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Abstract When subject to applied electric pulses, a lipid membrane exhibits complex responses 

including electrodeformation and electroporation.  In this work, the electrodeformation of giant 

unilamellar vesicles under strong DC electric fields was investigated.  Specifically, the degree of 

deformation was quantified as a function of the applied field strength, and the electrical 

conductivity ratio of the fluids inside and outside of the vesicles.  The vesicles were made from 

L- α -phosphatidylcholine with diameters ranging from 14 to 30 mμ .  Experiments were 

performed with the field strength ranging from 0.9 to 2.0 kV/cm, and the intra-to-extra-vesicular 

conductivity ratio varying between 1.92 and 53.0.  With these parametric configurations, the 

vesicles exhibited prolate elongations along the direction of the electric field.  The degree of 

deformation was in general significant.  In some cases, the aspect ratio of a deformed vesicle 

exceeded 10, representing a strong-deformation regime previously not explored.  The aspect ratio 

scaled quadratically with the field strength, and increased asymptotically to a maximum value at 

high conductivity ratios.  Appreciable area and volumetric changes were observed both during 

and after pulsation, indicating the concurrence of electroporation.  A theoretical model is 

developed to predict these large deformations in the strongly-permeabilized limit, and the results 
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are compared with the experimental data.  Both agreements and discrepancies are found, and the 

model limitations and possible extensions are discussed. 

 

I. INTRODUCTION 

The application of electric pulses to cells or vesicles induces complex responses.  The 

lipid membrane may become porated, which is a phenomenon known as electroporation.  It may 

also deform under electromechanical and electrohydrodynamic forces, which is a phenomenon 

known as electrodeformation.  Electroporation is widely employed in both biological research 

and clinical applications, in areas including drug and gene delivery, protein insertion, cancer 

therapy, and other processes where access to the cytoplasm is desired [1-4].  Electrodeformation, 

on the other hand, can be harnessed as a means to probe membrane properties [5, 6], and to 

detect pathological changes in cells [7].  Electroporation has been extensively studied for over 

three decades with well-developed modeling and diagnostic tools [8-15].  In contrast, 

electrodeformation received more attention during the past decade.  Although research in this 

area began much earlier [5, 16-19], a significant body of data only became available in the recent 

years with the development of high-performance optical imaging systems [20-28].  

Electrodeformation may occur with both AC and DC electric fields.  When investigating 

this phenomenon, most authors used vesicles as a model system (instead of biological cells) due 

to their relative simplicity and controllability.  An AC field in general induces a variety of 

relatively stationary deformations based on the frequency domain.  For this reason, it is used to 

systematically quantify membrane responses, often in the absence of membrane poration.  

Helfrich and co-authors, for instance, analyzed area changes of deformed vesicles to infer the 

bending rigidity of the membrane [5, 6].  Dimova and co-authors performed extensive studies to 
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characterize vesicle morphological types (prolate, oblate, and spherical) in the parametric space 

of field frequency and intra-to-extra-vesicular conductivity ratio [20, 23].  These studies were 

later complemented with an electrohydrodynamic theory by Vlahovska et al. to interpret the 

observed trends and regimes [28].  Electrodeformation under DC fields, on the other hand, is 

transient and dynamic.  Due to the high field strength normally used in these DC studies, 

membrane poration often occurs concurrently.  In a series of work, Neumann and co-authors 

studied the electroporative deformation of vesicles hundreds of nanometers in size [24].  At this 

range, direct optical observation is difficult, and alternative techniques such as conductometrical 

and turbidimetrical measurements were employed.  The data were analyzed to extract useful 

information such as pore statistics, vesicle volumetric reduction, and the correlation between 

membrane curvature and pore formation.  In contrast, direct observation of giant vesicles 

(typically a few tens of microns in diameter) under the action of a field can reveal rich and 

complex details of the dynamic process.  In [26], Riske and Dimova developed a high-speed 

imaging system to investigate the deformation-relaxation of vesicles under DC electric fields.  

The results were discussed in relation with the electrotension (the Maxwell stress) on the 

membrane, as well as various time scales (the viscous relaxation and the pore relaxation), which 

are important in understanding the membrane relaxation mechanisms post-pulsation.  In a 

companion work, the same authors observed transient, cylindrical deformations when the 

vesicles were suspended in a salt solution [27]. 

