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ABSTRACT 

 

 The magneto-Rayleigh-Taylor instability (MRT) of a finite slab is studied analytically 

using the ideal MHD model.  The slab may be accelerated by an arbitrary combination of 

magnetic pressure and fluid pressure, thus allowing an arbitrary degree of anisotropy intrinsic to 

the acceleration mechanism.  The effect of feedthrough in the finite slab is also analyzed.  The 

classical feedthrough solution obtained by Taylor in the limit of zero magnetic field, the single 

interface MRT solution of Chandrasekhar in the limit of infinite slab thickness, and Harris’ 

stability condition on purely magnetic driven MRT, are all readily recovered in the analytic 

theory as limiting cases.  In general, we find that MRT retains robust growth if it exists.  

However, feedthrough may be substantially reduced if there are magnetic fields on both sides of 

the slab, and if the MRT mode invokes bending of the magnetic field lines.  
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I. INTRODUCTION 

 When a fluid slab of a finite width is accelerated in vacuum, one interface is subjected to 

the Rayleigh-Taylor instability (RT) while the other interface is stable, intuitively.  How the 

perturbation on the unstable interface “feeds through” to the stable interface is an important 

issue. While this RT feedthrough was solved by Taylor in hydrodynamics [1] and used in laser 

fusion [2], it was hardly addressed when the slab is driven by a magnetic pressure, in which case 

the instability is known as the magneto-Rayleigh-Taylor instability (MRT) [3-8].  MRT is 

important to peta-watt pulsed-power system development, wire-array z-pinches and magnetized 

target fusion [8,9], and equation-of-state studies using flyer plates [10] or isentropic 

compression [11].  It is also important to the study of the crab nebulae [12].  MRT, because of 

the presence of magnetic fields, is necessarily anisotropic on the interface.  This anisotropy is 

markedly different from the conventional RT, defined here to be free of magnetic field.  

Surprisingly, the fundamental question of MRT anisotropy on a finite fluid slab was also rarely 

studied analytically.  In this paper, we treat MRT anisotropy and feedthrough with an ideal 

magnetohydrodyamic (MHD) model. 

 For a study of MRT feedthrough and anisotropy, one needs to go back to Harris’ 1962 

paper [3], which remains a key reference in recent literature [8].  This pioneering work of 

Harris, unfortunately, obscures the distinction between MRT and RT as far as anisotropy and 

feedthrough are concerned.  One reason is that, early on, Harris eliminated the magnetic field in 

favor of gravity through the equilibrium condition.  Thus, his stabilization condition for MRT, 

stated in his abstract, becomes independent of the magnetic field.  This stabilization condition, 

at first sight, bears little resemblance to those developed by Kruskal and Schwartzschild [4] and 

by Chandrasekhar [5].  These prior works on MRT were not cited by Harris.  When Harris 

considered the feedthrough factor, he concentrated only on the MHD mode which does not bend 

the magnetic field line.  Not surprisingly, then, the feedthrough factor that he obtained is the 

same as that obtained for RT by Taylor [1], further obscuring the crucial distinction between RT 

and MRT.   Here we vastly extend Harris’ slab model.  In the lab frame, the magnetized fluid 

slab may be accelerated by an arbitrary combination of fluid pressure or magnetic pressure.  The 

classical results of Taylor [1], Chandrasekhar [5], and Harris [3] are all readily recovered as 

limiting cases.  MRT anisotropy and feedthrough is analyzed in detail for a specific case that is 

relevant to our ongoing MRT experiment [13]. 
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II. EQUILIBRIUM AND STABILITY 

 The model under study is shown in Fig. 1.  It consists of three regions, I, II, and III.  In 

the accelerated frame, the three regions are stationary. In this rest frame of the interfaces, we 

use the ideal MHD model.  In each region, we assume that the fluid is incompressible, and is 

perfectly conducting.  Thus we solve the equations: ( / )t p gρ ρ∂ ∂ + ⋅∇ = −∇ + × −v v J B x , 

/ ( ) 0tρ ρ∂ ∂ + ∇ ⋅ =v , 0∇ ⋅ =v , / ( )t∂ ∂ = ∇× ×B v B ,  and 0μ∇× =B J .  Here, ρ is the mass 

density, v is the fluid velocity, p is the fluid pressure which is assumed to be isotropic, J is the 

current density, B is the magnetic field, g is the gravity in the negative x-direction [Fig. 1], x is 

the unit vector, and μ0 is the free space permeability.   

