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We study the axisymmetric break-up and satellite formation of slender jets surrounded by a concentrically-
placed cylindrical electrode and subjected to time-dependent AC electric fields. The jet is assumed to be
a perfectly conducting viscous fluid and surrounded by a dielectric inviscid gas. We use the long-wave
approximation to derive coupled evolution equations for the interface position, and axial velocity component,
which accounts for electrostatic forcing. The electrostatic force in this case is large and competes with
capillary forces near the rupture point, causing the interface to oscillate and the satellite to have shapes that
are distinct from the DC case. In particular, our results indicate that it may be possible to use the AC field
to control the number of satellites accompanying breakup as well as their size.

I. INTRODUCTION

The breakup of electrified jets has been extensively
studied by many investigators1–10 as a way of controlling
the droplet size in applications such as electrospraying,
electro separations, electrospray mass spectrometry and
ink-jet printing. Electric fields are also used to stabilize
drawn fibres for electro-spinning applications in order to
make micro-threads for the textile industry.

A considerable amount of work on electric free jets has
been performed since the work of Rayleigh11 in which a
sufficiently large wavelength perturbation causes the jet
to break up into droplets as a result of capillary forces. As
jet drainage evolves towards rupture, capillary forces and
velocities become very large and numerical methods are
required to capture the dynamics. Numerical results have
been performed in the Stokes flow limit by Pozrikidis12

using boundary integral methods and by Wilkes, Phillips
and Basaran13 using finite-element methods for the full
Navier-Stokes equations. Further, numerical solutions
to one-dimensional approximations, derived in the long-
wave limit have been used by many researchers14–16 with
good agreement with the full solution and experiments13.
The equations associated with this approach are easier to
solve numerically with high accuracy, whilst accounting
for the dominant physics near break-up. For this reason,
the long-wave approximation will be investigated in this
paper.

In the presence of radially-applied electric fields, an ad-
ditional Maxwell stress acts on the fluid, and for leaky-
dielectrics, this force acts on the interface17. For per-
fectly conducting liquid threads, the voltage potential
is fixed and the electrostatic stress acts only normal to
the interface with the electric field arising from the an-
nular layer. In this case, the electrostatic pressure has
a stabilizing effect for long wavelengths and a destabi-
lizing effect for short wavelengths5. For perfectly con-
ducting viscous threads surrounded by a dielectric invis-
cid gas, numerical solutions for two-dimensional models
have been performed by Collins, Harris and Basaran7 and
one-dimensional models by López-Herrera and Gañán-
Calvo9, Collins, Harris and Basaran7, López-Herrera,

Gañán-Calvo and Perez-Sabroid18 and Wang, Mahlmann
and Papageorgiou10. Experimentally, the effect of elec-
tric field strength on the satellite size and charge was
investigated by López-Herrera and Gañán-Calvo9. They
also found reasonably good agreement with their one-
dimensional model for moderate electric field strengths.
In this paper, we investigate perfectly conducting flu-

ids in radially-applied AC electric fields. Linear the-
ory for this time dependent problem was investigated
by González, Garćıa and Castellanos19 for the one di-
mensional model, using a Floquet analysis. They found
that for large-wavelength perturbations in an AC field,
for constant parameter values, the jet becomes more un-
stable with increasing wavenumber to a critical value and
then the electrostatics is stabilizing. The stability of liq-
uid films in AC fields was also investigated by Roberts
and Kumar20 using both a Floquet analysis for the linear
problem and numerically to study how electric effects can
be used to control topological features. Currently, electri-
fied jets in AC fields have not been investigated to study
the dynamics near breakup. Since AC fields could poten-
tially be useful in controlling satellite size and shape, we
study this problem here.
The rest of the paper is organized as follows: in section

II, the model is formulated for a perfectly conducting
fluid and reduced asymptotically for long wavelengths. In
section III, we solve the governing equations numerically,
discussing the results and finally in section IV provide
concluding remarks.

II. FORMULATION

We consider two immiscible fluids in a core-annular
arrangement, bounded by a concentric, cylindrical elec-
trode of radius R2. An interface separating the two fluids
is located at r = S(z, t) (axisymmetric flows are studied
here) with initial radius R0 and surface tension γ. The
annular fluid is an inviscid dielectric with permittivity ε2,
whereas the core fluid is a perfect conductor with den-
sity ρ1, viscosity µ1 and potential φs = 0. At the wall,
a time-dependent potential, φw = A cos(ωt), is applied
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where A is the amplitude and ω is the frequency. Grav-
ity is ignored and an axisymmetric geometry is assumed
throughout, with cylindrical polar coordinates (r, z) and
corresponding velocity field (u, w).

