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Hydraulic conductance and viscous coupling of three-phase layers in angular

capillaries

H. Dehghanpour, B. Aminzadeh, and D.A. DiCarlo∗

Department of Petroleum and Geosystems Engineering, The University of Texas at Austin

Predicting three-phase relative permeability by network models requires reliable models for hy-
draulic conductance of films and layers stabilized by capillary forces at the pore level. We solve
the creeping flow approximation of the Navier-Stokes equation for stable wetting and intermediate
layers in the corner of angular capillaries by using a continuity boundary condition at the layer
interface. We find significant coupling between the condensed phases and calculate the generalized
mobilities by solving co-current and counter-current flow of wetting and intermediate layers. Finally,
we present a simple heuristic model for the generalized mobilities as a function of the geometry and
viscosity ratio.

I. INTRODUCTION

Many natural and commercial processes involve simul-
taneous flow of three immiscible fluids in porous me-
dia. Examples in petroleum industry include immisci-
ble and near-miscible gas injection and water alternat-
ing gas injection (WAG) for recovery of residual oil af-
ter water flood. Furthermore, thermal methods such
as cyclic steam stimulation (CSS) and steam assisted
gravity drainage (SAGD) for recovery of unconventional
heavy oil involves three-phase flow of mobilized oil, con-
densed water and vapor. Movement of nonaqueous phase
liquid (NAPL) leaking from an underground storage fa-
cility toward unsaturated zone is an important example
of three-phase flow in an environmental context.
The large-scale modeling of these processes require a

macroscopic relationship between relative permeability
and saturation. Direct measurement of three-phase rela-
tive permeability is challenging and time consuming be-
cause of the two independent saturation variables [1].
Various empirical models [2, 3] have been presented for
predicting three-phase relative permeability from two-
phase measurements. Predictions of these models, how-
ever, are inconsistent with experiments [4] because they
do not consider the physics of three-phase flow in porous
media.
During the last decade there has been much interest in

predicting three-phase relative permeability by pore-scale
network models [5–8]. Such models are based on capil-
lary stability arguments, discovered displacement mech-
anisms and empirical models for layer conductance at
the pore scale. From observations in micromodels [9–
13] and capillary stability arguments based on geometry
[14] and thermodynamics [15] various three-phase pore
level fluid configurations and flow mechanisms have been
recognized. These mechanisms have been incorporated
into network models to predict three-phase relative per-
meability and saturation path [5, 6, 8], under the ansatz
of each phase flowing independently in its own network.
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Depending on wettability of porous media and surface
properties of the fluids, the three phases occupy different
parts of the pore space. In water-wet media, water is
the most wetting phase and it resides in the small pores
and crevices of the pore space while gas as the most non-
wetting phase occupies the center of the large pores. If
the oil is spreading it forms stable intermediate layers
sandwiched between gas and water. However, interme-
diate layers have also been observed and theoretically
predicted for non-spreading oils [9, 11, 16]. Simulated
relative permeability values strongly depend on hydraulic
conductance of such layers.

Various methods such as hydraulic diameter [17] and
thin film approximation [16] have been used to estimate
the conductance of intermediate layers in the three-phase
systems. Zhou et al. [18] presented a solution by combin-
ing the thin film flow and hydraulic diameter approxima-
tions. This work was extend by Firincioglu et al. [19] to
account for the situations where oil and water flow simul-
taneously. Al-Futaisi and Patzek [20] solved the creeping
flow of oil and water layers in angular capillaries numer-
ically and presented universal curves for three-phase hy-
draulic conductances as a function of geometry. However,
none of these works consider the coupling between phases
where the potential gradient in one phase affects the flow
of another phase.

Flow coupling has been investigated for two-phase flow,
through experiments [21–23], analytical calculations [24–
27], and simulations at the pore-scale [28, 29]. Coupled
flow of wetting and non-wetting phases in angular cap-
illaries has been solved numerically [30, 31] and semi-
analytically[32] for two-phase systems.

Viscous coupling has not been studied in three-phase
systems. This is surprising because flow coupling should
be greater in three-phase than two-phase systems because
oil in layers has a larger surface area to volume than oil
in bulk.

On the macro-scale, three-phase drainage experiments
[1, 33–35] show that relative permeability of oil depends
on water saturation. This is commonly explained by the
effect of wetting water on the pore occupancy of oil, leav-
ing oil in larger pores with higher hydraulic conductance
[1, 35]. However, in addition to the pore occupancy, the
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FIG. 1. Schematic illustration of water and oil layers in the
corner of an angular capillary.

momentum transfer between water and oil might also
play a role on the observed dependence of oil relative
permeability on water saturation. In this study, we in-
vestigate this possibility.

