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This study shows the connection between three previously observed but seemingly unrelated
phenomena in hydrodynamic (HD) and magnetohydrodynamic (MHD) turbulent flows, involving
the emergence of fluctuations occurring on very long time scales: the low-frequency 1/f noise in
the power frequency spectrum, the delayed ergodicity of complex valued amplitude fluctuations in
wavenumber space, and the spontaneous flippings or reversals of large scale fields. Direct numerical
simulations of ideal MHD and HD are employed in three space dimensions, at low resolution, for
long periods of time, and with high accuracy to study several cases: Different geometries, presence
of rotation and/or a uniform magnetic field, and different values of the associated conserved global
quantities. It is conjectured that the origin of all these long-time phenomena is rooted in the
interaction of the longest wavelength fluctuations available to the system with fluctuations at much
smaller scales. The strength of this non-local interaction is controlled either by the existence of
conserved global quantities with a back-transfer in Fourier space, or by the presence of a slow
manifold in the dynamics.

PACS numbers: 47.27.-i,47.27.Sd,52.30.Cv, 52.35.Ra

I. INTRODUCTION

A characteristic of turbulence is the dynamical involvement of fluctuations over a broad range of length scales.
At the largest scales the general expectation is that of non-universal behavior and influence by boundary conditions
and/or driving. At intermediate scales, statistical behavior can be obtained, and at the smallest scales, behavior is
determined by some dissipation mechanism. Associated with these length scales, there are corresponding ranges of
time scales. The characteristic nonlinear time scale, assuming local interactions in scale, is obtained dimensionally as
the ratio l/ul, where l is a length and ul is the corresponding typical velocity at l. Suppose we choose a particular
length L and its associated time scale L/uL as the unit of time measurement. Frequently L will be the largest length
scale in the system, or perhaps the size of the energy-containing eddies. In these units the range of locally computed
time scales l/ul will typically extend from unity (or times of order one) to smaller time scales at the smaller length
scales. However, there are some situations in which there is an emergence of much longer time scales, which cannot be
associated with this kind of an estimate that is local in scale. Some of these issues have previously been identified in
numerical simulations [1], for example in the case of a driven-dissipative three-dimensional (3D) magnetohydrodynamic
(MHD) system in presence of a strong background magnetic field, and in two-dimensional (2D) hydrodynamic (HD)
and MHD driven-dissipative systems. In those three cases, the presence of long time fluctuations is connected with
the appearance of a 1/f noise type frequency power spectrum at very low frequencies << uL/L. In many situations
a 1/f noise spectrum arises from the existence of multiple correlation times in the system (see [2]). Such 1/f spectra
associated with long time scale fluctuations have been observed in a wide range of situations [3, 4] but the presence of
1/f noise in turbulent flows was reported only recently [1]. Dynamo simulations of the generation of magnetic fields
also exhibit 1/f spectra [5]. Low frequency dynamics have also been reported in laboratory experiments of HD and
MHD flows [6, 7]. Closely related are observations in the solar wind of 1/f behavior in the spacecraft frame magnetic
and density spectra at low frequencies [8, 9]. However in the solar wind case the 1/f signal appears to trace back to
the corona or even to the photosphere [10]. It is therefore a consequence of long time scale variability of the solar
wind sources, rather than a property that emerges due to solar wind dynamics itself.
It is conjectured in [1] that the long time fluctuations in the turbulent MHD flows arise from the non-local couplings

between the longest length scale in the system (the k = 1 mode in Fourier space) with the smaller scales, from the
inertial to the dissipation range (k ≫ 1). Such non-local interactions are known to be stronger for MHD than for HD
flows [11, 12]. It remains however an open issue as to whether the existence of dissipation, the effects of the driving,
or the particular choice of boundaries, are influential in determining the character or presence of the 1/f noise that
is generated. The present study attempts to show that the presence of a 1/f noise spectral regime is specifically with
the structure of the equations and the non-linear couplings. We accomplish this by employing a series of numerical
simulations of ideal flows in a variety of situations. We emphasize that these simulations are neither dissipative, nor
driven. Furthermore, the 1/f regime will be characterized by showing its existence (or absence), and its range of
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frequencies, for several different kinds of ideal flows and geometries. We will argue that a key feature in each system
is the existence of either ideal global invariants, or quasi-invariants (to be defined below), which provide constraints
on behavior of a small number of important degrees of freedom in the system.
We will further argue below that a related issue concerning ideal flows is the phenomenon of delayed ergodicity [13],

also identified as broken ergodicity [14, 15]. In this phenomenon, the ideal flow is described as a statistical mechanical
system composed of Fourier modes (degrees of freedom). Some of these Fourier modes (those corresponding to the
largest length scale in the system) appear to spend long periods of time in restricted regions of phase space (i.e., in
some interpretations, thus breaking the ergodicity assumption in statistical mechanical systems). As it will be clear
from the present study, this effect is essentially the same as that which produces the 1/f spectra.
Additionally, we make a further connection with another phenomenon observed on long times scales – the spon-

taneous flipping or reversal of some large scale fields. A prominent example is the reversal of magnetic field or its
magnetic dipole in MHD systems, an effect well known in the context of geomagnetic studies [16–18].
The organization of the paper is as follows. In section II the model equations, the standard ideal equations of HD

and MHD flows, are introduced, and the numerical method to solve them is described. In section III the results are
presented, divided into subsections for different kinds of systems. In section IV a discussion is developed, followed by
the conclusions and summary in section V.