A. Governing equations

The formulation of the model follows Saville17, with
the equations non-dimensionalized as follows: r and S are
scaled on the initial thread radius, R0, the axial length z
on a scale L, the radial velocity on γ/µ1, axial velocity on
δ−1γ/µ1, time on R0µ1/γ, pressure with γ/R0 and the
electric field as A/R0 (where A is the amplitude of the
wall potential). The parameter δ is a slenderness ratio
defined by δ = R0/L.
In dimensionless form, the momentum and continuity

equations in the core are given by

Re (ut + uur + wuz) = −pr + urr +
1

r
ur

+ δ2uzz −
u

r2
, (1)

Re (wt + uwr + wwz) = −δ2pz + wrr

+
1

r
wr + δ2wzz , (2)

1

r
(ru)r + wz = 0, (3)

with subscripts denoting partial derivatives. Here, the di-
mensionless group appearing in the momentum equation
is

Re =
ρ1γR0

µ2
1

, (4)

and represents the Reynolds number. Note also that
Re = Oh−2 whereOh is the Ohnesorge number that mea-
sure the ratio of viscous forces to inertial and surface ten-
sion forces - large values of Oh represent flows with signif-
icant surface tension, as is the case in the present study.
The velocity field u at the axis must be bounded, and
this supplies one of the conditions required to solve the
problem. The other conditions come from a balance of
forces at the interface discussed below. We will need the
vectors n = (1,−Sz)/(1+S2

z)
1/2, t = (Sz , 1)/(1+S2

z)
1/2

which are the unit normal (pointing outwards) and tan-
gent at any point on the interface. Note: Regions 1 and
2 represent the core and annulus, respectively.
The voltage potential in the annular layer is deter-

mined by Laplace’s equation (the corresponding electric
field is given by E = −∇φ):

1

r
(rφr)r + δ2φzz = 0, (5)

with the boundary conditions φ(R2, z, t) = cos(ωt) and
φ(S, z, t) = 0. The latter condition follows because the
core fluid is perfectly conducting and without loss of gen-
erality is taken to be at zero potential. The derivation

of equation (5) is presented in the appendix, where we
have also justified the neglect of magnetic fields for the
sufficiently small voltage potentials and frequencies stud-
ied here. Note also that the local surface charge density,
qs(z, t) say, can be calculated from Gauss’s law once the
electric potential φ is determined. Hence we have (at
r = S(z, t)),

ǫ2E · n = qs, or qs = −ǫ2
∂φ

∂n
, (6)

where qs has been non-dimensionalized by ǫ0A/R0, and
ǫ2 is the relative permittivity of region 2 with respect to
that of air defined by ǫ0, say. Written out in full, equation
(6) reads

qs(z, t) = −ǫ2(φr − δ2Szφz)/(1 + δ2S2
z )

1/2. (7)

At the interface, the fluid stress comes from the core
region 1 and the electrostatic stress comes from the annu-
lar region 2, so the normal and tangential stress balances
are

p−
1

1 + δ2S2
z

(

ur − δSz(δuz + δ−1wr) + δ2S2
zwz

)

+

ε2Eb

2

1− δ2S2
z

1 + δ2S2
z

((φ2r)
2 − δ2(φ2z)

2)−
2δ2ε2EbSz

1 + δ2S2
z

φ2rφ2z = κ

=

(

1

S(1 + δ2S2
z )

1/2
− δ2

Szz

(1 + δ2S2
z )

3/2

)

,

(8)
(

urSz +
1

2
(1− δ2S2

z )(uz + δ−2wr)− Szwz

)

= 0,

(9)

respectively. Here κ = ∇ · n is the curvature and

Eb =
ε0A

2

γR0

(10)

is the electrostatic Webber number relating electrostatic
to capillary forces. Finally, the dimensionless kinematic
condition is

St + w1Sz = u1. (11)