In this manuscript, we solve the three-phase flow of
wetting films and intermediate layers in the corner of an-
gular capillaries by using finite element numerical simu-
lation. We also obtain the generalized mobilities for var-
ious geometries and viscosity ratios. Finally, we model
the mobilities as a function of the geometry and viscos-
ity ratio from the first principles and find an appropriate
match with the simulation data.

II. NON-CIRCULAR CAPILLARIES

The objective of this work is to calculate the hydraulic
conductance of wetting and intermediate wetting layers
stabilized by capillary forces in the corners of angular
ducts. Here we assume water, oil, and gas are the wet-
ting, intermediate, and non-wetting phases denoted by
subscripts 1, 2, and 3 respectively.

A. Geometry

The geometry of two condensed phases in a corner has
five degrees of freedom that is schematically depicted in
Fig. 1. This geometry is defined by the corner half angle
(β), the curvature and contact angle of water-oil menis-
cus (r12 and θ12), and the curvature and contact angle of
gas-oil meniscus (r23 and θ23). Here, we follow the di-
mensionless formulations of Al-Futaisi and Patzek [20] to
reduce the the number of variables and also to simplify
the formulations. Furthermore, instead of using curva-
ture radius, we use the corresponding meniscus to apex

distance,

b1 = r1
cos(θ12 + β)

sin(β)
, b2 = r2

cos(θ23 + β)

sin(β)
. (1)

The dimensionless meniscus to apex distances are defined
by:

b̄1 =
b1
b2
, b̄2 = 1. (2)

The dimensionless geometrical parameters of the oil and
water domains such as perimeter (p̄), area (Ā), and
meniscus length (L̄) and layer stability criteria as a func-
tion of (β, θ12, θ23, b̄1) are presented in the Appendix.
However, not all layers that can be drawn geometrically
as shown in Fig. 1 are thermodynamically stable [36];
here we consider the entire phase space of the geometri-
cal parameters for simplicity. When used in a network
model, the layers should be checked for stability.

B. Governing Equations

The equation of motion describing the two dimensional
creeping flow of water, oil and gas (i.e., with negligible in-
ertial effects) in x3 direction with constant viscosity and
density reduces to the following elliptic Poisson equation:

▽
2vi = −

φi

µi

, ∀(x1, x2) ∈ Ωi i = 1, 2, 3 (3)

Here vi and µi are the velocity and viscosity of phase i
respectively. φi is the gradient of the total driving force
per unit area, which is defined by:

φi = −∇Pi + ρig, (4)

where Pi is the phase pressure and g is the body force
per unit mass, in this case gravity.
Following Al-Futaisi and Patzek [20], we change the

variables of this equation as follows:

x̄i =
xi

b2
,

µ̄i =
µi

µ1

,

φ̄i =
φi

φ1

,

v̄i =
vi µ1

φ1 b22
, i = 1, 2, 3.

(5)

Here the dimensionless potential gradient in the water
phase is unity, φ̄1 = 1. The following dimensionless equa-
tions that describe the oil and water flow in the corner
of the capillary are obtained by substituting the above
dimensionless parameters in Eq. 3.

▽
2v̄1 = −1

µ̄2 ▽
2v̄2 = −φ̄2.

(6)
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FIG. 2. Schematic illustration of the water and oil half do-
mains and the corresponding interfaces considered for numer-
ical modeling.

C. Boundary Conditions

The solution of Eq. 6 gives the velocity distribution
across the water and oil domains (Ω1 and Ω2). This so-
lution depends on the boundary conditions considered at
fluid-wall interfaces (Γ1s and Γ2s), and fluid-fluid inter-
faces (Γ12 and Γ23) that are shown in Fig. 2. The velocity
at the wall is assumed to be zero according to the no-slip
boundary condition, i.e.,

v̄i = 0 on Γis i = 1, 2. (7)

It is enough to solve Eq. 6 for only half of the oil and
water domains shown in Fig. 2. We consider null velocity
gradient normal to the symmetry interface:

▽v̄i · ~ni = 0 on Γii i = 1, 2. (8)

Here ~ni is the unit vector normal to the interface.
The boundary condition at the water-oil interface is

the key input for solving the velocity field. The tangen-
tial component of fluid velocity is continuous across any
surface representing the interface. By considering the
equations of motion for a Newtonian interface, one can
relate the difference between the fluid stresses on either
side of the interface to its physical properties (i.e., sur-
face shear viscosity and surface dilational viscosity) and
geometric characteristics [37].
For the two-phase systems, Ransohoff and Radke [31]

and Ehrlich [32] considered the continuity of velocity
and the discontinuity of shear stress at the wetting-
nonwetting interface for a large range of surface shear
viscosities. For the three-phase systems, Al-Futaisi and
Patzek [20] considered the boundary conditions of

v̄i = 0 on Γ12 or Γ23 (9)

which they called the no-slip boundary condition, and
the perfect-slip,

▽v̄i · ni = 0 on Γ12 or Γ23 (10)

at the oil-water and gas-oil interfaces.
The no-slip condition used by Al-Futaisi and Patzek