II. MODEL EQUATIONS

In this paper we consider several systems of equations, including HD flows with and without rotation, and MHD
flows with and without externally imposed magnetic fields. We also consider an approximation of the MHD equations
in the limit of strong imposed magnetic fields, the so-called reduced MHD (RMHD) equations. All systems are
three-dimensional, and the flows are incompressible and ideal (zero dissipation coefficients).
In the most general case, the incompressible HD and MHD equations can be written in dimensionless form as

∂u

∂t
+ ω × u+ 2Ω× u = −

1

ρ
∇P + j×B, (1)

∂B

∂t
= ∇× (u×B), (2)

where B is the magnetic field, u the velocity field, j = ∇×B the current density, ω = ∇×u the vorticity, and P the
pressure. A term considering rigid rotation with angular velocity Ω can be included in the velocity equation. This
term corresponds to the Coriolis force, with the centrifugal force absorbed into the total pressure term. The pressure
can be obtained taking the divergence of the velocity equation, using the incompressibility condition ∇ · u = 0, and
solving the resulting Poisson equation. The solenoidal (∇ ·B = 0) magnetic field includes a uniform part B0 and a
fluctuating part b, so that B = b+B0.
With B0 = 0, these equations reduce to the MHD equations without an external field. When B ≡ 0, the equations

are the ideal incompressible three-dimensional hydrodynamic equations, that is, the Euler equations, which we also
consider as a case study. Finally, when Ω 6= 0 any of these systems is written in a rotating frame, while Ω = 0
corresponds to the non-rotating case.
The RMHD equations can be derived from Eqs. (1) and (2) for Ω = 0 and in the limit of strong B0 = B0ẑ,

assuming low frequencies and weak spatial gradients along the direction of the background magnetic field [19, 20].
The equations involve potentials a(x, y, z, t) and ψ(x, y, z, t) such that in rectangular (x, y, z) coordinates one has
b = ∇⊥ × ẑa and u = ∇⊥ × ẑψ, where ∇⊥ = (∂x, ∂y, 0). To get slow dynamics as B0 ∼ 1/ǫ→ ∞, for small ǫ, one is
forced to an ordering such that ∂z = O(ǫ). In this sense the RMHD equations are “quasi-two dimensional” in x and
y. The dynamical equations become simply those of the potentials,

∂ω

∂t
+ u · ∇⊥ω = b · ∇⊥j +B0

∂j
∂z + µ∇2ω

∂a

∂t
+ u · ∇⊥a = B0

∂ψ
∂z + µ∇2a (3)

where the electric current density is j = −∇2a and the vorticity is ω = −∇2ψ.
In the subsequent section we will describe numerical results obtained with two different type of codes, which we

now describe briefly. The parameters of all runs discussed below are given in Table I for reference.
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For one set of numerical simulations, we assume periodic boundary conditions in a cubic box, of side 2πL0 in each
cartesian direction, with L0 the arbitrary unit of length. Fields can then be decomposed in Fourier modes

u =
∑

k

uke
i k·r , b =

∑

k

bke
i k·r , (4)

where uk, bk are the Fourier coefficients of the expansion, and k is the wavevector, having integer components in the
dimensionless case.
We employ a pseudospectral code to accurately numerically solve these equations. With the pseudospectral method

(using full de-aliasing with the 2/3 rule) any quadratic invariant (like the total energy) is exactly maintained, except
for machine round-off errors and time integration discretization errors. Time integration here is done with a second-
order Runge-Kutta method, with a very small time step dt, to control the discretization error over the long simulations
we carry out. Typically we use dt ∼ 5 × 10−4 which is much less than the global large scale turnover time L0/u,
where u is the root mean square (rms) velocity. As an example, in an integration of 1000 unit times duration, for
initial primitive fluctuation fields u and b with rms values of 1, these values remain equal to unity with an error less
than 5× 10−6 at the end of the integration. In dissipative MHD the energy E balance equation satisfies

dE

dt
= −2ν(< j2 > + < ω2 >) (5)

The decay in energy due to time discretization errors can be interpreted as numerical dissipation and for the example
mentioned, using a time averaged value for < j2 > + < w2 >∼ 10, the numerical viscosity is estimated as ν ∼ 10−10.
In a second set of numerical simulations, we consider spherical geometry: the HD or MHD equations are solved

inside a sphere of unit dimensionless radius, with vanishing velocity and magnetic field at the sphere boundary. For
this geometry, a fully spectral Galerkin code is used, based on a Chandrasekar-Kendall (C-K) decomposition of the
fields. The C-K functions [21, 22] are

Ji = λ∇× rψi +∇× (∇× rψi) , (6)

where we work with a set of spherical orthonormal unit vectors (r̂, θ̂, φ̂), and the scalar function ψi is a solution of
the Helmholtz equation, (∇2 + λ2)ψi = 0. The explicit form of ψi is

ψi(r, θ, φ) = Cql jl(|λql|r)Ylm(θ, φ), (7)

where jl(|λql|r) is the order-l spherical Bessel function of the first kind, {λql} are the roots of jl indexed by q (so that
the function vanishes at r = 1), and Ylm(θ, φ) is a spherical harmonic in the polar angle θ and the azimuthal angle
φ. The sub-index i is a shorthand notation for the three indices (q, l,m); q = 1, 2, 3, . . . corresponds to the positive
values of λ, and q = −1,−2,−3, . . . indexes the negative values; finally l = 1, 2, 3, . . . , and −l ≤ m ≤ l. The C-K
functions satisfy

∇× Ji = λiJi . (8)

With the proper normalization constants, they are an orthonormal set that has been shown to be complete [23]. The
values of |λi| play a role similar to the wavenumber k in the Fourier expansion. Note that boundary conditions, as well
as the Galerkin method to solve the equations inside the sphere using this base, were chosen to ensure conservation of
all quadratic invariants of the systems, crucial for our present study of ideal flows for long times. More details about
the technique to numerically solve the HD and MHD equations in this spherical geometry can be found in [24, 25].

