                                                              (7)  

                                                          (8) 

                                    (8) 

                                   (8) 

where µ0 is the free-space permeability and ε0 is the free-space permittivity. 

A series of CST simulations were run to study the topological scaling behavior of the 

modified Zia design and verify that resonances occur as expected due to the asymmetry of the 
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current paths parallel to the electric field.  The values of the constitutive parameters were 

calculated using the retrieval code for each topology.  First, an excitation at perpendicular 

incidence was used to probe the bianisotropic character of the modified Zia MM, as shown in 

Figure 13(a), with the values of fl, rir, and d (see Figure 9) scaled independently from their initial 

values of 100µm, 125µm, and 50µm, respectively.  Resonant behavior is clearly evident in the 

refractive index (Figure 13(b), (d), and (f)) and impedance (Figure 13(c), (e), and (g)) response 

of the MM.  The refractive index increases as expected as fl is increased from 50µm to 139µm 

(Figure 13(b)), since increasing the finger length effectively increases the capacitance of the Zia 

ring.  Correspondingly, the impedance, being inversely proportional to the capacitance, decreases 

as fl is increased (Figure 13(c)).  The wavelength is proportional to the capacitance as well as the 

inductance, and thus increases with increasing fl (Figure 13(b) and (c)), and as rir is increased 

from 75µm to 125µm (Figure 13(d) and (e)), since increasing Zia ring radius effectively 

increases the inductance of the MM.  In addition, the retrieved values in each figure are plotted 

for normal incidence from both the top (solid curves) and the bottom (dashed curves), 

demonstrating the reciprocal nature of this MM.  It is noted, no resonance appears for d = 10µm, 

and saturation of the tuning seen for d > 50µm (Figure 13(f) and (g)).  However, much more 

interesting is that the resonant frequency shifts in the opposite direction as d is increased as fl or 

rir indicating that the separation between the Zia rings can be used as a tuning parameter with 

opposite behavior from the other design parameters yielding an added degree of freedom for 

tuning. 

Next, the same parameter sweeps were performed with the excitation parallel to the plane 

of the modified Zia rings, as shown in Figure 14(a).  Resonant behavior is again observed, with 

much larger shifts in the resonant frequency as the topological parameters are changed, 

particularly for d (Figure 14(f) and (g)), where resonant behavior is seen for all values.  The 

refractive index and impedance values exhibit similar tuning, although with significantly larger 
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magnitudes, most notable the imaginary parts.  Also, the inductive coupling is now much 

stronger due to the alignment of the magnetic field perpendicular to the plane of the Zia rings, 

resulting in larger refractive index and impedance values and an increasing trend as rir is 

increased (Figure 13(e)).  The shift in resonant wavelength with d again appears to saturate 

above d = 50µm (Figure 14(f) and (g)), but has a stronger effect due the orientation.  This again 

offers an additional degree of freedom in tuning the behavior of the MM, and effectively relaxes 

the constraints for fabrication, since the resonant frequency can be shifted over a relatively large 

range without having to change the period of the MM. 

Since group theory predicts bianisotropic behavior only for perpendicular incidence, it is 

also possible to verify the model by checking for the absence of bianisotropic response for 

parallel incidence.  Thus, ξxy, and ζyx were calculated for various values of rir for both 

perpendicular (Figure 15(a) and (b), respectively) and parallel (Figure 15(c) and (d), 

respectively) excitation.  Although at first glance there appears to be resonant behavior for 

parallel incidence, the parameter values are nearly two orders of magnitude smaller than the 

corresponding values for perpendicular incidence, thus confirming the lack of bianisotropy.  Also 

note that the wavelength again increases with rir, as well as ξxy, and ζyx, being the directly 

proportional to the impedance. 

The addition of the bisecting rod resulted in a clear resonance within the effective 

medium regime of the MM, which confirms the necessity of a return path for the currents to form 

a closed loop.  The MM behavior is clearly demonstrated by the artificial values of permittivity 

and permeability obtained, as evidenced by the artificial indices of refraction that vary over a 

range as large as 0.1<n<5 for both perpendicular and parallel incidence. 

 

5. DESIGN AND SIMULATION OF A CHIRAL METAMATERIAL 
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In addition to bianisotropic behavior, metamaterials exhibiting chiral behavior have 

elicited much interest.  To demonstrate the power of the inverse group theory approach, in this 

section we outline the process for design of a chiral MM element.  In such materials, the 

direction of polarization of linearly polarized light is rotated as the beam propagates through the 

material, or alternatively, left circular polarized light with have a different transmission 

coefficient through the material than right circular polarized light.  An example of an 

electromagnetic constitutive relationship for a chiral material is given in Eq. (9), from which it 

can be deduced that the corresponding symmetry group must have ri,Ri modes, i.e. rx,Rx; ry,Ry; 

and rz,Rz. 