[20] is a misnomer. It is only no-slip if one of the phases
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FIG. 3. The effect of the interface boundary condition on the
velocity distribution of wetting and intermediate layers in an
angular capillary with β = θ12 = θ32 = 30◦, b̄1 = 0.75. Note
that each color might represent a different velocity from one
subplot to another.

is stationary, e.g. a solid phase. Therefore, following
Firincioglu et al. [19] we find it more appropriate to
call Eq. 9 a no-flow boundary condition because it as-
sumes a stationary wall between the phases that forces
the velocity of each phase to be zero at the interface.
The no-flow assumption can also be valid if the interfa-
cial shear viscosity is infinite. Thus it is a reasonable
boundary condition for surfactant-laden rigid water-oil
interface because the molecules at the interface become
bound to each other and eventually to the walls of the
pore space.
The perfect-slip boundary condition which is a limiting

case assumes negligible momentum transfer at the inter-
face. This assumption is only valid if the viscosity of
the neighbor phase is negligible. Thus it is a reasonable
boundary condition at the gas-oil interface.
The physical boundary condition for a clean water-oil

interface is the continuity of velocity and shear stress
which we call the continuity boundary condition:

v̄1 = v̄2 on Γ12

▽v̄1 · n1 = µ2 ▽v̄2 · n2 on Γ12.
(11)

This boundary condition is only valid for pure fluids with-
out any interfacial activity, which form an interface with
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FIG. 4. The effect of the interface boundary condition on the
calculated hydraulic conductance for a sandwiched oil layer
in a capillary corner with β = θ12 = θ32 = 30◦ and b̄1 = 0.75

negligible shear viscosity [37–39].

D. Numerical Solution

We use Comsol multiphysics to solve Eq. 6 by finite ele-
ment numerical simulation for the three boundary condi-
tions of no-flow, perfect slip, and continuity at the water-
oil interface. For each geometry, water and oil domains
are automatically divided into triangular elements. We
use the ”meshrefine” application of Comsol two times
to refine the initial mesh, and improve the accuracy of
the numerical solution. We use the solver of ”Poisson”
PDE to solve the boundary value problem. For the no-
flow interfaces, we use the Dirichlet boundary condition.
For the perfect-slip interfaces, we use Neumann bound-
ary condition. For the continuous interfaces, we use the
”pair” application in Comsol to model the viscous cou-
pling.
Figure 3 compares the velocity distribution across wa-

ter and oil domains; in each subplot, the velocity varies
between v = 0 (shown in dark blue) to a maximum ve-
locity, vmax, (shown in dark red). However, each subplot
has a different value of vmax and consequently a differ-
ent scale. The viscosity of water and oil are identical
(µ̄2 = 1) in the first three subplots; the oil is ten times
more viscous than water (µ̄2 = 10) in the last three sub-
plots.
In the no-flow boundary condition, (Fig. 3a and

Fig. 3d), the water-oil interface behaves as a rigid wall,
and the velocity of each phase increases as it moves away
from the water-oil interface. Thus, the maximum veloc-
ity of the oil is at the oil-gas interface along the symmetry
line, and that of water is at the center of the water film.
The oil shows the same behavior in Fig. 3d, but it is
more difficult to observe this behavior since in this case
µ̄2 = 10 and the oil velocity is 10 times less than shown

in Fig. 3a.

In the perfect-slip boundary condition, (Fig. 3b and
Fig. 3e), the water-oil interface behaves as perfectly lu-
bricated, and the velocity gradient normal to the water-
oil interface vanishes. Comparing Fig. 3b to Fig. 3a, we
observe that the flow of oil is much greater in the perfect-
slip case. This is as expected as momentum can only be
transferred out through the duct wall (Γ2s) which has a
small length. The maximum oil velocity is again along
the symmetry line, but in this case it is roughly the same
at the gas-oil and oil-water interfaces. The point of max-
imum water velocity shifts to the right and is observed at
the intersection of the water-oil interface and the symme-
try line. Simply, the average flux of both phases calcu-
lated at perfect slip condition is higher than that calcu-
lated at no-flow condition because no momentum is lost
at the water-oil interface.