III. RESULTS

A. Three-dimensional MHD in a box and in the sphere

For three-dimensional incompressible ideal MHD with no mean magnetic field, there are three quadratic invariants:
the total (kinetic plus magnetic) energy per unit mass

E =
1

2
〈|u|2 + |b|2〉 = Eu + Eb, (9)

(with 〈. . . 〉 denoting a spatial average), the cross helicity

Hc = 〈u · b〉 , (10)
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and the magnetic helicity

Hm = 〈a · b〉 (11)

, where a is the vector potential such that ∇× a = b. The robustness of the Gibbs equilibrium ensemble predictions
for this system is well established [26–30]. The expectation value of spectra are readily obtained in the Gibbs
ensemble using Lagrange multipliers associated with each conserved quantity. These expectations are well verified
with numerical simulations [29, 30]. Usually the Gibbs ensemble has been viewed as a predictor of the direction of
spectral transfer, although more recently it has also been found that the ideal Gibbs-Galerkin system shares additional
characteristics with the dissipative turbulent system at short and intermediate time scales and length scales. One
of the characteristics found is that even in the ideal truncated case, cascades develop during transients ([31–34]).
For long times the system goes to solutions with zero flux but any perturbation of the system away from the zero
flux solutions (e.g., by thermal fluctuations) is corrected by transient non-zero fluxes associated with the non-linear
interactions ([39]).
For wavenumber k >> 1 (the wavenumber k in the following discussion should be considered equivalent to |λi|

for the spherical case), the Gibbs ensemble predicts in three-dimensions an omnidirectional spectrum going like k2.
Attaining this equilibrium prediction is frequently called “thermalization” of the large wavenumber modes, as this
corresponds to equipartition of energy among all individual modes, i.e., a flat modal spectrum. At the fundamental
modes k = 1 (the largest possible wavelength modes in a finite size system), condensation is predicted, according to
the established value of Hm. When Hm 6= 0, condensation at the k = 1 mode occurs, and this has been the base
for prediction [29] of an inverse cascade of magnetic helicity in dissipative MHD (i.e., when dissipation and forcing is
added to the ideal MHD equations).
Furthermore, when both Hm 6= 0 and Hc 6= 0, the condensation of magnetic helicity induces a partial condensation

of the cross helicity [30]. For such cases the largest scales are expected to contain signatures both of magnetic helicity
(helical b) and of Alfvénic correlation (u ∝ b).
We note here that the ideal model can be viewed as a dynamical model of the nonlinearities that drive turbulence. It

is a simplified model because it becomes Gaussian, and also it lacks a preferred average direction of spectral transfer.
But it is worth remembering that in “real turbulence”, with dissipation, there are large numbers of couplings that take
energy to higher k, and also large numbers of couplings that take energy to lower k. These two types of couplings are
almost in balance. However, transfer to higher k dominates slightly – this is just what the direct cascade is (an inverse
cascade would be the case where the transfer to lower k dominates slightly). This has been observed in numerical
simulations, as well as in laboratory experiments. In this regard, the ideal model is not “real turbulence” but it shares
some of its properties ([31]).
An assumption for the equilibrium ensemble predictions is the property of ergodicity. The required property is

that, in a long period of time, the system, defined by the set of real and imaginary parts of its Fourier coefficients
(i.e., the dynamical degrees of freedom of the ideal MHD system) will visit all accessible regions in complex phase
space. A point in phase space is “accessible” if it is permitted by the values of the invariant quantities. This is well
verified for k > 1 modes, which evolve on relatively fast time scales. However, for the longest wavelength k = 1 modes
there is an apparent breaking of ergodicity that has been identified in simulations [14, 15]. There is however evidence
that ergodicity is restored at very long times [13]. As a result, the k = 1 modes seem to wander for very long periods
of time in restricted regions of phase space, until at some point, a possibly sudden “hopping” [13] occurs and a new
period of wandering occurs in another restricted region of phase space. As has been recently also pointed out [15], the
time duration of these wandering periods is related to the dimension of the system (i.e., the finite number of modes
assumed for the numerical simulation). This is to be expected since the delayed ergodicity is related to condensation,
and for any system with the same values of the ideal invariants, the condensation is more complete for systems with
larger numbers of degrees of freedom [30].
We will focus here then on the time behavior of a single k = 1 mode, and the point we make is that there is a

connection between this aperiodic cycle of wandering and hopping behavior, and the 1/f power frequency spectrum
already observed in dissipative MHD [1]. The time behavior of the k = 1 mode can be interpreted as the time
behavior of the large scale magnetic field, i.e., it corresponds to the time behavior of the fluctuating magnetic field
after a filtering of the smaller scales (with k > 1) is performed. This connection between k = 1 and the apparent
or observable large scale magnetic field becomes sharper as the condensation becomes more complete. In dissipative
MHD, this filtering process occurs naturally through dissipation which damps the small scales. In ideal MHD, however,
the thermalization of the small scales, with a spectrum going like k2, tends to obscure the time behavior of the k = 1
mode if a power frequency analysis is applied to the full fluctuating magnetic field. As a result, we shall look at the
time behavior of a single k = 1 mode in this case, in order to properly see the long time fluctuations that develop. In
what follows, we thus present a series of results for the time behavior and the frequency spectrum of the k = 1 mode
for different numerical simulations of ideal MHD, with first a fixed system size (fixed N , with N3 = total number of
modes) and varying the magnetic helicity, and secondly by varying the number of modes N3 but with approximately
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fixed magnetic helicity. Our working hypothesis is that these scalings can be understood in terms of scalings within
the Gibbs ensemble [30]: For fixed Hm/E, increasing N intensifies the condensation until all Hm asymptotically
resides in k = 1. For fixed N , increasing Hm/E increases condensation until as this ratio approaches its maximum
value, all excitations condense to k = 1.