                                    (9) 

The simplest symmetry group that fits the necessary specifications is D2; the character table of 

this group is shown in Figure 16(a). 

To design a suitable MM element belonging to this group, we will start with the Zia 

element and follow the decision chart shown in Figure 6.  The Zia element by itself is 

immediately excluded from the first two sets of groups, those of low and high symmetry.  Since 

a cube element topology is desired to enable stacking for a complete 3D MM, the C3 axes 

inherent in the cube geometry must be broken; this was done by rotating the Zia rings on the 

faces perpendicular to the x- and y-directions by 45° in alternating directions, as shown in Figure 

16(b).  The highest-order rotation axis is now a C2 axis, and since we want D group symmetry at 

least one other perpendicular C2 axis must be preserved.  Next, any horizontal mirror planes must 

be eliminated to avoid the Dnh groups, while maintaining a perpendicular C2 axis.  This was 
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achieved by adding 90° bends to the extended fingers of the Zia design in opposite directions top 

and bottom, as shown in Figure 16(b), and then placing the Zia elements centered on the six 

faces of a cube but rotated 180° with respect to the central rod, thus restoring the perpendicular 

rotation axes without adding any mirror symmetry planes.  This final design clearly does not 

have a diagonal mirror symmetry plane, thus satisfying the requirements for the D2 symmetry 

group.  As shown in the character table in Figure 16(a), chiral behavior requires the activity of all 

of the B modes (i.e. B1, B2, and B3).  Following the approach outlined in the previous section, a 

calculation of the reducible representation of this Zia MM element, Γ= 3A1+5B1+5B2+5B3, 

indicates that all 4 modes are active and thus chiral behavior is possible. 

Next, the chiral MM design was simulated using CST Microwave Studio™ to confirm 

the presence of the specified behavior.  The field plot of electrical current on the MM elements, 

shown in Figure 17, verifies that the Zia elements are in fact excited by left or right circular 

polarized incident radiation.  The Zia elements in this case already include the central rod added 

to the bianisotropic design, to ensure that the electric field could couple to the metal traces and 

generate currents.  The plots in Figure 18(a) show the transmission and reflection for the two 

polarizations with incidence from the front and the back of the MM cube.  As expected, the 

transmission (reflection) in the same direction differs for the left circular polarized beam as 

compared with the right circular polarized beam, indicating chiral behavior.  Also, the 

transmission (reflection) with opposite incident directions for the two polarizations is the same, 

indicating that this MM is not symmetric with respect to the left- and right-hand orientations.  

Similar behavior is seen for in the plots of the phase for the transmitted and reflected beams, 

shown in Figure 18(b), confirming that it is indeed a chiral material. 

 

6. DESIGN AND SIMULATIONS OF A BIAXIAL METAMATERIAL 
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As a final example, another metamaterial having electromagnetic tensor corresponding to 

a biaxial, or trirefringent, material is designed here.  In such a material, the index of refraction 

experienced by an incoming beam of light depends on the angle of incidence and state of 

polarization of the beam, with three independent values possible.  An example electromagnetic 

constitutive tensor for a biaxial material is given in Eq. (10), which corresponds to a symmetry 

group having at least 2 ri modes and two Ri modes, in this case rx; ry; Rx; and Ry; all of which 

must be independent.  The symmetry point group corresponding to this behavior that will be used 

here is D2h, as shown in Figure 19(a). 

                                    (10) 

The design of this MM element again begins with the Zia element.  Following the 

decision chart shown in Figure 6, an element is desired that belongs to neither a low nor high 

symmetry group and has one or more rotational axes perpendicular to its C2 axis, thus making it 

a D group.  As with the previous designs, a cube element topology is desired here, which again 

required breaking of the C3 axis symmetries by rotating the Zia rings on the faces perpendicular 

to the x- and y-directions by 45° in alternating directions, as shown in Figure 19(b).  However, 

diverging from the chiral design described above, we now want a horizontal mirror plane to 

satisfy the D2h group symmetry requirements, which is already accomplished by basic Zia design 

for the two parallel rings.  The final modification is to place the Zia elements on the six faces of 

a cube to create a stackable 3D structure, since otherwise the MM will be constrained to a planar-

only topology.  Aligning each opposing Zia pair with the rods aligned, as shown in Figure 19(b), 

ensures that all rotational axes and mirror planes are preserved.  Once again, by analogy to the 
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calculation performed previously, the resulting reducible representation of this MM element is 

Γ=3Ag+5(B1g+B2g+B3g) +4(B1u+B2u+B3u), which clearly contains all of the B modes that 

necessary to enable biaxial behavior. 

