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Recommender systems have shown great potential to address information overload problem,
namely to help users in finding interesting and relevant objects within a huge information space.
Some physical dynamics, including heat conduction process and mass or energy diffusion on net-
works, have recently found applications in personalized recommendation. Most of the previous
studies focus overwhelmingly on recommendation accuracy as the only important factor, while over-
look the significance of diversity and novelty which indeed provide the vitality of the system. In
this paper, we propose a recommendation algorithm based on the preferential diffusion process on
user-object bipartite network. Numerical analyses on two benchmark datasets, MovieLens and Net-
flix, indicate that our method outperforms the state-of-the-art methods. Specifically, it can not only
provide more accurate recommendations, but also generate more diverse and novel recommendations
by accurately recommending unpopular objects.

PACS numbers: 89.75.Hc, 89.20.Ff, 05.70.Ln

I. INTRODUCTION.

The development of information technology brings great impact on human society. Therein, the most significant
aspect is the revolutionary change in the ways of life. Twenty years ago, if one wants to buy something, he/she has
to personally go to a physical shop and purchase, and then bring the things back home. It is impossible for him/her
to compare the commodities in different markets located at different places in a short time. Now with the growth of
the Internet and World Wide Web, we can almost manage our life at home. When we want to buy a book, we don’t
need to go to bookstores any more to find it on bookshelves one by one, instead what we need to do is typing the
title of this book on the website of Amazon — an online retailer of books. If we want to buy a cell phone, we can
compare the prices on different web-shops at the same time without any transportation fee. Formerly, we usually go
to a bar after working and enjoy making friends there, now we prefer online dating that allows us to reach people
over the world. In a word, the Internet benefits us by providing a much more convenient way to get what we want.
However, as a coin has two sides, Internet also brings us confusion — we face information overload. As we know,
not all the online information are good or true or favorable by surfers. Therefore, we need to distinguish and select
between valuable information and junks. In this sense, to get what we want or the most satisfied things becomes more
and more difficult, since we face much more choices than before. A useful information filtering technology is search
engine [1, 2], by which users can find the relevant information with properly chosen keywords or tags. However, search
engines have two disadvantages which limit their applications. Firstly, they lack the consideration of personalization
and thus return the same results to people no matter what their preferences are. Secondly, search engines require the
users to know exactly what they want and extract some proper keywords to do the searching. However, sometimes
the tastes or preferences can not be easily expressed by keywords or the users don’t even know what they want at all.
In these cases, the search engines are of no avail.
To address these problems, recommender systems rise in response to the proper time and conditions, which form or

work from a specific type of information filtering technique that attempts to recommend information items, such as
movies, TV programs, videos, music, books, news, images and web pages, that are likely to be of interest to the users.
The recommender systems don’t require specified keywords provided by users, instead they use the users’ historical
activities and possible personal profiles to uncover their preferences or potential interests. Many recommendation al-
gorithms have been developed, including collaborative filtering (CF) [3–5], content-based analysis [6], spectral analysis
[7, 8] and iterative self-consistent refinement [9, 10]. What most have in common is that they are based on similarity,
either of users or objects or both. Such approach is under high risk of providing poor coverage of the space of relevant
items. As a result, with recommendations based on similarity rather than difference, more and more users will be
exposed to a narrowing band of popular objects. Although it seems more accurate to recommend popular objects than
niche ones, being accurate is not enough [11]. It was pointed out that the recommendations that are most accurate
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are sometimes not the recommendations that are useful to users. For example, would you use such a system that
recommends the movies you indeed like but have seen before or just watched in the cinema? Diversity and novelty
are also important criteria of algorithmic performance. A possible way to increase the recommendation diversity is
utilizing the tags of objects [12–14]. Another promising way is considering the dissimilar users’ contribution. It was
shown that under the framework of collaborative filtering the dissimilar users can contribute to both accuracy and
diversity of personalized recommendation [15]. However, these improvements are very limited.
Recently, some physical dynamics, including mass diffusion [16, 17] and heat conduction process [18] have been

applied to design recommender systems. Zhou et al. proposed a network-based inference method (NBI) by considering
the three-step mass diffusion starting from the target user on a user-object bipartite network [16]. This method has
been demonstrated to be more accurate than the classical CF algorithm while with lower computational complexity.
However, it has difficulty in generating diverse recommendations. The heat conduction process has been found its
effectiveness in providing a diverse recommendation at the cost of accuracy. This diversity-accuracy dilemma can
be effectively solved by coupling these two processes [19]. It was shown that not only does the hybrid algorithm
outperform other methods but that, without relying on any semantic or context-specific information, it can be tuned
to obtain significant gains in both accuracy and diversity of recommendations.
With the same motivation, we proposed an algorithm based on a preferential mass diffusion process on user-

object bipartite networks, without consideration of heat conduction which may stealthily hurt accuracy. Numerical
analyses on two benchmark datasets show that our method can give higher accurate as well as more diverse and novel
recommendations than the hybrid algorithm, because of its high accurate recommendations on low-degree objects.