1. Periodic box

We begin by considering the behavior in time of a large scale mode in a sequence of three incompressible ideal
3D MHD simulations with increasing |Hm|. These are further described in Table I, and have Hm = −0.008, 0.129,
and −0.395, a fixed simulation size of N3 = 163, and fixed total energy equal to 1. The fluctuations are initially
equipartitioned Eu = Eb, and concentrated in a range of wavenumbers 1 < k < 4. In particular Figure (1) illustrates
the temporal behavior of the k = 1 modes, choosing the real part of bz(k = 1, 0, 0) as an indicator of the behavior
of the large-scale modes. Indeed, the same behavior is obtained for other components, bx, by, or for other directions
in k, except of course for directions for which k is parallel to the field component, which are identically zero due to
the ∇ · b = 0 condition. The different panels in Figure (1) correspond to increasing values of |Hm|. It is apparent
that as the magnitude of magnetic helicity is increased, long period fluctuations (as long as 1000 unit times) begin to
appear. Such fluctuations are not observed in the time series of modes with larger wavenumber (i.e., smaller spatial
scales), and are characteristic of the largest scale Fourier modes in the system. Note that the value of the magnetic
field fluctuation amplitude increases with Hm, consistent with the condensation phenomenon.
Qualitatively, it would be reasonable to say that the low helicity case in Figure (1) (top) is more “stationary”, as

the fluctuations in that case approach a zero mean within say 100 time units or less. On the other hand the two higher
helicity cases exhibit coherent fluctuations at a scale of hundreds, or even thousands, of time units. The suggestion
is that low frequency oscillations are becoming more dominant with higher helicity. Indeed, there is clear evidence of
this in the frequency spectra, shown in Figure (2) for each of the three time series given in Figure (1). The increasing
power in the low frequency part, and the emergence of a ∼ 1/f power law at the very low frequencies << 1 , are
associated with increasing |Hm|. We note here that often in the literature, 1/f is loosely used to refer to any spectrum
of the form f−α, with 0 < α < 2 (i.e. omitting both white noise and Brownian motion).
The important point that we want to stress here is not the exact power law index that fits the spectra (which

in fact is dependent on the time duration of the simulations, because when longer time fluctuations appear a more
extended run would be needed), but rather the fact that there is no obvious reason for which fluctuations with time
scales orders of magnitude longer than the unit time should appear here. The longest time scale based on local time
arguments is TL = L/uL, which for the largest length scale of L = 2π (box size) corresponding to k = 1 and for
uL = 1, is TL = 2π. Frequencies below fL = 1/TL = 1/(2π) should normally have a flat power spectrum (white
noise), indicating the existence of a defined correlation time. However as the Figure (2) shows, for the cases where
long time fluctuations appear, the spectrum to the left of the fL = 1/(2π) is far from being flat. This is indicated in
the panels of the figure with a vertical line at the frequency 1/(2π) and a horizontal line at the corresponding value
of the power spectrum for that frequency. We identify the difference between the observed power spectrum and a flat
power spectrum as the range of 1/f spectra in each case (again, using a loose definition for 1/f).
This range of the 1/f spectra is short for the lower values of Hm, with corresponding time periods (T ∼ 1/f) of

the order of 10 unit times, and increasing to T ≈ 100 − 500 for Hm = 0.129, and as long as T ≈ 500 − 1000 for
Hm = 0.395.
It is interesting to observe the autocorrelation function for each of the time series in the cases shown, as a comple-

mentary way to see the appearance of long time fluctuations. Here the autocorrelation function is defined as

C(t) =< b(t0)b(t0 + t) > (12)

where b represents a cartesian component of a magnetic field mode (for instance the z component of the real part of
the magnetic field Fourier mode for k = (1, 0, 0)), with subtracted mean and normalized so that < b2 >= 1, t0 is an
arbitrary origin in time, t is the time lag and < ... > denotes a time average.
This is shown in the panels of Figure (3). The case with smallest Hm presents a compact correlation function,

localized within about 10 unit times, whereas the cases with larger Hm show a much broader correlation function. A
correlation time can be obtained as

tc =

∫ Tf

0

C(t)dt (13)

where Tf is the final time of the run, assuming it is a large time.
This quantity is well defined if the correlation function is confined within a finite range of time lags, decaying faster

for long times. However, if the correlation function does not decay faster, and in depends on the time duration of the
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series, then the correlation time is not well defined. In particular, for an exact 1/f power spectrum there is no single
correlation time that can be defined. The values indicated in the plot for the three Hm cases of tc = 14, 189, 346 show
again that longer time fluctuations (and correlations) appear as Hm is increased.
Recalling that condensation in the ideal Gibbs ensemble intensifies as the number of degrees of freedom (∼ N3)

increases, we now explore whether the emergence of long time scale coherent fluctuations and the associated 1/f
spectra behave the same way. The next series of plots in Figure (4) show the time behavior of a magnetic field
component of a single mode k = (1, 0, 0) varying the size of the simulation of 3D MHD, for N3 = 163, 323, and 643,
and for low values of Hm = 0.027, 0.027, and 0.015, respectively. for each N . These results show that long time
fluctuations appear even for low values of Hm when the size of the system is increased. We note that for the N = 64
case a longer time range is needed to observe fluctuations to average to zero. This is indeed observed in this run when
it is extended until t > 10000 but not shown here for consistency with the shorter time range selected for the rest of
the cases in this Figure. Figure (5) shows the corresponding power frequency spectra P (f) for each size N . The range
of low frequency 1/f noise increases from T ∼ 10 for N = 16 to T ∼ 2000 for N = 64 (compare Figures (2) and (5)).
Furthermore, Figure (6) shows the autocorrelation function and the obtained correlation time tc for each time series

for different values of N . Also evident in this figure is the appearance of long time fluctuations as N is increased
through the broadening of the autocorrelation function.
Another view of the long time fluctuations can be obtained from the time evolution of individual Fourier modes in