In this work, the electrodeformation of giant lipid vesicles under strong DC electric fields 

is investigated with direct optical observation.  Unilamellar vesicles 14-30 microns in diameter 

were formed from L- α -phosphatidylcholine [29], with prescribed intra-to-extra-vesicular 

conductivity ratios ranging from 1.92-53.0.  Direct-current pulses 500 sμ  in duration and 0.9-
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2.0 kV/cm in strength were applied to the suspended vesicles.  This arrangement led to strong 

prolate deformations in which the vesicles elongated along the direction of the applied field.  The 

vesicles were visualized using sucrose-glucose contrast imaging.  The deformation was 

quantified by measuring the aspect ratio of the deformed vesicles, and the changes in the 

apparent surface area and volume are analyzed both during and after pulsation.  The materials 

and methods are introduced in Sec. II.   

Previous work primarily investigated the time course of deformation (in DC fields, [26, 

27]), and characterized the various morphological types and the transition from one to another 

(in both AC and DC fields, [20, 23, 27, 28]).  Herein, we focus on one particular morphological 

type, namely, the prolate deformation under DC electric pulses.  We systematically quantify 

deformation as a function of the controlling parameters, i.e., the field strength, and the intra-to-

extracellular conductivity ratio.  In contrast to the moderate-deformation regimes (with aspect 

ratios not exceeding 3) studied before [26, 27], this work extends into a strong-deformation 

regime.  In some conditions, the combination of high field strength and conductivity ratio results 

in an aspect ratio exceeding 10.  Electrodeformation of this magnitude has not been previously 

reported.  Meanwhile, appreciable changes in vesicle surface area and volume are also present, 

which is consistent with observations by Portet et al. [30].  These changes indicate the 

concurrence of electroporation.  The phenomena examined in this work therefore represent a 

complex new domain where strong, nonlinear deformation is coupled with significant poration of 

the membrane.  The experimental results are presented in Sec. III.   

The wide range of data provided by this work is valuable for validating and advancing 

current understanding, in particular through simultaneous model development.  In Sec. IV, we 

pursue a predictive theory to interpret the experimental results.  Our model directly extends from 
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that by Hyuga et al. [17].  In contrast to all previous theories which are limited to the linear, 

small-deformation regime [5, 16-18, 28], the current model is able to predict large membrane 

electrodeformations.  The model results are compared with the experimental data, which reveals 

both agreement and discrepancies.  In particular, the agreement suggests the dominating role of 

the electrostatic force in driving the deformation.  The discrepancies, on the other hand, point to 

model limitations. These limitations are discussed together with suggestions for improvements 

before we draw conclusions in Sec. V.    

   

II. MATERIALS AND METHODS 

A. Preparation of Vesicles 

Unilamellar vesicles were formed using an electroformation technique developed by 

Angelova and Dimitrov [29].  L-α -phosphatidylcholine (from egg-PC, Sigma, St. Louis, MO) 

was dissolved at an approximate concentration of 2 mg/mL in a pre-mixed chloroform/methanol 

(9:1, v:v) solution.  Three drops of the lipid solution (5 Lμ  each) were deposited on an indium-

tin-oxide (ITO) glass slide, which was subsequently dried in a vacuum chamber to remove traces 

of the organic solvents.  A 2.5-mm thick PDMS spacer with a rectangular open space in the 

middle was placed on the lipid-coated slide, and covered by another ITO slide to form the 

electroformation chamber.  The layered structure was integrated into a resin frame for sealing 

and handling.  Sucrose and sodium chloride (NaCl) were dissolved in de-ionized (DI) water at 

defined concentrations (discussed below), and the solution was injected into the sealed chamber.  

An AC electric field, 2 V/mm (RMS) in amplitude and 10 Hz in frequency, was applied through 

the conductive ITO slides for 40 minutes.  A population of vesicles ranging from 14-30 mμ  in 

diameter formed due to this process.   
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 The vesicles were aspirated gently from the chamber.  The vesicle-liquid mixture was 

filtered with a syringe filter to remove most of the liquid.  The remaining portion was then 

washed and re-suspended in DI water containing a desired glucose concentration, which 

generated a difference in the intra-vesicular (sucrose) and extra-vesicular (glucose) solutions.  

(The solution within the vesicle is assumed to have the same properties as those of the liquid in 

the electroformation chamber.)  This sugar asymmetry allowed imaging of the vesicle due to the 

contrast in the index of refraction inside and outside of the vesicle [26, 27].  In addition, the 

electrical conductivities were controlled by altering the NaCl concentration in the intra- and 

extra-vesicular solutions to probe the effects of this variable on the characteristics of vesicle 

deformation.  The intra-vesicular conductivity ranged from 6.20 S / cmμ  (with no added salt) to 

138 S / cmμ  (with 1 mM NaCl).  Other conductivities between these values were achieved by 

increasing the salt concentration gradually.  The conductivity of the glucose solution suspending 

the vesicles ranged from 2.60 S / cmμ  to 3.44 S / cmμ .  All conductivity values (Table I) were 

measured with a conductivity meter (CON 6, Oakton Instruments, Vernon Hills, IL).  The 

osmolalities of the intra- and extra-vesicular solutions were also carefully measured (3D3 

Osmometer, Advanced Instruments, Norwood, MA), and matched by moderating the glucose 

concentration in the extra-vesicular solution to avoid effects due to osmotic pressure.  