II. PREFERENTIAL DIFFUSION METHOD

A recommender system can be represented by a bipartite network G(U,O,E), where U = {u1, u2, ..., um}, O =
{o1, o2, ..., on} and E = {e1, e2, ..., eq} are the sets of users, objects and links respectively [5]. Denote by Am×n the
adjacency matrix, where the element aiα equals 1 if ui has collected object oα, and 0 otherwise.
The essential task of a recommender system is to generate a ranking list of the target user’s uncollected objects. The

original diffusion-based recommendation algorithm, called network-based inference (NBI), was proposed in Ref. [16].
It was referred as ProbS algorithm in Ref. [19]. NBI works by assigning objects an initial level of resource denoted
by the vector f (where fα is the resource possessed by object oα), and then redistributing it via the transformation
f
′ = W f , where

wαβ =
1

koβ

m
∑

l=1

alαalβ
kul

, (1)

is the resource transfer matrix, and koβ =
∑n

i=1
aiβ and kul

=
∑m

γ=1
alγ denote the degrees of object oβ and user ul

respectively. For a target user ui, we assign one unit resource on those objects already collected by ui for simplicity,
thus the initial resource vector f can be written as

fα = aiα. (2)

That is to say, if object oα is collected by user ui then it has one unit resource, otherwise 0. With this initial resource
vector, the result of NBI is equivalent to a three-step random walk process starting from the target user on a bipartite
network [20]. Therefore the NBI score of an object is indeed proportional to the probability that a random walker
released at the target user happens to arrive at this object after three steps (i.e., user-object-user-object). Note that,
if the initial resource vector is normalized by the target user’s degree, namely fα = aiα/kui, the NBI score and the
random walk probability are exactly the same. In fact, the process of NBI is equivalent to resource-allocation which
is also a random-work-based process. Given the initial resource distribution as shown in Eq. 2, the resource of each
object will be redistributed according to Eq.1 where wαβ indicates how many proportion of resource that object α
gives to object β. Then after the resource-allocation process, we obtain the final resource possessed by each object
by summing up all the resources distributed from other objects. The recommendation list for user ui is generated by
ranking all his/her uncollected objects in decreasing order according to their final resource.
Another method referred as HeatS in Ref. [19] employs a process analogous to heat diffusion across the user-object

network. In this algorithm, the objects that the users have already collected are considered as hot sources, while
the others as cold points. After two steps heat-diffusion, the cold points who obtain higher heat will be selected
as the relevant objects. Similar with ProbS, HeatS also redistributes resources in a manner akin to a random-walk
process. However the difference is significant in the diffusion process: the HeatS algorithm redistributes resource via
a nearest-neighbor averaging process, while the ProbS algorithm works by equally distributing the resource to the
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FIG. 1: The ProbS (a) and HeatS (b) algorithms (Eqs. 1 and 3) at work on the bipartite user-object network. Users are shown
as circles, objects are squares. The target user is indicated by the shaded circle.

nearest neighbors. Mathematically, the difference lies in the transition matrix. For HeatS it reads

wαβ =
1

koα

m
∑

l=1

alαalβ
kul

. (3)

Clearly, the transition matrix of HeatS is row-normalized, while for ProbS is column-normalized. Figure 1 gives an
example of the resource spreading processes with ProbS and HeatS algorithms on a user-object bipartite network.
The target user is indicated by the shaded circle. Since the target user has collected the first and third objects, we
assign each of them one unit resource. For ProbS, the resource will be evenly distributed to its neighbors. Thus after
one step diffusion from object-side to user-side, the three users will respectively obtain 1, 1/2, 1/2 unite of resource
which will be evenly redistributed back to those users’ neighboring objects during the second step from user-side to
the object-side. On contrary, in HeatS the resource is redistributed via an averaging procedure, with users receiving
a level of resource equal to the mean amount possessed by their neighboring objects, and objects then receiving back
the mean of their neighboring users’ resource levels. Note that in ProbS total resource levels remain constant, whereas
in HeatS this is not so. It has been pointed out that ProbS has high recommendation accuracy yet low diversity, while
HeatS which is designed specifically to address the challenge of diversity succeeds in seeking out novel or niche objects
and thus enhancing the personalization of individual user recommendations but with relative low accuracy [19]. An
effective way to solve the accuracy-diversity dilemma is to combine the HeatS (i.e, heat conduction) and ProbS (i.e.,
mass diffusion) by incorporating the hybridization parameter λ into the transition matrix normalization [19]:

wαβ =
1

k1−λ
oα kλoβ

m
∑

l=1

alαalβ
kul

, (4)

where λ = 0 gives the pure HeatS algorithm, and λ = 1 gives the ProbS (i.e., NBI).
A heterogenous initial resource distribution NBI algorithm (abbreviate as Heter-NBI) was proposed by Zhou et al.