The biaxial MM design was also simulated using CST to verify the specified behavior.  

The field plot of electrical current on the MM elements, shown in Figure 20, verifies that the Zia 

elements are in fact excited linearly polarized incident radiation.  In such a material, an incident 

beam that is linearly polarized with the polarization aligned with the principle axes of the 

material will maintain its state of polarization but experience a different refractive index 

depending on the principle axis of the material to which it is aligned.  However, if the 

polarization is aligned at an angle between the principle axes, the incident linear polarized light 

will leave the material with an altered polarization state after propagation through it, exiting with 

generally elliptical polarization.  This change of polarization can be observed in Figure 21, where 

the field vectors of the beam exiting the MM under linearly polarized incident radiation can be 

seen to be rotating during each cycle of the electromagnetic oscillation, indicating elliptical 

polarization and hence biaxial behavior of the material. 

Finally, to avoid the issues of ill-defined problems and cost functions, we have listed the 

various groups with the possible corresponding behaviors in Table 1 to demonstrate that while 

other functionalities may be possible, only the behaviors identified with a specific group are 

well-defined from a group theoretical inverse design point of view.  In addition, the 

demonstration of a given behavior is subject to the activity of the necessary modes of the 

symmetry group.  Thus, there are 48 groups with corresponding possible functionalities; if a 

desired behavior falls outside these functionalities, the design may represent a nonphysical 

problem and at a minimum be ill defined in terms of a group theory design approach. 

 

7. CONCLUSIONS 
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It has been demonstrated that group theory can be an invaluable framework for designing 

MM structures, enabling the prediction of electromagnetic behavior and modal activity based on 

the MM element unit cell alone.  However, we have shown that the real strength of group theory 

applied to MM design lies in the ability to address the inverse design problem, narrowing the 

infinite choice of possible MM element to a defined set of symmetry choices based on the choice 

of a desired electromagnetic constitutive relationship.  We also introduced the Zia element as a 

flexible and practical topology from which to build an arbitrary MM design.  The power of the 

inverse problem solution via group theory was demonstrated with the design of a bianisotropic, 

chiral, and biaxia MM, using the Zia design template as the starting point.  The value of the Zia 

MM was highlighted for the bianisotropic design, where it provided several degrees of freedom 

that allowed for engineering of tailored refractive index and impedance values over a relatively 

wide range of frequencies, with demonstrated tuning of the refractive index from 2.5 at λ ≈ 

2200µm (135GHz) to 4 at λ ≈ 3500µm (85GHz). 

Simulations confirmed that strong coupling between electric and magnetic fields was 

achieved for our bianisotropic MM at a resonance frequency and perpendicular incidence that 

was absent at parallel incidence, confirming the behavior of the design.  Simulation results for 

the chiral MM showed the characteristic difference in transmission amplitude and phase for 

right-handed vs. left-handed polarization.  Also, the rotation of polarization resulting in off-axis 

linear polarization converting to elliptical polarization inherent in biaxial materials was 

evidenced our biaxial MM design.  Thus, this group theory approach to the inverse MM design 

problem represents a formidable technique for the design and optimization of MM devices. 
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LIST OF TABLES 

 

Table 1.  List of symmetry groups and their corresponding electromagnetic behaviors subject to 

the activity of the designated modes. 

Group Active Modes Behavior 

C1 A unspecified 

Cs A’, A’’ general bianisotropic 

Ci Ag, Au biaxial 

C2 A 

B 

chiral 

bianisotropic 

C3 A 

E 

chiral 

general bianisotropic 

C4 A 

B 

E 

chiral 

unspecified 

general bianisotropic 

C5 A 

E1 

E2 

chiral 

general bianisotropic  

unspecified 

C6 A 

B, E2 

E1 

chiral 

unspecified 

general bianisotropic 

C7 A 

E1 

E2, E3 

chiral 

general bianisotropic  

unspecified 

C8 A 

B, E2, E3 

E1 

chiral 

unspecified 

general bianisotropic 

C2v A1, A2 

B1, B2 

uniaxial 

bianisotropic 

C3v A1, A2 

E 

uniaxial 

general bianisotropic 

C4v A1, A2 

B1, B2 

uniaxial 

unspecified 
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E general bianisotropic 