In the continuity boundary condition, (Fig. 3c and
Fig. 3f), the water-oil interface allows momentum trans-
fer and the water and oil velocities are correlated across
the interface. Because of this coupling, in Fig. 3c, wa-
ter picks up velocity from oil, and in Fig. 3d oil picks
up velocity from water. Therefore, for clean interfaces,
the viscosity and potential gradient of the neighbor phase
influence the velocity distribution of each phase.

The type of boundary condition also influences the av-
erage velocity and consequently the hydraulic conduc-
tance of the layer. We define the dimensionless total
mobility by

q̄i = − λ̄i φ̄i, i = 1, 2. (12)

Where q̄i is the dimensionless flow rate and is obtained
by integrating the velocity over the flowing area:

q̄i =

∫∫

Ωi

v̄i dĀi, i = 1, 2 (13)

Figure 4 compares the calculated hydraulic conduc-
tance (λ̄2 µ̄2) of the same oil layer shown in Fig. 3 plot-
ted versus viscosity ratio for the three boundary con-
ditions. According to this plot, perfect-slip and no-flow
boundary conditions give conductances that are indepen-
dent of viscosity ratio that means uncoupled flow of oil
and water. The black solid curve, however, representing
the data with the continuity boundary condition shows
a strong dependence on the mid range viscosity ratio.
As µ̄2 decreases, the solution converges to the no-flow
solution. As µ̄2 increases, the solution shows a plateau
that is higher than the perfect-slip limit. Therefore, for
co-current flows, the no-flow boundary condition always
results in the underestimation of the hydraulic conduc-
tance while the perfect-slip boundary condition depend-
ing on the viscosity ratio can lead to the overestimation
or the underestimation of the hydraulic conductance.
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E. Generalized Transport Coefficients

Here we assume the continuity boundary condition at
the water-oil interface and the perfect-slip boundary con-
dition at the oil-gas interface. Figures 3 and 4 indicate
that the flow of each phase will drag the other phase.
The total flow of each phase results from two indepen-
dent driving forces. First, the potential gradient within
the same phase and second, the potential gradient within
the neighboring phase. The generalized Darcy equation
[22, 23, 27, 40, 41] is commonly used to describe the two-
phase viscous coupling in porous media. Similarly, we
use the following relations to model coupled flow of the
wetting and intermediate wetting phases in angular cap-
illaries:

[

q̄1
q̄2

]

= −

[

λ̄11 λ̄12

λ̄21 λ̄22

] [

1
φ̄2

]

(14)

Here the flow rate vector is related to the potential gra-
dient vector by a generalized matrix of mobilities. Each
mobility term represents the area open to flow, the equiv-
alent effective permeability and also the reciprocal of the
corresponding phase viscosity.
These mobilities can be calculated analytically for a

simple model of circular capillary tube [33]. Here we cal-
culate these coefficients for the creeping flow of oil and
water layers in the corner of angular capillaries. Calculat-
ing the generalized mobilities for a certain geometry and
viscosity ratio requires four independent equations. One
possible method is to consider co-current and counter-
current flow of oil and water. In the co-current case,
the pressure gradients of the two phases are in the same
direction while in the counter-current case, the pressure
gradients are in opposite directions.

[

q̄
′

1

q̄
′

2

]

= −

[

λ̄11 λ̄12

λ̄21 λ̄22

] [

−1
φ̄2

]

(15)

The four mobility coefficients are obtained by simultane-
ous solution of Eq. 14 and Eq. 15. The corresponding
average flow rates are obtained by integrating the calcu-
lated velocity distribution over the water and oil domains
(Eq. 13) for both co-current and counter-current flows. If
we assume identical potential gradients in water and oil
phases (φ2 = 1), the mobilities are simply given by

λ̄11 = −
q̄1 − q̄

′

1

2

λ̄12 = −
q̄1 + q̄

′

1

2

λ̄22 = −
q̄2 + q̄

′

2

2

λ̄21 = −
q̄2 − q̄

′

2

2
.

(16)

The alternative approach to determine the generalized
mobilities is to apply a null pressure gradient in each
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FIG. 5. Dimensionless mobilities as a function of b̄1 when
β = 30◦, θ12 = θ23 = 15◦ and µ̄2 = 1

phase and calculate the flow rate resulting from the pres-
sure gradient in the other phase.
The full mobilities are simply related to dimensionless

values by

[

λ11 λ12

λ21 λ22

]

=
b42
µ1

[

λ̄11 λ̄12

λ̄21 λ̄22

]

. (17)

III. GENERALIZED TRANSPORT

COEFFICIENTS AS A FUNCTION OF

GEOMETRY AND VISCOSITY RATIO

In this section we analyze the dependence of the calcu-
lated dimensionless mobilities on the geometrical param-
eters and viscosity ratio. These mobilities can depend on
θ12, θ23, β, b̄1, and µ̄2.
Figure 5 shows the dimensionless mobilities