 We assume that in equilibrium, within each region of Fig. 1, 

 0 0 0 0constant,  0,   = constant,  0 Bρ = = = =0v B z J , (1) 

and p0(x) is a linear function of x.  The fluid pressure p0, as well as the magnetic pressure 
2
0 0/ 2B μ , may suffer a discontinuity at the interfaces, x = α and x = β [Fig. 1].  The total 

pressure, 2
0 0 0/ 2p B μ+ , is continuous at both interfaces.  In addition, the weight in region II of 

thickness Δ = α - β, is supported by the pressure difference between the two interfaces, α and β,  

 
2 2
01 03

02
0 02 2I III

B Bg p pρ
μ μ

⎡ ⎤ ⎡ ⎤
Δ = + − +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
, (2) 

where pΙ  is the equilibrium fluid pressure at the top of region I, and pΙΙΙ  is the equilibrium fluid 

pressure at the bottom of region III.  In the lab frame, the acceleration, which equals –g, may 

therefore be driven by an arbitrary mix of fluid pressure (pΙ,  pΙΙΙ) or magnetic pressure (B01,  B03), 

as long as the above equilibrium conditions are satisfied.   If the magnetic field is discontinuous 

at an interface, there is a surface current, K0, at that interface.  At the interfaces α and β, the 

surface current is given by 0 02 03 0 0 01 02 0( )/ ,    ( )/K B B K B Bα βμ μ= − = − .  When the interface 

α is very far away from the interface β, Δ becomes large and this reduces to the single interface 

problem treated by Kruskal and Schwartzschild [4] and by Chandrasekhar [5]; the equilibrium 

condition, Eq. (2), is to be interpreted accordingly.  In our analysis, we assume that the gravity, 
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g, is an independent, pre-assigned constant.   The only requirement is that the equilibrium 

conditions are satisfied. 

 We next consider a small signal perturbation on the equilibrium of the 3-region geometry 

shown in Fig. 1.  Within each region, I, II, or III, all perturbation quantities are assumed to be of 

the form 1( ) y zi t ik y ik zu x e ω − − .  We next follow Chandrasekhar [5] to solve the linearized MHD 

equations for each region, and match the various conditions at the lower interface, and then at the 

upper interface.  This leads to a dispersion relation of the form, 4 2 0R Sω ω− + = , where R and S 

are functions of  B01, B02, B03, ρ01, ρ02, ρ03, g, Δ, ky, and kz.  The details will be given elsewhere.  

Here, we note that there are four modes of ω.  They appear in positive and negative pairs, 

1ω ω= ± , and 3ω ω= ± .  We shall henceforth denote ω1 the most unstable mode, 

 
2

2
1 2 4

R R Sω = − − . (3) 

We note that 2
3ω  is also given by Eq. (3) except that the minus sign in front of the square root is 

replaced by the plus sign.  From the energy principle for ideal MHD, ω2 is real [14], and 

therefore,  R2/4 – S > 0, always.  

 

III. FEEDTHROUGH AND ANISOTROPY 

 We follow Taylor’s approach [1] to examine the feedthrough factor by considering the 

temporal evolution of sinusoidal ripples at the lower and upper interfaces, respectively denoted 

as, ξβ(t) and ξα(t) [Fig. 1].  We assume that, at t = 0, 

0(0) ,  (0) 0,  (0) 0,  (0) 0β β β α αξ ξ ξ ξ ξ= = = = , i.e., initially, the sinusoidal ripple at the interface at 

x = β has an initial amplitude ξβ0, but zero initial velocity; whereas the interface at x = α is 

undisturbed.  We find the following solution, 

 1 1 3 3( ) cos( ) cos( )t p t p tβξ ω ω= + , (4) 

 1 1 1 3 3 3( ) ( ) cos( ) ( ) cos( )t p F t p F tαξ ω ω ω ω= + , (5) 
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where 

 0 3 0 1
1 3

3 1 3 1

( ) ( )
,

( ) ( ) ( ) ( )
F F

p p
F F F F

β βξ ω ξ ω
ω ω ω ω

= = −
− −

. (6) 

Equations (4) and (5) clearly satisfy the initial conditions.  In Eq. (5), F(ω1) is the feedthrough 

factor from the β interface to the α interface for the modes 1ω ω= ± , and F(ω3) is the feedthrough 

factor from the β interface to the α interface for the modes 3ω ω= ± .  Below, we shall recover 

the familiar feedthrough factor F(ω1) = e-kΔ for the unstable mode, ω1= -i(kg)1/2, that was 

obtained by Taylor [1] and Harris [3] in the appropriate limits.  