TABLE I.  The intra-to-extra-vesicular conductivity ratio (γ ) was varied by controlling the 
conductivity inside ( inλ ) and outside ( outλ ) of the vesicles. 

γ  
inλ   ( S / cmμ ) outλ   ( S / cmμ ) 

1.92 6.20 3.23 
5.97 18.7 3.13 
32.6 112 3.44 
46.9 138 2.94 
53.0 138 2.60 
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B. Vesicle Electrodeformation/Electroporation and Imaging 

 To perform electrodeformation studies, approximately 70 Lμ of vesicle-containing 

solution was placed in a separate chamber consisting of two stainless steel electrodes (D = 0.61 

mm) affixed to a microscope slide with a separation distance of 2.75 mm.  An electroporator was 

custom-built to deliver calibrated, controllable, square pulses 300-5000 sμ  in duration and 0-700 

V in amplitude.  (Note: By our specific design, the voltage amplitude and pulse shape did not 

depend on the conductivity of the vesicle-containing solution.)  The electroporator was 

synchronized with an imaging system through a timing box (Model 535 Delay Generator, 

Berkeley Nucleonics, San Rafael, CA).  The imaging system consisted of a digital camera 

(Hamamatsu C4742-95, Bridgewater, USA) connected to an inverted microscope (Olympus 

IX81, Center Valley, PA).  The integrated system allowed the recording of a single image at a 

defined delay time after the electric pulse started.   

The vesicles were visualized using phase-contrast microscopy.  For each experiment, 

three snapshots of an isolated vesicle were acquired.  1) A reference image was taken before the 

application of an electric pulse to capture the original (spherical) shape and size of the vesicle.  

2)  After the application of a DC electric pulse, a second image was taken at a defined delay time 

(with respect to the start-time of the pulse), using the synchronization scheme described above.  

This image captured the deformed vesicle toward the end of the electric pulse. 3) A final image 

of the same vesicle was taken a few seconds post-pulsation.  The delay was sufficient for the 

vesicle to relax back to a spherical shape, but with possible membrane loss and size reduction in 

some cases (see Figs. 1 and 2).  All images were post-analyzed using NIH ImageJ.    
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III. EXPERIMENTAL RESULTS 

In a DC electric field, the morphological type of a deformed vesicle is controlled by its 

intra-to-extracellular conductivity ratio [23, 26, 27], which we henceforth denote by γ .  For 

example, γ > 1 induces a prolate deformation where the vesicle elongates along the direction of 

the applied field, whereas γ < 1 induces an oblate deformation where the vesicle is compressed 

along the field vector.  These behaviors can be explained by the fact that different γ   

configurations lead to different directions of the electrostatic force on the membrane [22].   

In this work, we focus on the prolate regime (γ > 1).  Vesicles were prepared with five 

intra-to-extra-vesicular conductivity ratios as described above, namely, γ = 1.92, 5.97, 32.6, 

46.9, and 53.0 (Table I).  For each conductivity ratio, three electric field strengths were applied, 

E = 0.9, 1.5, and 2.0 kV/cm, all with a 500 sμ  pulse duration.  For the second image, the delay 

time was set to be 350 sμ .  The camera exposure time was 150 sμ .  This arrangement ensured 

that the second image (see Fig. 1(b) and Fig. 2(b)) captured the averaged vesicle dynamics 

during the last 150 sμ  of the electric-field pulse (between 350-500 sμ  after pulse initialization).     

 A series of electrodeformation experiments, 85 in total, were performed.  Representative 

deformations and recoveries are shown in Figs. 1 and 2.  Fig. 1(a) shows a pre-pulsation vesicle, 

with an initial radius (denoted by iD ) of 25.9 mμ .  The conductivity ratio was γ = 53.0.  Fig. 

1(b) shows the same vesicle at the end of an electric pulse, with the direction oriented from right 

to left, and a magnitude of 0.9 kV/cm.  The geometric shape was well-fitted with an ellipse 

(black dotted line).  An aspect ratio, p , defined as the ratio of the major and minor axes of the 

fitted ellipse, is used to quantify the degree of deformation (Fig. 1(b)).  For the case shown in 
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Fig. 1(b), p = 1.31.  As seen in Fig. 1(c), the vesicle relaxed back to a spherical shape 

approximately 2 seconds post-pulsation.  The diameters before and after pulsation are obtained 

by similarly fitting the vesicle images with circles (not shown).  No apparent membrane loss or 

size reduction was observed in the case shown in Fig. 1.   