(λ̄11, λ̄22, λ̄12) plotted versus b̄1, which indicates
the relative content of water (water saturation / liquid
saturation). b̄1 is the dominant parameter because it
controls the area open to flow. We observe that the
coupling terms are identical and the matrix of mobilities
is symmetrical (λ̄12 = λ̄21), which is in agreement with
the Onsager reciprocal relations [42]. With increasing
b̄1, the area open to flow of water (Ā1) increases and
that of oil (Ā2) decreases and consequently the diagonal
mobilities (λ̄11 and λ̄22) vary accordingly. Furthermore,
with increasing b̄1, λ̄11 increases slower and λ̄22 de-
creases faster. The observed dependence of the diagonal
mobilities on b̄1 is similar to the dependence of relative
permeably on the saturation of the phase. The coupling
term, λ̄12, however, shows a peak which corresponds
to the maximum momentum transfer between the
two phases. The patterns described here are similarly
observed in other geometries (see Fig. 6).
Interestingly, the coupling term exceeds the diagonal
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FIG. 6. Dependence of mobilities on geometry (θ23 = 15).
The solid lines show the simulated values of λ̄11, λ̄22, and λ̄12.
The dashed lines show the predicted values by the proposed
scaling models (µ̄2 = 1).

term of oil or water at low saturations, i. e.,

λ̄12 > λ̄22 when 0.85 < b̄1 < 1

λ̄12 > λ̄11 when 0 < b̄1 < 0.5.
(18)

When the thickness of the oil or water layers decreases,
viscous coupling dominates the flow and thus the fluid
with high saturation drags the fluid with low saturation.
Figure 6 shows how the mobilities vary when β and θ12

change. Each subplot shows the mobilities as a function
of b̄1. Between the plots, we alter β and θ12. We increase
β from 15◦ in the bottom subplots to 30◦ in the top
subplots, and θ12 from 15◦ in the left subplots to 30◦ in
the right subplots.
When other parameters are constant, the three mobil-

ities increase by increasing β from 15◦ to 30◦. This is an
expected behavior as the area open to flow of both water
and oil increases by increasing β. When β increases, the
b̄1 value where λ̄12 exceeds λ̄22 decreases. Furthermore,
the top subplots (β = 30) show that λ̄12 > λ̄11 when
b̄1 < 0.5 while in the bottom subplots (β = 15), λ̄12 does
not exceed λ̄11. At higher values of β, the water-oil in-
terface is larger and thus viscous coupling becomes more
important.
The contact angle also affects the area open to flow

but its effect is smaller than that of β and b̄1. For exam-
ple, increasing θ12 from 15◦ to 30◦ only slightly increases
λ̄11 and decreases λ̄22. We also observe that when θ12
increases, the b̄1 value where λ̄12 exceeds λ̄22 decreases
slightly.
Figure 7 shows the dependence of mobilities on the

viscosity ratio for the same geometry as Fig. 5. When
µ̄2 = 0.1 and b̄1 < 0.6 , water is mainly flowing by the oil
gradient, i.e., λ̄12 > λ̄11. When µ̄2 = 10 and b̄1 > 0.85 oil
is mainly flowing by the water gradient, i.e., λ̄12 > λ̄22.
Furthermore, When µ̄2 increases from 0.1 to 10, the b̄1
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FIG. 7. Dependence of mobilities on viscosity ratio for an
example geometry with β = θ12 = θ23 = 30◦. The solid
lines show the simulated values of λ̄11, λ̄22, and λ̄12. The
dashed lines show the predicted values by the proposed scaling
models.

value where λ̄12 exceeds λ̄2 reduces from 0.95 to 0.85. We
conclude that the contribution of coupling on the flow of
each phase increases when the relative viscosity of the
phase increases. Therefore, a comprehensive model for
the generalized mobilities would have both the geometry
and viscosity ratio.

IV. SCALING MODELS FOR GENERALIZED

MOBILITIES

The objective of this section is to model the general-
ized mobilities as a function of the geometry and viscos-
ity ratio, (β, θ12, θ23, b̄1, µ̄2). Al-Futaisi and Patzek [20]
proposed universal curves for the intermediate layer con-
ductance, as a function of the geometrical parameters
only, by running extensive numerical simulations and us-
ing projection-pursuit regression. We extend this work
to account for the flow coupling between oil and water.
Furthermore, instead of statistical regression models, we
present a simple heuristic model based on the scaling ar-
guments from fluid mechanics.

A. Diagonal Terms

We use the concept of hydraulic radius, which is used
to describes the dependence of laminar flow rate on pres-
sure gradient in non-circular ducts:

q =
c

µ
AR2

h φ. (19)
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Hydraulic radius, Rh, is defined as the area open to flow,
A, divided by wetted perimeter, pw.