B. Reduced model

The evolution equations for an electrified jet using
the long-wave assumption have been derived previously
in7,10, the only difference being that we essentially make
the electrostatic Weber number time-dependent. Follow-
ing these approaches we re-derive the one-dimensional
model by making the long-wave approximation14,23, and
assuming δ ≪ 1. In order to keep inertia, we balance
inertial and capillary forces so that Re = δ2R̄e. The an-
nular fluid is assumed to be inviscid but it is sufficient
to assume that the viscosity and density of the core fluid
is much larger than that of the annular fluid so that the
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FIG. 1. Results for the DC case (ω = 0) showing the effect of varying Ā: (a) the satellite shape near rupture and (b) the
evolution of the minimum interface height. In panel (b), the insert in the upper right-hand corner is a magnification of the
region near breakup in (a), with the horizontal lines (line types here go with the Smin lines) indicating the interface height
where capillary and electrostatic forces balance. Also, the satellite volumes are V = 0.0695, 0.066 and 0.053 for Ā = 0, 0.25 and
0.5 respectively and R2 = 10.

stress from the annular region is a higher order contribu-
tion. We adopt the expansion u = u0 + δ2u1 + ... for the
velocity and similar expansions for the other variables.
In the core, the axial momentum equation to leading or-
der yields, after integration and applying the boundary
conditions, w0 = w0(z, t) and using the continuity con-
dition the radial velocity is u0(r, z, t) = −rw0z/2. The
radial momentum equation to leading order, after inte-
grating w.r.t. r, is p0 = p0(z, t) and the axial momentum
equation to first order, after integrating w.r.t. r, is

w1 =
r2

4

[

R̄e(w0t + w0w0z)− w0zz + p0z(z, t)
]

+ F (z, t),

(12)
where F (z, t) is a function that is determined in terms
of S(z, t) in the analysis. The pressure is found from the
leading order normal stress balance and is

p0 = −
Ebε2
2

(φ0r)
2
∣

∣

S0

− w0z |S0
+ κ, (13)

where S0 is the leading order surface position. Combin-
ing equation (12) with the tangential stress balance to
leading order, given by

−3S0zw0z −
S0

2
w0zz + w1r = 0, (14)

yields the following evolution equation for the axial ve-
locity

R̄e(w0t + w0w0z) =
2

S0

(

3S0zw0z +
3

2
S0w0zz

)

− κz

+
1

2
Eb

(

ε2 (φ0r)
2
∣

∣

S0

)

z
. (15)

Here we have kept the full curvature term15 because the
higher order term acts as a regularization condition by

providing a short wavelength cut-off. Further, we do not
retain the higher order term multiplying the electrostatic
contribution, found in López-Herrera, Gañán-Calvo and
Perez-Sabroid18, because it remains small for the long
wavelengths studied here. We have checked that this
is true for our numerical results and that including this
term does not have a significant effect on the surface
position or evolution of the minimum interface height.
The potential in the annular region is

φ0 = φw − φw
log(r/R2)

log(S0/R2)
, (16)

where φw = cos(ωt). From this equation and (6) the
surface charge is qs = ε2φw/S0 log(S0/R2).
The leading order axial velocity, after rescaling as

S0 → R̄eS, t → R̄e t, w0 → R̄e
−1

w, ω → R̄e
−1

ω and
R2 → R̄eR2, to absorb the Reynolds number, is deter-
mined from the solution of the following evolution equa-
tions

wt + wwz =
3

S2

(

S2wz

)

z
− κz +

(

φ̄2
w

(S log(S/R2))2

)

z

,

(17)

St + wSz +
S

2
wz = 0, (18)

with φ̄w = Ā cos(ωt) and Ā =
√

Ebε2/2R̄e.

III. RESULTS

Since the linear stability problem has been investi-
gated elsewhere our aim is to investigate the nonlinear
dynamics. The governing equations are solved using
PDECOL24, which is based on the method of lines with
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FIG. 2. Results for the AC case showing the satellite shape near rupture for ω = 1 (left hand panels) and ω = 10 (right hand
panels). In panels (a) through (f), the inset in the upper right-hand corner is a magnification of the region near breakup and
in all cases R2 = 10. Also, the satellite volumes are V = 0.0674, 0.062 and 0.042 (ω = 1) and V = 0.0675, 0.0616 and 0.0263
(ω = 10) for Ā = 0.25 (panels a and b), 0.5 (panels c and d) and 1 (panels e and f) respectively.