 In contrast, Fig. 2 shows a stronger deformation during the electric pulse (Fig. 2(b)), and 

an appreciable shrinkage after the pulse is switched off (Fig. 2(c)).  The initial diameter was 

iD = 28.8 mμ , the conductivity ratio was γ = 46.9, and the electric field strength was 1.5 kV/cm 

(also pointing from right to left).  Although the polar caps are not clearly visible for the deformed 

vesicle in Fig. 2(b), possibly due to a loss of membrane, or a temporary loss of the 

sucrose/glucose contrast in the proximity of the poles induced by membrane permeabilization,† 

the shape is still well-fitted with an ellipse ( p = 3.57).  We emphasize that in this and other 

similar cases, the vesicles may have local irregularities (especially toward the polar areas) 

causing deviations from ellipsoidal shapes.  The fitted ellipse is therefore an estimate of the 

realistic vesicle geometry.  However, we believe that such a fitting is a reasonable 
                                                            
† Membrane permeabilization allows an exchange of solution across, resulting in a temporary reduction in the sugar 
contrast.  However, the exchange did not completely equilibrate the solutions.  Fig. 2(c) shows that sufficient 
contrast evidently remained for membrane visualization. 

 

FIG. 1.  Bright-field images of a vesicle before (a), during (b), and after (c) the application of 
an electric pulse.  The vesicle was originally iD = 25.9 mμ  in diameter.  The applied field 
was E = 0.9 kV/cm and pointing from right to left.  The conductivity ratio was γ = 53.0.  The 
shape of the vesicle during application of the electric field is fitted with an ellipse (black 
dotted line) using ImageJ (b).  The vesicle demonstrated a moderate prolate deformation with 
an aspect ratio of p = 1.31.  No obvious size reduction is shown in the post-pulsation image 
(c). 
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FIG. 2.  Bright-field images of a vesicle before (a), during (b), and after (c) the application 
of an electric pulse.  The vesicle was originally iD = 28.8 mμ  in diameter.  The applied 
field was E = 1.5 kV/cm and pointing from right to left.  The conductivity ratio was γ =  
46.9.  The shape of the vesicle during application of the electric field is fitted with an ellipse 
(black dotted line) using ImageJ (b).  The vesicle demonstrated a large prolate deformation 
with an aspect ratio of p = 3.57. The polar caps are not clearly visible in (b), possibly due to 
membrane poration.  The post-pulsation image (c) shows an appreciable reduction in vesicle 
size. 

approximation.  Similar situations occur, e.g., in [26] (see Fig. 5 therein), where it can be more 

clearly seen that although the polar boundaries become fuzzy and less visible, the proper vesicle 

is still in general ellipsoidal.  Alternatively, we have attempted to obtain contour fitting of the 

vesicles without any presumption on their shape (not shown).  When compared with results from 

elliptical fitting, this more direct and precise approach reveals differences of around 1% for the 

aspect ratio, and 2-4% for surface area and volume (examined in Fig. 4 below).  We therefore opt 

to adopt the elliptical fitting method based on its simplicity and in consideration of the large 

amount of data involved.  In Fig. 2(c), the post-pulsation image shows obvious size reduction 

when compared with Fig. 2(a).  The membrane loss was possibly caused by one of the three 

mechanisms discussed by Portet et al. [30].  

The quantitative results of the experiments are summarized in Figs. 3-5.  In Fig. 3, the 

aspect ratio, p , of the deformed vesicles is plotted against the initial vesicle diameter, iD , for 

the three field strengths studied.  Different geometrical symbols represent different γ  values.  At 

the relatively low field strength ( E = 0.9 kV/cm), the deformation aspect ratio is around 2 for all 

conductivity ratios, as seen in Fig. 3(a).  As the field strength is increased to 1.5 kV/cm (Fig. 
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3(b)), higher deformation aspect ratios (exceeding 4) are observed, and are accompanied by a 

more obvious dependence on γ .  At the highest field strength ( E = 2.0 kV/cm), very large 

deformations with values of p  approaching 13 are present, in particular at the highest 

conductivity ratio, γ = 53.0.  For all cases studied, no obvious dependence of p on iD  is 

observed.  A more detailed analysis of the dependence of the deformation ratio on the field 

strength and the conductivity ratio will be presented in Fig. 5 below. 