We shall henceforth consider the special case where regions I and III are a vacuum, and 

region II is magnetic field free, i.e., ρ01 = ρ03 = 0, and B02 = 0 in Fig. 1.  This case mimics the 

MRT experiments currently being conducted at the University of Michigan [13], and is also a 

generalization of Harris’ model to nonzero B03.  For this case, we find,  

 2 2 2 2 2 2 2 2( ) coth( ),   S=( )( )z z u z z uR k V k V k k V kg k V kg= + Δ − + , (7) 

 
2 2

2( ) cosh( ) sinh( )zkg k VF k kω
ω
−= Δ + Δ , (8) 

where 2
01 0 02/V B μ ρ=  , 2

03 0 02/uV B μ ρ=   and 2 2 1/ 2( )y zk k k= + .  Since 0R ≥  in (7), Eq. (3) 

shows that MRT exists if and only if S < 0, i.e., if and only if 

 2 2
zkg k V> . (9) 

[If g < 0, Eq. (7) shows that MRT exists if and only if 2 2
z ukg k V− > .  This is expected because in 

this case, the direction of g is reversed (Fig. 1), so is the role of the upper and lower interface.]  

Note that the instability condition (9), as written, is independent of the slab width Δ, and  

therefore must be the same as the Δ → ∞  limit, which becomes the single interface MRT 

problem treated by Kruskal and Schwarzschild [4] and by Chandrasekhar [5]. 

 As Δ → ∞ , coth(kΔ) = 1.  Substitution of (7) into Eq. (3) yields, 2 2 2
1 zkg k Vω = − + , as the 

square root in Eq. (3) can now be completed.  This is the classical, single interface MRT 
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dispersion relation [4,5] for a nonmagnetized (but perfectly conducting) fluid of density ρ02, 

supported against gravity g = -xg by an external magnetic field B01 in vacuum from below (ρ01 = 

0); and Eq. (9) is the condition for MRT excitation.  Since 2 2 1/ 2( )y zk k k= + , the magnetic field 

will have no effect on the MRT growth rate 1/ 2( )kg   if kz = 0.  This, of course, simply states the 

well-known fact that the magnetic field has an effect on MRT only when the unstable mode 

bends the magnetic field line, i.e, only when 0⋅ ≠0k B , and this effect of magnetic tension is 

always stabilizing [6,14]. 

 Taylor’s classical feedthrough solution [1] can also be recovered in the conventional RT 

limit: V  = uV  = 0.  Then, we have R = 0, S = -(kg)2 from Eq. (7).  Equation (3) gives 2
1 kgω = − , 

and 2
3 kgω = , yielding 1/ 2

1 ( )i kgω = − , and 1/ 2
3 ( )kgω = .  Then, F(ω1) = e-kΔ and F(ω3) = ekΔ from 

Eq. (8); and the feedthrough solutions (4), (5) are identical to Eqs. (27) and (28) of Taylor [1]. 

 For Harris’ model [3], we set B03 = 0 and Vu = 0.  Harris assumes that the weight of 

region II is supported solely by the magnetic field B01 in the vacuum region I, i.e.,  2 / 2g VΔ =   

[cf. Eq. (2)].  The condition (9) for MRT excitation then becomes 2 (2 ) 0zk k− Δ > , which is the 

main result of Harris [3], stated in his Abstract, and displayed in his Eq. (36).  The independence 

of g and B01, and the explicit dependence on Δ, in Harris’ condition is in sharp contrast to the 

condition of Eq. (9) that is derived in Refs. [4] and [5], which shows explicit dependence on g 

and B01, but independence of Δ. Using Vu = 0 and 2 2V g= Δ  in Eq. (7), the eigenvalue equation, 

4 2 0R Sω ω− + = , becomes Eq. (26) of Harris.   

 Having recovered the classical results of Taylor, Chandrasekhar, and Harris, we show in 

Figs. 2-4 the normalized MRT growth rate, 1Im( ) / kgγ ω= − , and the feedthrough factor F(ω1) 

as a function of kΔ at various combination of magnetic field effects according to Eqs. (3), (7) and 

(8).  The magnetic field effects enter through the normalized magnetic tension, 2b  and 2
ub , in the  

lower and upper region.  They are defined as,  

 2 2 2 2 2 2/ ,    /z u z ub k V kg b k V kg= = . (10) 
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Once more, MRT exists if and only if 2b  < 1 [cf. Eq. (9)].  The dashed lines in Figs. 2-4 show 

the asymptotic dependence of the normalized growth rate and the feedthrough factors,  

 
2 2

2 2
2 2

(1 )(1 ) ,       ( )u
u

u

b bk k b b
b b

γ − +≅ Δ × Δ << +
+

, (11a) 