space discretized using finite element collocations. Typi-
cally, 8, 000 grid points were used and the equations were
solved on the domain −L ≤ z ≤ L, with L = 2π.
The following initial conditions, corresponding to a

perturbation in the film height, are used:

w(z, 0) = 0, (19)

S(z, 0) = 1− 0.1 cos(kz), (20)

where k = 2π/L is the wave number and the periodic
boundary conditions are

w(−L, t) = 0, w(L, t) = 0, (21)

Sz(±L, t) = Szzz(±L, t) = 0. (22)

We set δ = 0.01, which is consistent with previous
work23, and note that the wavenumber k is dimension-
less, scaled by R0δ. We have validated our numerical re-
sults against linear theory in the DC case, checked that
the total mass of the fluid is conserved for each run and

checked numerically that the next order term δ2S2
z ≪ 1

as break up is approached.

For Ā ≫ 1 numerical results (not shown here) indi-
cate that the interface is stable to perturbations at all
frequncies, which is also consistent with results from the
stability analysis, found in equation (23), for DC fields
and the electrode radius investigated here25. For inter-
mediate values of Ā the interface oscillates with the AC
field, thinning the neck and pulling the swell towards the
electrode signaling wall touchdown singularities10, and
the code generally halts. For this reason we limit our
parameter space to Ā ≤ 1. In all cases the electrode
radius has been set to R2 = 10, which ensures that the
swell never makes contact with the wall. Variations in
R2 do not have a significant effect on the results and has
been fixed to this value by others7. Further, as S → 0
the capillary terms behave as S−2, whereas the electro-
static terms behave as −2φ2

wS
−3(ln(S/R2))

−2 and there-
fore have the opposite sign. In the absence of electrostatic
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FIG. 3. Surface position near rupture, showing the formation of possibly three and five satellites; panel (b) is a magnification
of panel (a). Here R2 = 10 for both panels and the plots are taken at t = 33.4 (solid line) and t = 39.6 (dashed line). For
Ā = 0.85 the volume for the central, sub and total (sum of all) satellite drops are: V = 0.0406, V = 0.0042 and V = 0.049
respectively. For Ā = 1 the volume for the central, sub1 (closest to the central one), sub2 and total (sum of all) satellite drops
are: V = 0.02 and V = 0.0053, V = 0.0065 and V = 0.0435 respectively. Note that the thread is axisymmetric and in this
figure we have included ±S.

forces, the scaling of Eggers15 holds near breakup but for
strong electric effects the similarity solution is unknown7.
We can argue that if the electric Webber number is suffi-
ciently weak, then the interfacial height at which electro-
static forces become important will be smaller than we
can obtain numerically. In this case the fluid dynamic
(Eb = 0) scaling will hold. Of course, at very small in-
terfacial heights other forces, such as van der Waals and
electrokinetic, will be important, but we will assume that
these are much weaker than the electrostatic forces inves-
tigated here. Further, the electrostatic force is oscillating
in time so there will be periods at which capillary forces
dominate. Therefore, for small frequencies ω we expect
the fluid dynamic scaling to hold in some cases.

A. Direct current (DC) case

For the DC case, we can derive the dispersion rela-
tion by expanding equations (17) and (18) about the

base state, e.g. w = 0 + ŵ, S = 1 + Ŝ, with (ŵ, Ŝ) =

(w′, S′) exp(λt+ ikz), to obtain

λ2 + 3k2λ−
1

2
k2

(

1− δ2k2
)

+ φ̄2
w

(

ln(R2)− 1

ln(R2)3

)

k2 = 0.

(23)
This is the form found in Wang, Mahlmann and
Papageorgiou10, obtained directly from the one-
dimensional model and the full dispersion relation, for
Stokes flow, in the long wave limit. From this equation it
is evident that electrostatics is stabilizing for ln(R2) > 1
and destabilizing otherwise.

A comparison of the satellite shape as a function of
effective wall potential in the DC case is displayed in
Figure 1. A satellite is defined to be the region between
both rupture points at the location of Smin and may in
principle contain multiple satellites. Increasing Ā causes
the satellite to become more disk like with an increasing
radial extent and thinner in the z direction. This result
was also found by Collins et al.