 Associated with the morphological changes, the vesicles also underwent dynamic 

changes in the apparent surface area and volume.  The changes are analyzed by the following 

formulae:  

 
( ) 100 ( ) 100, ,d i d i

d d
i i

A A V V
A V

α ϖ− × − ×= =  (1) 

 
( ) 100 ( ) 100

, .f i f i
f f

i i

A A V V
A V

α ϖ
− × − ×

= =  (2)  

 

FIG. 3.  The aspect ratio of deformed vesicles ( p ) induced by three electric fields strengths: 
(a) 0.9 kV/cm, (b) 1.5 kV/cm, and (c) 2.0 kV/cm.  The pulse width was 500 µs for all the 
experiments.  Each data point represents a single experiment.  The values for p  are obtained 
from analyzing images in the same manner as in Figs. 1(b) and 2(b).  
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Here α  and ϖ  denote the relative percentage change in the apparent surface area (A) and 

volume (V) of each vesicle, and the subscripts i, d, f denote “initial”, “during”, and “final”, 

respectively.  All of Ai, Af and Vi, Vf are calculated assuming the vesicle is spherical, and the 

radius is estimated from a fitting on images similar to  Fig. 1(a),(c) and Fig. 2(a),(c) (showing the 

initial and final stages of the vesicle).  Ad and Vd are calculated to capture the changes during 

field-application, also from a fitting of the images.  As we previously mentioned, the vesicle is 

assumed to be an ellipsoid and is axisymmetric with respect to the direction of the applied field.   

Fig. 4(a) and (b) demonstrate that vesicle deformation during an applied electric field is 

associated with surface-area dilation ( dα >  0) and volume reduction ( dϖ <  0).  In the figure, 

cyan, red, and black denote the field strengths of 0.9, 1.5, and 2.0 kV/cm, respectively.  Different 

symbols represent different conductivity ratios.  Both the surface area and volume vary 

approximately linearly with respect to the deformation ratio, p .  Based on the data, the surface 

area increases with increasing field strength and conductivity ratio.  However, this increase in 

surface area is accompanied by a volume reduction.  These trends provide strong indication of 

membrane poration.  When a spherical vesicle becomes ellipsoidal, and assuming that the 

volume does not initially change, the surface area has to increase, possibly via both the unfolding 

of the excess area and elastic stretching of the membrane [19, 26].  Further deformation beyond 

the compensation of these mechanisms can only occur via leaking of the (incompressible) fluid 

contained, namely, by means of electroporation.  Volume reduction is therefore a natural 

consequence of large deformations observed in the current experiments.  An increase in the 

apparent area, Ad, on the other hand, is speculated to be a combination of the unfolding effects of 

the excess area, the presence of pores, and the thinning and structure rearrangements of the 

membrane [19, 31]. 



13 
 

 Fig. 4(c) and (d) show the concurrence of area and volumetric reduction ( dα , 0dϖ <  ) 

after the vesicles recovered to the final, spherical shape post-pulsation.  The correlations of αd 

and dϖ  with p  are similarly monotonic, with some vesicles losing up to 60% of surface area 

and almost 70% of volume.  For the case presented in Fig. 2, the membrane surface area loss was 

27%, and the volume reduction was 37% by our calculation.  When compared with Fig. 4(b), 

Fig. 4(d) demonstrates further volume reduction during the recovery process.  This observation 

confirms that pore-sealing was not immediate after the field was switched-off, and further fluid 

leakage occurred during this phase.  The results corroborate well with those by Portet et al. [30], 

which proposes that membrane loss is induced by the formation of (small) vesicles, tubules, 

 

FIG. 4.  (Color online) Percentage change in the apparent membrane surface area (α ) and vesicle 
volume (ϖ ) during (subscript d) and after (subscript f) pulsation, and as a function of the aspect 
ratio, p .  In the legend, the numbers (e.g., 1.92/0.9) denote combinations of / Eγ , with E  in units 
of kV/cm.  The surface area increases during pulsation and then decreases after the pulse is ceased.  
The volume decreases consistently throughout the process. 
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and/or pores.  (However, note that in [30], a similar degree of loss is achieved with multiple 

pulses, not a single pulse as in the present study.)  

In Fig. 5(a), the systematic dependence of the deformation ratio on the conductivity ratio, 

γ , and the field strength, E , is examined.  Here we define an average deformation ratio, p , 
which is calculated by taking the average of all values of p  in each subset of vesicles with 

identical conductivity ratio and field strength.  The error bars indicate standard deviation.  The 

deformation ratio has a positive correlation with the electric field, which has been indicated by 

Fig. 3.  The dependence of p  on γ  shows a rapid rise followed by a relative plateau.  The data 

is fitted with an exponential function of the form,   

 

1

0 1 1pp p e
γ

γ
−⎛ ⎞

⎜ ⎟= − +
⎜ ⎟
⎝ ⎠

 (3) 

which is shown as dashed lines in Fig. 5(a).  The fitting parameters 0p  and pγ  for each data set 

are given in Table II.  Importantly, the constant 0p  exhibits a quadratic scaling with E  (Fig. 