a phase space plot in the complex plane [14, 15]. For instance, the bz(1, 0, 0) mode for the 323 run in the Hm = 0.027
case is shown in Figure (7). For comparison, the behavior in the complex plane of the bz(2, 0, 0) mode, with a larger
k, for the same run is shown in Figure (8). The long time fluctuations of the bz(1, 0, 0) mode correspond to long
periods of time spent in a restricted region in the complex plane, as contrasted by the quick filling of the complex
plane allowed region for the bz(2, 0, 0) case. This phenomenon has been called [13] “delayed ergodicity,” because the
ergodicity property of the k = 1 seems to be broken only temporarily, as the mode spends long times in a region of
the complex plane thus not filling the entire space. For longer times, the “hopping” of the mode between different
regions starts filling the space. As observed here, this corresponds to long time fluctuations of the time series, and to
the appearance of the 1/f power law in the power frequency spectrum.
As can be seen in the time series plots, the component of the large scale magnetic field shown, which is a dominant

contribution to the global magnetic field when condensation is strong, progresses for long periods of time without
changing sign, and then experiences a reversal in sign, followed by another long period of time without sign change
(see e.g., Figures (1) and (4)). We will come back to this “reversal” phenomenon in spherical runs, but it can already
be seen that this is part of the same long time fluctuations phenomenon reported as 1/f noise.
Another interesting diagnostic is shown in Figure (9), where the real and imaginary parts of the complex amplitudes

of several field components of the mode k = (1, 0, 0) are shown as a function of time, for the same run (N3 = 323 and
Hm = 0.027). This is a case with long time fluctuations and delayed ergodicity. Apparently, from our analysis the
k = 1 magnetic modes satisfy particular equilibrium configurations, namely the field is quasi force-free. A force-free
magnetic field satisfies j × b = 0, that is, the Lorentz force term in the momentum equation is zero. If the velocity
field u is zero, this means that for an ideal flow (no viscosity or diffusivity) the magnetic field will remain force-free
in time, and all non-linear terms will be zero. Force-free states also correspond to maximum allowable values of the
magnetic helicity (see [35]).
In terms of Fourier modes, if a single k mode is in a force-free state, i.e., jk × bk = 0, then, since jk = ik× bk, it

must satisfy ik × bk = λbk which implies that λ2 = k2, that is, λ = ±k. For the k = 1 modes this means λ = ±1
and, since these modes are equal to the Cartesian versors (unit vectors), it also implies some relations between the
components of bk. Taking, for example, k = (1, 0, 0), these relations are Im(bz) = ±Re(by) and Re(bz) = ∓Im(by),
where the field components are in k-space (notice that for this mode, bx = 0 because of the divergence-free condition.)
This is immediately seen to be the condition for a circularly polarized fluctuation in a k-aligned coordinate system
– that is, if we let k = (1, 0, 0) in a right-handed Cartesian system, then the above conditions are equivalent to
bk = eφk(0, 1,±i) for arbitrary phase φ. The plots in Figure (9) show that the imaginary and real parts of these field
components exhibit this correlation – they are very highly correlated in time (light gray and black are used for each
corresponding component and are almost indistinguishable). In fact, values of the correlation coefficient > 0.95 are
obtained in each case, corresponding to near maximum helicity.
Similar relations can be found for the k = (0, 1, 0) and k = (0, 0, 1) modes, and strong correlations > 0.95 are also

found for the imaginary and real part of the corresponding field components in time (not shown). This is true for all
the previous runs for which long time fluctuations of the k = 1 modes are observed. However the circular polarization
is not found for larger k modes (e.g., for k = (2, 0, 0)). This is a very special property of the k = 1 modes, that they
evolve in a quasi force-free state in time. This condition is consistent with the ensemble average predictions of the
Gibbsian theory [29, 30], but is not imposed by it as an exact condition due to allowance for fluctuations about the
equilibrium expectation. We will come back to this issue in the discussion section.
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FIG. 1: Time series of a component of the magnetic field for the k = (1, 0, 0) mode in a MHD run with 163 modes and with
different values of the magnetic helicity: Hm = −0.008 (top), 0.129 (middle), and −0.395 (bottom).

2. Spherical geometry

The next example corresponds to a series of spherical MHD runs. Figure (10) shows three runs with a fixed value
of Hm = 0.03, and with three different values of qmax = 5, 7, and 8, corresponding to increasing number of degrees
of freedom in the model. Here, qmax is the maximum value of the q index corresponding to the radial number in a
spherical harmonic expansion [see Eqs. (6)-(7) and text therein]; the maximum values of l and m are also increased
accordingly. In this particular geometry, the maximum possible value of helicity for a flow with unit energy is ≈ 0.22.
Again, as in the periodic box runs, it is seen that increasing the size of the system shows the appearance of long time
fluctuations and a corresponding range of 1/f power frequency spectrum, as shown in the plots of Figure (11).
Here we show again in Figure (11) references vertical line for the frequency fL = 1/2 based on the largest local

non-linear time TL = L/UL = 2 which corresponds to structures with the diameter of the sphere L = 2 (unit radius)
and a unit root mean square velocity UL = 1.
Another effect is shown in Figure (12) which corresponds to the time behavior of a single mode, by including
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FIG. 2: Power frequency spectra of the time series in Figure (1), with different values of the magnetic helicity Hm =
−0.008, 0.129, and −0.395. The reference vertical line corresponds to a frequency value fL = 1/(2π) (see text) and the
horizontal line to the value of P (fL).

non-zero rotation, with Ω = 16. Results for size qmax = 5 with Ω = 0 and Ω = 16 are shown. It is seen that longer
time fluctuations appear with the addition of rotation in the system. The corresponding frequency spectra in Figure
(13) also show a wider range of 1/f noise for the rotating case.
The long time fluctuations for the case of qmax = 5 and Hm = 0.03 with rotation (see Figure (12)) appear as sign

reversals of the z-component of the magnetic field, with excursions with periods of the order T ∼ 50 − 200. In fact,
another quantity that can be studied for this system is the magnetic dipole, which is essentially a weighted moment
average of the magnetic field, which tends to highlight the low q modes. We defer a detailed analysis of the magnetic
dipole reversals to another paper, but we point out that this long time fluctuation phenomenon is directly related to
1/f noise and delayed ergodicity of the q = 1 mode in complex phase space. As an example, a phase space plot of
the temporal behavior of the q = 1 mode is shown in Figure (14). It can be seen that this mode spends a long time
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FIG. 3: Autocorrelation function for the time series of magnetic field in Figure (1), with different values of the magnetic helicity
Hm = −0.008, 0.129, and −0.395. A correlation time tc (see text) is indicated in each case.

in a restricted region of phase space, thus delaying overall ergodicity.