Rh =
A

pw
(20)

The constant c depends on the shape of the ducts. For a
circular tube c = 1

2
(Poiseuille’s law) and for flow between

parallel plates c = 2

3
(cubic law).

The dimensionless form of Eq.19 is given by

q̄ =
c

µ̄
Ā (

Ā

p̄w
)2 φ̄. (21)

By analogy with this equation we propose the following
expressions for diagonal mobilities:

λ̄11 = c11
(Ā1)

3

(p̄1w)2

λ̄22 =
c22
µ̄2

(Ā2)
3

(p̄2w)2

(22)

The wetted perimeter is the length of the fluid-wall
interface where the velocity is zero and stress is non-
zero. For example, in an open duct, the fluid-air in-
terface where the drag is zero is not considered as part
of the wetted perimeter. In the corner geometry, the
fluid-wall interface (Γ1s and Γ2s ) is considered as part
of the wetted perimeter, but the oil-water interface (Γ12)
could be considered wetted, non-wetted or something in
between, thus should depend on the viscosity ratio. If
µ̄2 ≫ 1, the water is inviscid compared to the oil and the
wetted perimeter for oil domain (p̄2w) does not include
Γ12 likewise that of water domain (p̄1w) includes the Γ12.
Similarly, if µ̄2 ≪ 1, p̄2w includes Γ12, and p̄1w does not
include the Γ12. Therefore, for the mid range viscosity
ratio, the wetted perimeter should be a function of µ̄2:

p̄2w = 2(1− b̄1) + L̄12 × f(µ̄2)

p̄1w = 2b̄1 + L̄12 × f(
1

µ̄2

).
(23)

We consider the following limits for f(x).

f(x) = 0 when x −→ ∞

f(x) = 1 when x −→ 0
(24)

Various decay functions such as e−x and 1/(1+xn) meet
the above boundary condition. Using the values of area
and interface length in the Apendix, we find that f(x) =

e−
√
x fits the data. Our simulation results show that the

best values for c11 and c22 are 4

5
and 1

2
, respectively.

B. Coupling Term

We use the concept of momentum balance to develop
an expression that relates the flow of water, q1, to the po-
tential gradient in the oil phase, φ2, when φ1 = 0. Here,

the only driving force for the water flow is the shear stress
transferred to the water, τ12, at the interface. Therefore,
an expression is required for flow through a duct under
an external shear stress. The simplest case is the two-
dimensional creeping flow between two parallel plates un-
der the fixed shear stress, τs, applied to one of the plates.
By solving the Stokes equation for this problem, we have:

q =
w δ

µ

δ

2
τs (25)

Here w, is the plate width and δ is the spacing between
the two plates. The resulting flow rate, q, is related to
the applied shear stress by the area open to flow, w δ
and the wetted perimeter, δ

2
. Equivalently, the flow of

water due to the momentum transfer across the water-oil
interface is approximated by:

q1 =
c12
µ1

A1

A1

p1w
τ12 (26)

Here we define a similarity coefficient (c12) which depends
on the geometry of the corner and layer. With decreasing
corner half angle β, λ̄12 sharply decreases (see Fig. 6).
The length of the water-oil interface increases as β in-
creases, which results in higher momentum transfer be-
tween the two phases. Our simulation results show that
the best value for c12 is β in radians.
An expression is also needed to relate τ12 to the geom-

etry, viscosity ratio and potential gradient within the oil
phase. The amount of momentum transferred at the oil-
water interface is a fraction of the total momentum that
is driving the oil phase. This fraction depends on the ge-
ometry and viscosity ratio, g(µ̄2). First, we approximate
the stress transferred to the interface at extreme values
of µ̄. We assume that the momentum transferred to the
water is negligible, τ12 ≈ 0, when µ̄2 ≫ 1. On the other
hand, when µ̄2 ≪ 1, we assume that the potential gra-
dient in the oil phase is uniformly transferred to the the
perimeter, i. e., τ12 = φ2 A2

p2

. Therefore, τ12 and φ2 can

be related by:

τ12 = g(µ̄2)
A2

p2w
φ2. (27)

By substituting Eq. 26 in Eq. 27 we arrive at the fol-
lowing dimensional equation that gives the flow of water
due to the pressure gradient in the oil phase:

q1 = β
g(µ̄2)

µ1

A1

A1

p1w

A2

p2w
φ2 (28)

Finally, the dimensionless coupling term is given by:

λ̄12 =
q̄1

φ̄2

=
β

p̄1w p̄2w
Ā2

1 Ā2 g(µ̄2). (29)