 

FIG. 5.  (a) The average aspect ratio, p , as a function of the conductivity ratio, γ  .  The 

error bar represents the standard deviation of each subset.  The parameters for the 
exponential fits (Eqn. (3), dashed) are listed in Table II.  (b) The fitted constant p0 exhibits a 
linear scaling with 2E .  The dashed line is a least-square linear fit, 2

0 1.76p E= . The 

coefficient of determination is 2 0.93R = .  
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5(b)), indicating the dominant role of the Maxwell stress in driving the deformations.  In the next 

section, we attempt to develop a model to quantitatively predict the measurements. 

    

IV. THEORY 

The phenomenon studied in this work represents a regime where the complex physics of 

electrodeformation and electroporation are highly coupled.  A comprehensive model including 

all detailed physical processes, namely, permeabilization, fluid motion and leakage, and large 

deformation is currently not available.  Specifically, all existing theories are limited to the linear 

regime where the deformation is assumed to be small, and cannot be applied to the case studied 

in this work [16-18, 28, 32].  Here we pursue a predictive model for large deformations by 

directly extending from previous work by Hyuga et al. [17], where the authors studied the effects 

of a permeabilized, conducting membrane, in contrast to others who consider deformation in the 

non-permeabilized regime.  Hence their framework is more appropriate for the current case.  In 

the theory described below, we adopt the same physical principles as outlined by Hyuga et al. 

[17] to derive the equation of motion for the deforming membrane.  However, instead of solving 

the problem in the linearized, small-deformation regime using spherical harmonics, we adopt a 

rotational spheroidal coordinate system to allow for the prediction of arbitrarily large aspect 

ratios.  

TABLE II. Constants from the exponentially fitted data using Eqn. (3).  The fitted 
curves are shown in Fig. 5(a). 

E (kV/cm) 0p  pγ  
0.9 0.78 1.20 
1.5 2.96 2.02 
2.0 7.73 6.72 
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Our primary assumption is that the vesicle remains ellipsoidal in shape, thereby ignoring 

all other shape modes.  This approximation follows from our data analysis in Sec. III, and is 

supported by many experimental observations [16, 20, 23, 26-28].  A similar treatment for large 

electrodeformations of droplets is found, for example, in Bentenitis and Krause [33].  For this 

case, the rotational spheroidal coordinate system is suitable to describe the geometry.  The 

coordinates ( ,ξ η ) are related to a cylindrical system ( , zρ ) as 

 
2 2 2 2

,

( 1)(1 ).

z c

x y c

ξη

ρ ξ η

=⎧⎪
⎨

= + = − −⎪⎩
 (4) 

Here z  and ρ  denote the axial and radial coordinates, respectively, c is a constant, and is taken 

to be 2 2c a b= −  for an ellipsoid with axes a and b (a > b).  In this system, the surface of the 

ellipsoid is conveniently given as 

 2 2
0 ./ /a c a a bξ ξ= ≡ = −  (5) 

For the derivation below, we also define a shape factor, Θ , which is related to 0ξ and the aspect 

ratio ( /p a b= ) as  

 ( )01 cos( ) , 1 sin .p ξ= Θ = Θ  (6) 

Following Hyuga et al. [17], we further assume that the total vesicle surface area, S, is 

conserved: 

 
1/2

2 2 21

1

2
0[1 (2 / ) d ,] 4ab c aS aπ η η π

−
== −∫  (7) 

where a0 is the radius of the un-deformed, spherical vesicle.  We subsequently obtain 

 0 0
2 tan 2sin cos, .

sin( ) cos( ) sin( ) cos( )
a a abΘ Θ Θ=

Θ Θ + Θ Θ Θ + Θ
=  (8) 
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Under the constraint (7) and the ellipsoidal assumption, the vesicle geometry is completely 

characterized by a single parameter, Θ .  We emphasize that the surface area conservation is an 

idealizing assumption to make the model tractable.  Further improvement of the model needs to 

consider area expansion as indicated by Fig. 4. 