B. Three-dimensional MHD and RMHD with a background magnetic field in a cubic box

1. MHD with a background magnetic field

In the presence of a background uniform magnetic field B0, the 3D MHD equations lose one of the quadratic
invariants, the magnetic helicity, so the two invariants that remain are the total energy (magnetic plus kinetic) and
the cross helicity. As will be discussed in a following section, this fact can have an influence on the interaction of the
lowest k = 1 mode with the remaining modes in the system, and correspondingly on the 1/f power spectrum.
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FIG. 4: Time series of a component of the magnetic field for k = (1, 0, 0) mode in the MHD runs with different resolution
N3 = 163, 323, and 643 and magnetic helicity Hm = 0.027, 0.027, and 0.015.

Results for simulation runs of ideal 3D MHD with a background magnetic field in the y-direction B0y = 8 (as

compared to fluctuations r.m.s. values of
〈

b2
〉1/2

= brms = 1) are shown in Figure (15), for the time evolution
of a fluctuating component of the magnetic field of the k = (1, 0, 0) mode, and for the corresponding frequency
spectra in Figure (16). This corresponds to a simulation of size 323. Long time fluctuations of the order of 1000
unit times appear, and a corresponding strong enhancement of very low frequency power, associated with a 1/f
spectrum, is clearly observed. This case of MHD with a background magnetic field has been thoroughly studied for
the driven/dissipative case [1]. Here, it can be seen that the 1/f spectrum appears even in the ideal case and we
conclude that it is a property of the non-linear interactions among the modes in the system, and does not depend on
the presence of dissipation in an essential way. The complex plane phase space trajectory for this case is shown in
Figure (17), and delayed ergodicity of the k = (1, 0, 0) mode is also clearly observed.
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FIG. 5: Power frequency spectra of the time series in Figure (4), with different resolution N3 = 163, 323, and 643 and magnetic
helicity Hm = 0.027, 0.027, and 0.015. The reference vertical line corresponds to a frequency value fL = 1/(2π) (see text) and
the horizontal line to the value of P (fL).

2. Reduced MHD

Another related case of interest is given by the RMHD system, which is, as discussed in Section II, an approximation
to the low-frequency dynamics of the MHD equations with a large background magnetic field. Results for a RMHD
case are shown in Figure (18), namely time series for a component of the fluctuating magnetic field for the k = (0, 1, 0)
mode, and corresponding power frequency spectrum in Figure (19). This is for a case with a background magnetic
field in the x-direction B0x = 8 and size 323. As can be seen, long time fluctuations are evident, with periods on the
order of 1000 unit times. The RMHD system admits two known quadratic ideal invariants, the total energy and the
cross helicity. It is interesting however that an additional quantity, the mean square vector potential, which is strictly
invariant in ideal 2D MHD, behaves as a quasi-invariant in RMHD [36]. By this we mean that this quantity remains
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FIG. 6: Autocorrelation function for the time series of magnetic field in Figure (4), with different resolution N3 = 163, 323,
and 643 and magnetic helicity Hm = 0.027, 0.027, and 0.015. A correlation time tc (see text) is indicated in each case.

statistically constant for long periods of time. The connection of this with the emergence of long time fluctuations
will be further discussed in section IV.

C. Three-dimensional hydrodynamic with and without rotation

There are two quadratic invariants in ideal three-dimensional hydrodynamics, the kinetic energy

Eu =
1

2
〈|u|2〉, (14)
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FIG. 7: Complex phase space trajectory for the k = (1, 0, 0) mode in the MHD 323 run, with Hm = 0.027, for different intervals
of time.

and the kinetic helicity

Hv = 〈ω · u〉 . (15)

These are also invariants of the 3D HD equations with addition of constant rotation.
In the absence of rotation, these invariants do not condense to the longest wavelength, or engage preferentially in

back-transfer to the lowest k values [32, 37]. Lacking these tendencies a rationale is lacking for expecting an inverse
cascade to large scales in the dissipative case. In the presence of rotation, however, and in the ideal case, there
is a transient reduction to quasi two-dimensional behavior and a transient condensate, associated with the quasi-
conservation of the energy in two-dimensional modes (modes with k‖ = 0, where parallel refers to the direction of the
rotation axis) [38, 39]. These modes correspond to the so-called slow manifold of the system. In the forced-dissipative
rotating case, resonant interactions transfer energy toward these modes, also resulting in two-dimensionalization and
in the development of an inverse energy cascade [40, 42].
The ideal behavior discussed above is similar to the behavior of MHD in the presence of a background magnetic

field (see previous subsection), which also reduces to a quasi two-dimensional dynamical behavior and has the mean
square vector potential as a quasi-invariant [28, 36]. As will be discussed further in the next section, this has an effect
on the emergence of long time fluctuations (see also [36]).
The time evolution of a velocity component for the k = (1, 0, 0) mode with no rotation and with rotation Ωz = 16

(along the z-axis) in a periodic box is shown in Figure (20), and the corresponding frequency spectra are shown in
Figure (21). Long time fluctuations are much more apparent in the case with rotation, where fluctuations are observed
with periods of the order of T ∼ 50 − 100, together with a corresponding enhancements in the low frequency 1/f
range of the spectrum. Similar results are obtained for simulations in spherical geometry (not shown).