7 for increasing electric
field strength and as noted by them, the disk maybe the
formation stage of the fine jet that was observed experi-
mentally by Cloupeau and Prunet-foch26. Since the elec-
trostatics has a stabilizing effect, as indicated from linear
theory, the rupture time naturally increases with Ā and
for very large electrostatic effects the interface may ac-
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Ā = 0.25
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FIG. 4. Results for the AC case showing the evolution of the minimum interface height for ω = 1 (panels a and b) and ω = 10
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sence of electric fields, near rupture as a function of frequency,
ω, and amplitude Ā with R2 = 10.

tually arrest at some position10. This position correlates
with the location where electrostatic and capillary pres-
sures balance as shown by the horizontal lines in Figure
1. For intermediate values of Ā, shown in the figure, a
stable microthread forms but a satellite is also present
that continues to rise in the centre.

B. Alternating Current (AC) case

The satellite structure in the AC case for two differ-
ent driving frequencies is shown in Figure 2. The results
are sensitive to the frequencies because a large part of
the dynamics depends on whether or not the oscillating
electrostatic pressure is strong or weak near the rupture
point. For large values of Ā, the disk-like satellite struc-
ture forms, as in the DC case, although it is not as long or
thin owing to the reduced strength of the electric field av-
eraged over time. Also, in the AC case, the interface does
not taper smoothly to the rupture point but has a lobed
structure, with more lobes appearing as Ā increases.
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For a suitable choice of parameter values, the inter-
face appears to rupture at multiple points as indicated
in Figure 3. The frequency in these plots has been tuned
in order to obtain a minimum interface hight at multi-
ple locations. The number of pinching points increases
with the strength of the electric field and may promote
multiple satellite-formation. In all of these cases, assum-
ing that pinching occurs at all the minimum heights, the
central satellite (near z = 0) is the largest but for the
Ā = 1 case this volume is only 46% of total volume of
all satellites. Therefore, the AC field may be useful in
decreasing the total satellite volume by promoting the
formation of multiple satellites.
The evolution of the minimum interface height is

shown in Figure 4 and, similarly to the DC case, the
electric field acts to slow the time to rupture. For small
times, the capillary forces dominate and the interface
does not oscillate noticeably with the AC field. As the
interface height S decreases, however, the electrostatic
term grows relative to the capillary terms and the in-
terface oscillates with the electric field. The oscillation
appears to be bounded between the value of S(z, t) where
capillary forces balance electrostatic forces at the maxi-
mum and time-averaged squared wall potential (see Fig-
ure 4 insert). The time-average position of the interface
decreases and eventually reaches a point where the rup-
ture time scale is faster than the period of the AC field
and the jet ruptures. For large values of Ā a stable, al-
though oscillating, microthread appears but with a very
long satellite as in the DC case.
The key difference between AC and DC fields is high-

lighted in Figure 5 where the satellite volume (given here
in dimensionless form as V = π

∫

S2dz) is plotted as
a function of frequency for different amplitudes. For the
DC case, the satellite volume decreases with electrostatic
strength, in contrast to Collins et al7 who found the satel-
lite volume to increase; the different trends may be due
to the fact that we are investigating much larger wave-
lengths. Our trend, however, was also found for inviscid
jets27 when the wavenumber was smaller than a critical
value. For large frequencies, the oscillation of the wall
potential is fast relative to the drainage time and the AC
field acts as an effective DC field, with a smaller time
averaged potential, that causes the volume to be smaller
than the DC case. For small frequencies, the drainage
time scale is fast relative to the oscillation period of the
wall potential, and the strength of the electric field near
the rupture time is sensitive to the chosen parameter val-
ues. As a result the satellite volume can be sensitive to
Ā and ω and this is the reason for the rise in the volume
near Ā = 1 (ω = 0.5 and 1).

IV. CONCLUSION

This study has investigated the break-up of perfectly
conducting viscous threads, surrounded by a hydrody-
namically passive annular region, in the presence of an

AC electric field applied by a concentric electrode. The
governing equations were asymptotically reduced in the
slender long-wave limit and the resultant equations were
solved numerically. Since the core fluid is a perfect con-
ductor, the electrostatic force competes with capillary
forces near rupture, and the AC field has an important
effect on the evolution of the thread radius and shape of
the final satellite. For sufficiently strong wall potential
amplitudes, the interface oscillates with the electric field
near the point where capillary and electrostatic forces
balance. As in the DC, case a disk-like satellite forms
but with a larger volume, and smaller radius, due to the
weaker electrostatic force averaged over time. Further,
the main central satellite does not taper smoothly to the
rupture point but has a lobed structure with the possi-
bility of forming multiple satellites. In any event, these
results are suggestive that AC fields could be used to
control the number and size of satellites, giving one more
degree of reedom than a purely DC field.