C5v A1, A2 

E1 

E2 

uniaxial 

general bianisotropic 

unspecified 

C6v A1, A2 

B1, B2, E2 

E1 

uniaxial 

unspecified 

general bianisotropic 

C2h Ag, Au 

Bg, Bu 

uniaxial 

biaxial 

C3h A’, A’’ 

E’, E’’ 

uniaxial 

general anisotropic 

C4h Ag, Au 

Bg, Bu 

Eg, Eu 

uniaxial 

unspecified 

general anisotropic 

C5h A’, A’’ 

E1’, E1’’ 

E2’, E2’’ 

uniaxial 

general anisotropic 

unspecified 

C6h Ag, Au 

Bg, Bu, E2g, E2u 

E1g, E1u 

uniaxial 

unspecified 

general anisotropic 

D2 A 

B1, B2, B3 

unspecified 

chiral 

D3 A1 

A2 

E 

unspecified 

chiral 

general bianisotropic 

D4 A1, B1, B2 

A2 

E 

unspecified 

chiral 

general bianisotropic 

D5 A1, E2 

A2 

E1 

unspecified 

chiral 

general bianisotropic 

D6 A1, B1, B2, E1 

A2 

E2 

unspecified 

chiral 

general bianisotropic 

D2d A1, B1 

A2, B2 

E 

unspecified 

uniaxial 

general bianisotropic 
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D3d A1g, A1u 

A2g, A2u 

Eg, Eu 

unspecified 

uniaxial 

general anisotropic 

D4d A1, B1, E2 

A2, B2 

E1, E3 

unspecified 

uniaxial 

general bianisotropic 

D5d A1g, E2g, A1u, E2u 

A2g, A2u 

E1g, E1u 

unspecified 

uniaxial 

general anisotropic 

D6d A1, B1, E2, E3, E4 

A2, B2 

E1, E5 

unspecified 

uniaxial 

general bianisotropic 

D2h Ag, Au 

B1g, B2g, B3g, B1u, 

B2u, B3u 

unspecified 

uniaxial, biaxial 

D3h A1’,  A1’’ 

A2’,  A2’’ 

E’,  E’’ 

unspecified 

uniaxial 

general anisotropic 

D4h A1g, B1g, B2g, A1u, 

B1u, B2u 

A2g, A2u 

Eg, Eu 

unspecified 

 

uniaxial 

general anisotropic 

D5h A1’,  A1’’, E1’,  E1’’ 

A2’,  A2’’ 

E1’,  E1’’ 

unspecified 

uniaxial 

general anisotropic 

D6h A1g, B1g, B2g, E2g, 

A1u, B1u, B2u, E2u 

A2g, A2u 

E1g, E1u 

unspecified 

 

uniaxial 

general anisotropic 

D8h A1g, B1g, B2g, E2g, 

E3g, A1u, B1u, B2u, 

E2u, E3u 

A2g, A2u 

E1g, E1u 

unspecified 

 

 

uniaxial 

general anisotropic 

C∞v A1, A2 

E1 

E2, E3, … 

uniaxial 

bianisotropic 

unspecified 

D∞h A1g, E2g, A2u, E2u, … unspecified 
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A2g, A1u 

E1g, E1u 

 

uniaxial 

general anisotropic 

S4 A, B 

E 

uniaxial 

bianisotropic 

S6 Ag, Au 

Eg, Eu 

uniaxial 

general anisotropic 

S8 A, B 

E1 

E2, E3 

uniaxial 

bianisotropic 

unspecified 

T A, E 

T 

unspecified 

general bianisotropic 

Td A1, A2, E 

T1, T2 

unspecified 

general anisotropic 

Th Ag, Au, Eg, Eu 

Tg, Tu 

unspecified 

general anisotropic 

O A1, A2, E, T2 

T1 

unspecified 

general bianisotropic 

Oh A1g, A2g, Eg, T2g, 

A1u, A2u, Eu, T2u 

T1g, T1u 

unspecified 

 

general anisotropic 

I A, T2, G, H 

T1 

unspecified 

general bianisotropic 

Ih Ag, T2g, Gg, Hg, Au, 

T2u, Gg, Hg 

T1g, T1u 

unspecified 

 

general anisotropic 