IV. DISCUSSION

All the simulations discussed in the previous section are summarized in Table I. We summarize now the results
and discuss the related phenomena of emergence of long time fluctuations, delayed ergodicity, and corresponding 1/f
power law in the frequency spectra.
The first examined case corresponds to ideal 3D MHD. This system shows long term memory, 1/f noise, and

delayed ergodicity in the k = 1 modes. As pointed out, the system has three quadratic invariants, the total energy,
cross helicity, and magnetic helicity, and in a statistical steady state the amplitudes of Fourier modes are controlled
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FIG. 8: Complex phase space trajectory for the k = (2, 0, 0) mode in the MHD 323 run, with magnetic helicity Hm = 0.027.
Notice the noticeably larger wandering in phase space when compared to Figure (7), indicative of clearer ergodicity.
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FIG. 10: Time series of the bz component of the magnetic field for the (q, l,m) = (1, 1, 0) mode in the spherical MHD run with
qmax = 5, 7, and 8, and magnetic helicity Hm = 0.03.

by the Gibbs ensemble prediction. Specifically, the magnetic helicity allows condensation at the lowest wavenumber
mode. This happens for non-zero values of Hm, and it becomes more intense as the absolute value of Hm is increased.
Condensation also become more intense as the number of modes ∼ N3 is increased for fixed Hm/E. The k = 1 mode
is special then in the dynamics of this system. As shown, this mode is in a quasi force-free state, so its evolution
is slow, weakly coupled with a sea of lower amplitude modes at much larger wavenumbers. The force-free property
is prescribed by the Gibbs ensemble solution; the modes with k = 1 have maximum helicity, the magnetic field is
parallel to the current density, and these largest scale fluctuations are circularly polarized.
The coupling between the k = 1 modes and the small scale modes is defined by triads of wavenumbers, constructed

with a k = 1 mode and two large wavenumber modes. The time evolution of these interactions is controlled by the
(comparatively small) amplitude of the larger wavenumber modes, but the large length-scale (small k) of the lowest
wavenumber mode. As pointed out in [1], this can be seen from the expression for this type of interaction which is of
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FIG. 11: Power frequency spectra of the time series in Figure (10), for qmax = 5, 7, and 8, and Hm = 0.03. The reference
vertical line corresponds to a frequency value fL = 1/2 (see text) and the horizontal line to the value of P (fL).

the (schematic) form

∂b(k)

∂t
= −ik

∑

k=p+q

u(q)b(p) , (16)

where b(k), u(q), b(p) are generic Fourier mode amplitudes, with the constraint that k = p + q. In particular, we
consider the lowest wavenumber mode k = 1. If the triadic interaction is local, then k ∼ p ∼ q by definition
and the timescale of that interaction is given by [ku(k = 1)]−1 ∼ 1, whereas if the interaction is nonlocal, then
p, q ≫ k = 1, p ∼ q and the timescale is [ku(q)b(q)/b(k = 1)]−1 which is much longer than the local timescale since
u(q), b(q) ≪ u(k = 1), b(k = 1).
The fact that 1/f noise is also observed in cases with low magnetic helicity but increasing size N suggests however

that even in cases with amplitude equipartition among modes (i.e., when magnetic helicity is small, as indicated by
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FIG. 12: Time series of the bz component of the magnetic field for the (q, l,m) = (1, 1, 0) mode in the spherical MHD run with
zero rotation (Ω = 0, top), and Ω = 16 (bottom) and qmax = 5.

TABLE I: Summary of all runs, with N3 the total number of grid points, Hm and Hv the magnetic and kinetic helicity, and
Ω or B0 the respective amplitude of the imposed solid body rotation or uniform magnetic field. The first column indicates
what equations have been integrated, SMHD being the MHD equations in spherical geometry with qmax corresponding to the
truncation of the C-K functions (see equation (5) and text); all other runs are computed in periodic cubic geometry. “ROT”
stands for runs with rotation, and B0 stands for runs with an imposed magnetic field. The last column gives the estimated
strength and range of the observed 1/f noise spectrum (see Figures).

Run N3 Hm or Hv Ω or B0 1/f range
MHD 163 −0.008 0 weak, T ∼ 20− 100
MHD 163 0.027 0 medium, T ∼ 20− 200
MHD 163 0.129 0 strong, T ∼ 100− 1000
MHD 163 −0.395 0 strong, T ∼ 200− 1000
MHD 323 0.027 0 strong, T ∼ 100− 1000
MHD 643 0.015 0 strong, T ∼ 1000 − 2000
SMHD qmax = 5 0.03 0 weak, T ∼ 10− 50
SMHD qmax = 7 0.03 0 strong, T ∼ 50− 100
SMHD qmax = 8 0.03 0 strong, T ∼ 100− 200

SMHD + ROT qmax = 5 0.03 16 strong, T ∼ 50− 200
MHD + B0 323 - 8 strong, T ∼ 500− 1000
RMHD 323 - 8 strong, T ∼ 500− 1000
HD 323 −0.26 0 weak, T ∼ 10− 50

HD + ROT 323 −0.26 16 medium, T ∼ 50− 100
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FIG. 13: Power frequency spectra of the time series in Figure (12), with rotation Ω = 0 and 16 and qmax = 5. The reference
vertical line corresponds to a frequency value fL = 1/2 (see text) and the horizontal line to the value of P (fL).