For the electrical problem, we assume that the Ohmic current is conserved, and that the 

membrane is permeabilized and conductive: 

 in in out out 0,λ φ λ φ∇ ⋅ ∇ ∇= =⋅ ∇  (9) 

 in in out out in out at the membra, e, n ,λ φ λ φ φ φ⋅ = ⋅ ⋅ = ⋅∇ ∇ ∇ ∇n n t t  (10) 

where φ  is the electric potential, and t and n denote the unit tangential and normal vector on the 

membrane, respectively.  Eqns. (9, 10) can be solved in a spheroidal coordinate system.  The 

result pertinent to the current work is the normal component of the Maxwell stress, Fn: 

 2out in( , 1
2

) ,nF ε ⎛ ⎞= ⋅ − ⋅ = −⎜ ⎟
⎝ ⎠

n T T n T IEE E  (11) 

where T is the Maxwell stress tensor, E is the local electric field vector, I is a unit tensor, and ε  

is the permittivity of water.  A straightforward calculation reveals 

 
2

2 2 2 2
0 2 2

0

( 1)( 1) ,
2nF E Bε ηξ γ

ξ η
⎡ ⎤⎛ ⎞

− −⎢ ⎥⎜ ⎟−⎣
=
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 (12) 
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where E is the strength of the applied field, Q1 is a Legendre function of the second kind and 

order one, and 1Q′  denotes its derivative. 

The equation of motion follows a Lagrange formulation: 
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(14) 

Here L = K-V is a Lagrangian function, where V is the curvature-elastic energy, K is the effective 

kinetic energy, Fn is the normal component of the electrostatic force defined above, Fμ  is an 

effective viscous force, and the factors in the parenthesis on the right-hand-side represent a 

virtual displacement with respect to the single independent variable, Θ .  The evaluation of each 

individual term is introduced below. 

The curvature-elastic energy, V, is given by the formula: 

 2
0 ,d

2
( )H HV Sκ −= ∫  (15) 

where κ  is the curvature-elastic modulus, H is the mean curvature, and H0 is its equilibrium 

value.  For a lipid bilayer membrane, we set H0 = 0.  Under the current coordinate system, the 

curvature is given as  

 
2 2

2 2

2

3/2

cos 1 sin ,
(1 sin )

H
b

η
η
Θ + − Θ

− Θ
=  (16) 

and the integrated energy is evaluated to be 

 3(14cos sin 6 4cos sin ).
3 sin

aV
b
κ π Θ Θ + Θ Θ= + Θ

Θ
 (17) 

The effective kinetic energy, K, and the effective viscous force, Fμ , are calculated with an 

empirical model, also following Hyuga et al. [17], 

 2 .1 d
2

,m n nv S vK Fμρ μ= = −∫  (18) 
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Here mρ  is an effective mass density (per unit area of the membrane), μ  is an effective viscous 

coefficient, and nν  is the normal component of the velocity for a point on the deforming 

membrane:  

 
2

2 2

sin cos .
1 sin cos( )

n
b bv η

η
′+= Θ Θ Θ

− Θ Θ
 (19) 

Here a prime denotes a derivative with respect to Θ , and an over-dot denotes a derivate with 

respect to time.  The details of this empirical model are found in [17]. 

Finally, substituting Eqns. (12), (17), (18) into Eqn. (14), we obtain the equation of 

motion in terms of Θ : 

 2
0 0 0.2 FV Q QK K μ′+′Θ + Θ Θ −− =  (20) 

Here K0, Qμ , and QF are all functions of Θ , and their expressions are given in the Appendix.  In 

Eqn. (20), the first two terms represent the effects due to inertia; the third arises from the 

membrane elastic response; and the last two are due to the viscous and the electrostatic forces, 

respectively.  Eqn. (20) is solved numerically using parameters listed in Table III, and for the 

various γ  and E values studied in the experiments.  For each case, the value for Θ  at the end of 

a 500- sμ  pulse (the length used in the measurements) is obtained, and the value for p  is 

subsequently calculated using Eqn. (6).  

Table III.  List of model parameters. 

Symbol 
Value Definition 

mρ  8.63 × 10-3 g/cm2 Effective mass density [17] 
a0 11.3 mμ  Initial vesicle radius 
μ  44.3 g/cm2s Effective viscous coefficient 
ε  7.17×10-10 F/m Permittivity of water 
κ  5 × 10-20 J Curvature-elastic modulus [17, 28] 
tp 500 sμ  Pulse length 
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The general dependence of p  on γ  and E  is well-predicted by the model.  The results 

are compared with the experimental data in Fig. 6(a), which reveals good agreement.  In the 

model, we set a0 = 11.30 mμ , which is the average radius of the vesicle population we studied in 

the experiments.  The trends can be explained by an analysis of the electrostatic force, Fn.  From 

Eqn. (12), the quadratic dependence of Fn on the applied field strength, E , is evident (see also 

Fig. 5(b)).  In addition, the force scales with the conductivity ratio as  

 
[ ]

2

2
1 0 0 01

~ .
( )

1
( )

nF
QQ

γ
γ ξ ξ ξ−

−
′

 (21) 

For small values of γ , and temporarily treating both ( )1 0Q ξ  and ( )0 1 0Qξ ξ′  as constants, 

Eqn. (21) is simplified to    

 [ ]22
0 1 0~ ( 1) ( ) .nF Qγ ξ ξ′−  (22) 

This quadratic relationship explains the initial rapid rise in p  with respect to γ .  For large 

values of γ , Eqn. (21) converges to a constant, which explains the plateaus observed in Fig. 5(a). 