We examine the dependence of λ̄12 on µ̄2 in Fig. 8 to
find a good g(µ̄2). We know that at extreme values of
µ̄2, p̄1w and p̄2w are independent of µ̄2. Therefore, λ̄12



8

10
−2

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

λ̄12 ∝
1

µ̄20.002 g(µ̄)

λ̄12

µ̄2

FIG. 8. The dependence of λ̄12 on µ̄2 for an example geometry
with β = θ12 = θ23 = 30◦ and b̄1 = 0.75. g(u) = 2.5

4+µ̄2
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FIG. 9. Predictions of the scaling model versus simulated
values of λ̄11

and g(µ̄2) should similarly depend on µ̄2 at the limits.
According to Fig. 8, at high values of µ̄2 (µ̄2 > 10), λ̄12 ∝
1

µ̄2

. At low values of µ̄2 (µ̄2 < 0.1), λ̄12 is independent

of µ̄. Fig. 8 shows that 1

4+µ̄2

matches the dependence on

µ̄2. We find that using g(µ̄2) =
2.5

4+µ̄2

gives a good fit to

the data for all geometries.

C. Model Validation

The predictions of the suggested models are shown by
dashed lines in Figs. 6 and 7. Figure 6 shows that the
presented models appropriately match the functional de-
pendence of λ̄11, λ̄22 and λ̄12 on b̄1 for the four different
example geometries when µ̄2 = 1. Fig 7 shows that these
models work very well when µ̄2 varies from 0.1 to 50. We
also created 1376 simulated mobilities by changing β, θ12
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FIG. 10. Predictions of the scaling model versus simulated
values of λ̄22
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FIG. 11. Predictions of the scaling model versus simulated
values of λ̄12

and θ23 from 10◦ to 30◦, b̄1 from 0.3 to 0.95 and µ̄2 from
0.1 to 10, to test the performance of the presented mod-
els. Figures 9, 10 and 11 show that the predicted values of
λ̄11, λ̄22 and λ̄12 are fairly close to the simulated values.
We calculated the relative error (Eλ̄ij

) for each mobility
by:

Eλ̄ij
=

|λ̄sim
ij − λ̄model

ij |

λ̄sim
ij

, i, j = 1, 2. (30)

Here λ̄sim
ij is the simulated value, and λ̄model

ij is calculated
by the proposed scaling model. The mean values of rela-
tive error for λ̄22, λ̄11, and λ̄12 are found to be 16%, 11%,
24% respectively.
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V. DISCUSSION

By incorporating the continuity boundary condition
at the oil-water interface, we have calculated the flow of
water and oil in the layers that form in pore corners. The
major results can be summarized as follows

1. The flow of oil and water are viscously coupled in
three-phase flow.

2. For a particular phase, the amount of flow caused
by viscous coupling can be greater than that caused
by a pressure gradient within the phase.

3. The dependence of the conductivity on the geom-
etry of the corner, the size of the layers, and the
viscosity ratio can be modeled successfully using
simple scaling arguments.

In particular, results 1 and 2 show that the coupling
contribution to the overall flow can be relatively large
for three-phase flow. This is due to the fact that the ra-
tio of oil/water interface to oil volume is much greater
in three-phase flow than in two-phase flow. Essentially
gas can occupy the center of the pore, decreasing the oil
volume for the same amount of oil/water interface. Thus
the momentum dissipation in an oil layer is primarily
through the water phase, which in turn can flow. On-
sager reciprocity ensures that the coupling works both
ways; i.e. from the water to the oil phase. In contrast,
for two-phase flow there is flow coupling, but to a much
smaller extent. This is because for the two-phase geome-
try, layers do not form for uniform wettability conditions,
and the ratio of oil/water interface to oil volume is rela-
tively small. The momentum is primarily dissipated into
the immobile solid in this case. However, in certain pore
geometries such as star-shape pores [43] oil/water inter-
face can be much larger than oil/solid interface even for
a two phase system. Furthermore, oil layers, sandwiched
between water in corners and in the center of a capillary
with non-uniform wettability, can be thermodynamically
stable [15]. In these cases, viscous coupling may be sig-
nificant for two-phase systems at certain conditions. This
remains to be studied.
Result 3 is important for modeling multi-phase flow in

porous media. Currently, this is often done using network
modeling [5, 6, 8]. These network models involve obtain-
ing a network (from images or grain settling simulation),
and for multi-phase flow, obtaining an occupancy of each
phase in each element of the model. The total permeabil-
ity of each phase is calculated from the conductivities of
each phase in the elements of the network. Result 3 gives
a straightforward method to calculate the liquid conduc-
tivities in the layers that exist in gas filled elements using
the continuity boundary condition. These fluid layers are
thermodynamically stable [15], and has been implicated
as a major source of oil relative permeability at low oil
saturations in three-phase flow [16, 44]. Using these re-
sults and a three-phase network model, the effects of flow

coupling on macroscopic relative permeabilities should
now be able to be estimated.