Appendix A: Justification of the electrostatic limit for AC
fields

Here we explore the validity of the electrostatic model
and identify AC frequencies for which our results are ex-
pected to hold. We start with Maxwell’s equations in
dimensional form

Gauss′s Law ∇ · (ǫE) = q (A1)

Faraday′s Law ∇×E = −µ
∂H

∂t
(A2)

No magnetic charges ∇ ·H = 0 (A3)

Magnetic induction ∇×H = J+ ǫ
∂E

∂t
(A4)

Charge conservation qt +∇ · J = 0 (A5)

Current constitutive law J = σE+ q u (A6)

Here µ denotes the magnetic permeability (not to be con-
fused with µ1 used in the main text that denotes the
core-fluid viscosity), σ is the electrical conductivity of the
medium, H is the magnetic field, J is the current and q
is the volume charge density in regions where Maxwell’s
equations are to be solved.
Our interest centers on the possibility of magnetic

fields being induced by the AC field that is imposed at
the outer electrode, and in particular the effect of the
frequency ω. For brevity, we consider such phenomena
in the core region 1, since the annular region 2 is taken
to be a dielectric, even though this restriction can be
lifted in a straightforward manner. Region 1, then, is
taken to have permittivity ǫ1 = ǫ0ǫp, where ǫ0 is the
permittivity of free space, conductivity σ1 and magnetic
permeability µ = µ0µp where µ0 is the magnetic perme-
ability of free space. The appropriate time scale is 1/ω,
and an estimate of the size of H can be found from the
magnetic induction equation (A4); writing H = H0H

′

where primes denote dimensionless variables and will be
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dropped in due course, and using the scale E0 = A/R0

for the electric field as in Section II A, gives

H0 = ǫ0ωE0R0. (A7)

Using typical values relevant to the applications of inter-
est here, ǫ0 = 10−11 F m−1, R0 = 10−2cm (i.e. a jet of
1cm radius), E0 = 103 V m−1, implies that H0 ≈ 10−10ω
Teslas and hence is small and of order 10−7 even in the
kilohertz range of frequencies (in fact, frequencies in the
megahertz range also produce negligible magnetic fields
of order 10−3 T , in the present problem). Hence, we can
ignore the presence of a magnetic field in the model to
leading order.
Using (A7) into Faraday’s law (A2) yields the dimen-

sionless equation

∇×E
′ = −(µ0ǫ0ω

2R0)µp
∂H′

∂t′
, (A8)

and again an estimate of the term on the right-hand side
(using µ0 = 1.257× 10−6H m−1), provides µ0ǫ0ω

2R0 ≈
1.257× 10−19ω2, which is again negligible for frequencies
in the kilohertz and megahertz range. To leading order,
therefore, equation (A8) reads

∇×E
′ = 0, (A9)

and hence E can be expressed as the gradient of a poten-
tial in the usual way,

E = −∇φ. (A10)

Next we consider the charge conservation equation
(A5). Eliminating J using the charge constitutive law
(A6), yields

∂q

∂t
+ u · ∇q + (σ/ǫω)q = 0, (A11)

where we have kept dimensional variables for brevity. It
can be seen that along flow characteristics the charge
is proportional to exp(−τrt) where we have introduced
the charge relaxation time-scale τr = (σ/ǫω). Using
typical values of the conductivity (e.g. de-ionized wa-
ter) σ = 10−6Sm−1, implies τr ∼ 105/ω seconds, and
if ω ≪ 104 s−1, for example, the charge distribution in
the bulk becomes zero exponentially fast. As a result,
all charge accumulates on the interface and can be com-
puted there using the surface Gauss law (6). This in turn
leaves equation (A1) charge-free and coupling this with
(A10) along with the fact that ǫ is taken to be constant
here, we obtain

∇2φ = 0. (A12)

Equation (A12) is used in modeling electrohydrodynamic
problems in the electrostatic limit.
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