 21 ,       1b kγ ≅ − Δ >> , (11b) 

 
2

1 2

1( ) ,       0
1 u

bF k
b

ω −≅ Δ →
+

, (12a) 

 
2

1 2 2

2(1 )( ) ,       1
2

k

u

bF e k
b b

ω − Δ −≅ Δ >>
− +

. (12b) 

 In Fig. 2, we fixed bu = 0.  We may take this case to be B03 = 0, which becomes the case 

studied by Harris [3].  The normalized growth rate as a function of kΔ is shown by the solid 

curves in Fig. (2a) for various values b .   For b = 0, (e.g., kz = 0 with a nonzero B01), the 

normalized growth rate is unity, i.e., γ = (kg)1/2, and the feedthrough factor for this b = 0 case is 

simply e-kΔ, as already discussed and shown in Fig. (2b).  As b  increases, the MRT growth rates 

decreases.  When b  is as large as 0.99 (i.e., the magnetic tension reaches 99 percent of the 

gravity force as measured by kg), the MRT growth rates still exceed 10 percent of the growth 

rate at much smaller values of b [Fig. (2a)].  However, the feedthrough factor is reduced 

tremendously as b  approaches unity [Fig. (2b)].  It is interesting to note that the asymptotic 

formulas for large kΔ are already very accurate when kΔ > 2. 

 In Fig. 3, we fixed bu = 0.5.  To be consistent with g pointing downward so that the lower 

interface is MRT unstable (Fig. 1), as we are now considering, we require ub b≥ .  Figure 3 

shows the data for b = 0.5, 0.7, 0.9, and 0.99.  In all cases, the MRT growth rates are essentially 

the same as the bu = 0 cases, as Eq. (11b) shows that γ  is independent of bu.  The feedthrough 

factor is somewhat reduced if bu > 0.  The underlying reason is that with a nonzero bu, the upper 

interface is less likely to form a ripple because of the magnetic tension there.  Thus, the MRT 



 8

growth at the lower interface is less likely to be transmitted to the upper interface.  The 

asymptotic formulas, Eqs. (11) and (12), readily provide a quantitative evaluation of the growth 

rates and feedthrough factors for both small and large kΔ. 

 In Fig. 4, we fixed bu = 0.9.  Thus, the magnetic tension in the upper region III is about 

90 percent of the gravity force. In keeping with ub b≥ , we show the data for b = 0.9, 0.922, 

0.945, and 0.99.   In all cases, the MRT growth rate remains significant, in some cases exceeding 

40 per cent of (kg)1/2 [Fig. (4a)].  However, the feedthrough factor is minimal, with value always 

less than 0.11 [Fig. (4b)].  

 

IV. CONCLUDING REMARKS 

 Finally, for the general case shown in Fig. 1, our formulation confirms that there is no 

instability if g = 0, regardless of the values of B01, B02, B03, ρ01, ρ02, ρ03, Δ, ky, and kz according 

to Eq. (3) [subject, of course, to the equilibrium condition (2), and pressure balance across the 

interface at x = α and x = β in equilibrium].  Thus, regardless of the surface current K0α and K0β 

on the interfaces, there is no kink or sausage instability of a current-carrying Cartesian slab if g = 

0, in sharp contrast to a current-carrying cylinder.  This is also a well-known result in ideal MHD 

theory [14,15]. 
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Figure Captions 

 

Fig. 1.  (Color online) MRT model with two interfaces at x = α and at x = β.  This paper 

concentrates on the case ρ01 = ρ03 = 0, and B02 = 0.  Other parameters, B01, B03, g, and Δ 

are arbitrary, allowing recovery of the classical results by Taylor, Chandrasekhar, and 

Harris as limiting cases. 

  

Fig. 2.  (Color online) (a) The normalized MRT growth rate and (b) the feedthrough 

factor for bu = 0.  This case is the same as Harris’ model as B03 = 0.  The dashed lines 

show the asymptotic formulas, Eqs. (11) and (12). 

 

Fig. 3.  (Color online) (a) The normalized MRT growth rate and (b) the feedthrough 

factor for bu = 0.5.  The dashed lines show the asymptotic formulas, Eqs. (11) and (12). 

 

Fig. 4.  (Color online) (a) The normalized MRT growth rate and (b) the feedthrough 

factor for bu = 0.9.  The dashed lines show the asymptotic formulas, Eqs. (11) and (12). 

 

 



 11

 

 

 

 

 

Fig. 1 

 



 12

 

 

 

 

 

Fig. 2 

 



 13

 

 

 

Fig. 3 

 



 14

 

 

 

 

 

 

 

Fig. 4 