The existing experimental data on three-phase relative
permeability [1, 34, 35] shows that oil relative permeabil-
ity in water-wet systems depends on oil and water satura-
tions, which is traditionally explained by the pore scale
distribution of wetting and intermediate phases. How-
ever, the viscous coupling between the wetting and in-
termediate phases can also result in the dependence of
oil relative permeability on water saturation. It will be
interesting to see whether network models can reproduce
the observed experimental behavior by incorporating the
layer viscous coupling.

As mentioned in the model development, while the con-
tinuity condition at the oil-water interface is physically
correct for pure fluids with no surface activity there re-
mains the question of the correct boundary condition at
the interface. Clearly, momentum and velocity should
be continuous across the interface (the continuity condi-
tion). But for fluids with natural or artificial surfactants,
there can be an additional interfacial shear viscosity that
can be relevant. For pure fluids, there are little or no in-
terfacial agents, and thus the continuity condition solved
for in this manuscript is also appropriate. Since all three-
phase experiments [1, 19, 44, 45] have been conducted us-
ing pure fluids, they should be modeled using the correct
continuity boundary condition. These experiments all
have either co-current or counter-current liquid phases.

Crude oils, which are mixtures, have the potential to
have naturally occurring surfactants. The additional in-
terfacial shear viscosity has been measured for several
crude oils [46]. Analytical analysis of Wasan et al. [38]
shows that increasing interfacial shear viscosity at ei-
ther the liquid-liquid or the liquid-gas interface results in
lower velocity at the liquid-liquid interface in three-phase
systems. This can have the effect of making the inter-
face more of a no-flow (v = 0) boundary rather than a
continuity boundary. A non-zero interfacial shear viscos-
ity will cause an effective discontinuity in the momentum
transfer across curved interfaces like those seen in angular
corners. Essentially a portion of the momentum across
the interface will be transferred to the solid walls through
the interfacial shear viscosity. On the other hand, addi-
tion of artificial surfactants to a water-oil system can
reduce the interfacial viscosity. These effects have been
studied in two-phase flow by Gupta and Wasan [47] who
showed that by applying some surfactants in a mixed sur-
factant system, the interfacial shear viscosity can be re-
duced. For core floods, this enhances the permeability of
the oil phase through flow coupling [48]. The work in the
current manuscript suggests that this phenomena would
be much greater for three-phase flow due to the flow cou-
pling being much greater in three-phase than two-phase
flow. The effect of interfacial shear viscosity in three-
phase layers can be studied using the same techniques
outlined in this manuscript.

In summary, we have numerically simulated flow in
capillary-stabilized water and oil layers in angular cor-
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ners by using the physically correct continuity boundary
condition at the water-oil interface. We find significant
flow coupling and present a simple scaling model that can
be used to estimate the layer conductivities.
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VI. APPENDIXES

Al-Futaisi and Patzek [20] used the following param-
eters to simplify the expressions for dimensionless area,
perimeter and arc length:

Eij
0 =

π

2
− θij − β

Eij
1 =

cos(θij + β)

sinβ

Eij
2 =

cos(θij + β)

sinβ
cos θij

i = 1, 2, 3, j 6= i

(31)

If θ12 + β = π/2, the dimensionless cross-sectional area
of wetting (Ā1) and intermediate wetting phase (Ā2)and
the length of water-oil interface (L̄12) is given by:

Ā1 = b̄21 sinβ cosβ

Ā2 =
E32

2 − E32
0

(E32
1 )2

− Ā1

L̄12 = 2 b̄1 sinβ,

(32)

Otherwise,

Ā1 = b̄21
E21

2 − E21
0

(E21
1 )2

Ā2 =
E32

2 − E32
0

(E32
1 )2

− Ā1

L̄12 = 2 b̄1
E21

0

E21
1

.

(33)

The dimensionless length of gas-oil interface (L̄23) is
given by:

L23 = 2
E32

0

E32
1

. (34)

The dimensionless perimeter of water and oil domain are
given by:

p̄1 = 2 b̄1 + L̄21

p̄2 = 2 (1− b̄1) + L̄12 + L̄23

(35)

b̄1 must be higher than a threshold value to have a stable
layer in the corner. If θ12 + β = π/2,

b̄1 ≥
1

cos2 β
[1−

cosβ

E32
1

+
cosβ sin θ32

E32
1

], (36)

otherwise,

b̄1 ≥ min{1, |
E21

1

E32
1

cos θ32 − sinβ

cos θ21 − sinβ
|}. (37)
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