the Gibbs ensemble predictions), the sea of large wavenumber modes is again slowly modifying the dynamics of the
k = 1 mode. This idea is supported by previous studies [32] in which the effect of the large wavenumber modes on
the lower wavenumber modes is modeled through an effective viscosity, even though the systems are strictly ideal,
like the Euler equations. This is also similar to ideas suggested by low dimensional dynamical systems in connection
with the reversals of the geomagnetic field, see e.g. [17, 18], with bi-stable states driven by noise (in this case, the
large wavenumber modes would act as the driving noise for large-scale behavior).
These results, besides being obtained for different resolutions and values of the invariants in ideal cases (i.e., without

viscous or external forcing, indicating the long term behavior is intrinsic to the system of equations), are also obtained
for two different geometries: in periodic boxes and in spheres. As a result, we conclude that the boundary conditions
do not seem to affect the long term behavior.
As mentioned before, the 3D MHD system has an ideal invariant that experiences a condensation to the longest

wavelength modes of the system, and in the dissipative driven case is expected to be involved in an inverse cascade.
Interestingly, another set of results observed here suggest that certain systems like MHD with a background magnetic
field or HD with rotation also allow for the emergence of long time fluctuations and 1/f behavior. These systems
do not have an ideal invariant that condenses to the lowest wavenumber mode in the Gibbs ensemble. There is
nevertheless a slow manifold of modes (the two-dimensional modes) that is distinguished from all other degrees of
freedom. We argue that this slow manifold is controlling the emergence of long time fluctuations in the k = 1 modes,
as observed in the results. It is interesting to note that these systems are characterized by the existence of a quasi-
invariant. By this we mean a slowly varying but not strictly conserved quantity, such as the square vector potential
〈

a2
〉

in MHD with a background field, or the energy in modes with k‖ = 0 in HD with rotation. The quasi-invariants
are approximately conserved in the slow manifold, and thus introduce longer timescales in the dynamics by permitting
transient condensation at the lowest wavenumber mode.
Finally, a third category is that of systems with flat frequency spectrum for small frequencies, which are associated

with negligible long time correlations. An example is 3D NS without rotation, or 3D MHD with no magnetic helicity
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FIG. 14: Complex phase space trajectory for the (q, l,m) = (1, 1, 0) mode in the spherical MHD run, with qmax = 5 and
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FIG. 15: Time series of the z-component of the magnetic field for the k = (1, 0, 0) mode in the MHD 323 run with background
magnetic field B0y = 8 and brms = 1.

and zero mean magnetic field. These systems have no invariant or quasi-invariant that condensates at large scales in
the ideal case.

V. CONCLUSION

The emergence of long time fluctuations and 1/f noise in the frequency spectrum of field variables is observed in
systems with a quadratic invariant allowing condensation at the lowest wavenumber mode, like the magnetic helicity
in 3D MHD. This happens when the invariant is large but also when it is small, provided the number of modes (N3)
is large enough. This happens indistinctly in geometries like a periodic box or a sphere, thus we argue that this is an
intrinsic property of the non-linear couplings in the system and is not dependent on the geometry, or other external
properties of the system like driving, or dissipation, which are absent in the ideal systems analyzed here.
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FIG. 17: Complex phase space trajectory for the k = (1, 0, 0) mode in the MHD 323 run with background magnetic field
B0y = 8.

We can conjecture therefore that long time fluctuations will be also observed in ideal 2D MHD and 2D HD, where
a quadratic invariant allowing condensation at the lowest wavenumber mode also exists. A previous indication of this
is given in [1] where the driven-dissipative case for these systems is studied and showed to have 1/f noise. Other non-
linear systems that do not belong to fluid dynamics, but have Gibbsian statistical condensates and dissipative-driven
inverse cascades, may also show this behavior (see for instance a case in quantum optics [41]).
The 1/f power spectrum is also observed in systems with a slow manifold and quasi-invariants, like MHD with

a background magnetic field and hydrodynamics with rotation. We also argue that other systems, like flows in the
geostrophic approximation, with a slow manifold dynamics, may show long time fluctuations as well.
The observed occurrence of a range of 1/f frequency spectra in interplanetary magnetic field and density fluctuations

is another case of relevance to the present discussions [8–10] This signal is observed in the frequency range ∼ 10−5− ∼
10−4 Hz in the solar wind at 1AU and beyond, but is also observed in the coronal and in the solar photospheric
magnetic field. It is therefore possible that the origin of this signal is either in the solar dynamo or in coronal
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FIG. 18: Time series of the z-component of the magnetic field for the k = (0, 1, 0) mode in the RMHD 323 run with background
magnetic field B0x = 8.
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FIG. 19: Power frequency spectra of the time series shown in Figure (18). The reference vertical line corresponds to a frequency
value fL = 1/(2π) and the horizontal line to the value of P (fL).

dynamics, or both. Interestingly one might well expect slow manifold behavior in either of these cases, due to rotation
or regional effects of magnetic helicity in the dynamo, or quasi-invariance of the mean square potential in the corona,
which is dominated by a strong large scale magnetic field. It is tempting to also associate this phenomenon to long-
time memory effects in geophysical flows, as e.g., the ocean circulation; indeed, the origin of multi-decadal time-scales
in the climate evolution still remains mysterious since it is not directly associated with a known instability and yet it
is well observed, and reproduced, with approximate accuracy, in numerical models (see e.g. [43–46]).
Finally, three-dimensional hydrodynamic flows, which do not have condensed invariants or quasi-invariants, do not

develop 1/f noise in the ideal case (see also [1] for similar results in the forced-dissipative case). The development of
1/f noise in such systems, if it happens, may be associated with forcing or boundary conditions.
The main result that can be concluded here is that in many cases, long-time fluctuations are intrinsically given

by the non-linear dynamics of the system, and not controlled by external properties or dissipation. Furthermore
these studies serve to strengthen the growing understanding that there are deep connections between condensation
(or quasi-invariants), and 1/f signals at low frequency, as well between the associated slow manifolds and irregular
large scale stochastic reversals (or delayed ergodicity). A number of phenomena observed in many types of flows can
be all understood in terms of these couplings, and may therefore have universal properties linked to the presence of
invariants.
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FIG. 20: Time series of the z-component of the velocity field for the k = (1, 0, 0) mode in the HD 323 run with rotation Ω = 0
(top) and Ωy = 16 (bottom).
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