Despite the agreement shown in Fig. 6(a), the model can appreciate further improvement, 

through the development of a more rigorous framework to predict the physical processes 

FIG. 6. A comparison between theoretical prediction (dashed) and experimental data 
(symbols).  The data are the same as those in Fig. 5(a).  The model results are generated 
with a0 = 11.30 μm, (a) μ = 44.3 g/cm2s, and (b) μ = 22.5 g/cm2s. 
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involved.  A main limitation of the current theory is that the hydrodynamic problem is treated 

empirically, with a free parameter, the effective viscous coefficient, μ  (Eqn. (18)).  In fact, if we 

decrease the value for μ  to the largest value used by Hyuga et al. [17] (22.5 g/cm2s), the model 

overpredicts the deformation ratios (Fig. 6(b)).  In addition, there is a discrepancy concerning the 

dependence of the aspect ratio on vesicle size.  Fig. 7 shows the deformation ratio as a function 

of the initial diameter, iD .  In contrast to the data in Fig. 3, where no obvious dependence on iD

is observed, the model predicts that p  decreases with an increasing iD .  This is because in Eqn. 

(20) the coefficients K0 (representing the effects of inertia) and Qμ  (representing the viscous 

effects) scale as 4
0a , where 0 / 2ia D= , whereas the coefficient QF (representing the driving 

electrostatic force) scales as 3
0a .  Therefore, as a0 decreases, the deformation force becomes 

 

FIG. 7.  Predicted aspect ratio, p, as a function of the initial diameter, iD .  The γ values 
correspond to those used in experiments (Table I).  In each graph, the curves for γ  = 32.6, 
46.9, 53.0 follow each other closely.  Contrary to the experimental data in Fig. 3, the aspect 
ratio has a noticeable dependence on the initial vesicle diameter, iD .   
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more dominant relative to the resisting forces. We speculate that this effect is likewise caused by 

the lack of rigor in calculating the hydrodynamic forces. 

We believe that the fidelity of the model may be improved by solving the Stokes equation for 

fluid motion, also under the rotational elliptical coordinate system, such as to compute the fluid 

stress on the membrane in a rigorous manner.  This task is the scope of our on-going work.  

Another model limitation is the idealizing assumption of surface area conservation, which is 

obviously violated in our experiments (Fig. 4).  The area expansion observed often induces 

additional elastic responses of the membrane, which need to be properly included in an improved 

theory.   

 

V. CONCLUSION 

In this work, we presented a study of vesicle deformation under strong DC electric fields.  

We systematically quantified the degree of deformation as a function of the field strength and the 

conductivity ratio.  In particular, we studied large deformations in the prolate regime (γ > 1) 

with aspect ratios approaching 13 in extreme situations.  We observe that the degree of 

deformation depends monotonically on the magnitude of the applied electric field.  In addition, it 

also depends strongly on the conductivity ratio, exhibiting a positive correlation followed by a 

plateau.  An estimate of the apparent vesicle surface area suggests significant expansion during 

pulsation, and reduction afterwards when the vesicles relaxed back to a spherical shape.  

Concurrently, the vesicle volume decreased throughout the process.  These dynamic changes 

indicate membrane losses induced by electroporation.  Indeed, the transmembrane potential 

exceeded the critical threshold for electroporation for most of the experiments performed.   
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We have developed a mechanistic model to predict the deformation process, and to 

interpret the experimental results.  The model extends from that by Hyuga et al. [17].  In contrast 

to all previous theories which are limited to the linear, small-deformation regime, the current 

model is able to predict large membrane electrodeformations.  A comparison between the model 

results and the experimental data reveals both agreement and discrepancy.  Specifically, the 

dependence of the aspect ratio on the conductivity ratio and the applied field strength is well-

captured by the model, and the data trends can be explained by the behavior of the driving 

electrostatic force.  On the other hand, the model predicts that the aspect ratio decreases along 

with an increasing vesicle diameter, whereas such trend is not observed in the experiments.  This 

discrepancy points to the limitations of the current model, which can be possibly improved via 

the development of a more rigorous electrohydrodynamic theory. 
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APPENDIX. Coefficients used in Eqn. (20) 

The coefficients K0, , and QF appearing in Eqn. (20) are defined with the following expressions: 
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