[21], where the initial resource of object oα is proportional to kθoα .Thus the initial resource vector of Heter-NBI can

be written as fα = aiαk
θ
oα where θ is a negative parameter. It was shown that Heter-NBI can give more accurate

recommendations than the standard NBI. There are other two advanced recommendation algorithms. One is an
improved algorithm by eliminating redundant correlations (called RE-NBI for short) [22], which is defined as

f
′ = (W + ηW 2)f , (5)

where the elements of matrix W are defined by Eq. 1, the initial resource vector f is defined by Eq. 2 and η is a
free parameter. This method has been approved to outperform some classical methods, such as the global ranking
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method, the cosine-similarity-based collaborative filtering [23], NBI and Heter-NBI for both accuracy and diversity
by considering the high-order correlations between objects.
Based on mass diffusion method and motivated by enhancing the algorithm’s ability to find unpopular and niche

objects, we propose a preferential diffusion (PD) method for recommendation in user-object bipartite networks. The
basic idea is that at the last step (i.e., diffusing from users to objects), the amount of resource that an object oα
received is proportional to kεoα , where ε ≤ 0 is a free parameter. In this case, the resource transfer matrix reads

wαβ =
1

koβk
−ε
oα

m
∑

l=1

alαalβ
M

, (6)

where M =
∑n

r=1
alrk

ε
or

= kulE(alrk
ε
or
). E(alrk

ε
or
) indicates the mean value of kεor over all the objects having been

collected by user ul. Here we consider the simplest initial resource vector defined by Eq. 2. Clearly, when ε = 0 it will
degenerate to NBI. Notice that, if we consider the NBI algorithm as a three step diffusion starting from target user to
final objects (i.e., user→object→user→object), then the Heter-NBI algorithm is essentially equivalent to the algorithm
with preferential diffusion only at the first step, while PD considers the third step. However, their motivations are
essentially different. Heter-NBI emphasizes that users who co-collected unpopular objects are more similar to each
other than those co-collected popular objects. And thus the target user distributes more resource to his/her more
similar users by giving more resource to their co-collected unpopular objects. However, after the third step diffusion
the resource still can be centralized on some popular objects. The PD algorithm directly punishes the popular object
by assigning more resource to the low-degree objects at the last step. Experimental results show that considering the
preferential diffusion at the last step is much more effective than at the first step. In order to show that preferential
diffusion at first step (i.e., Heter-NBI) and at last step (i.e., PD) play different roles in recommendation, we further
investigate the PD algorithm with heterogenous initial resource distribution, called Heter-PD, which is controlled by
two tunable parameters. Comparing with all the mentioned algorithms in this paper, Heter-PD performs the best over
all five evaluation metrics considered in this paper (see section 3 for the definitions of evaluation metrics). Comparing
Eq. 4 with Eq. 6, we can find that if we assume that for user ul who has collected object oβ , the approximation
E(alrk

ε
or
) ≈ kεoβ holds, namely the mean value of kεor over all the objects having collected by user ul always equals

kεoβ , PD is equivalent to the hybrid algorithm by setting ε = λ − 1. However, this assumption is too strong to be
satisfied in reality.
Note that, we didn’t consider the preferential diffusion at the second step from the object side to the user side

(PD-II for short). The main reason is that this method may lead to some illogical results. Considering the case that
the target user ui selected a very popular object oα which is also selected by another user uj who is assumed to be a
new user of the system and only selected oα. Via the PD-II method, uj will obtain more resource from oα than other
users who also selected oα, leading to the conclusion that uj is more similar to ui. Apparently this result is wrong,
since a new user usually selects popular objects, which is a common behavior in such kind of systems [24], and it is
unreasonable to say this new user is more similar to the target user just according to such a common behavior. In
addition, we have tested the performance of PD-II method. Comparing with standard NBI method, the improvement
of accuracy (measured by ranking score) is very slight around 1% on MovieLens data and 0.6% on Netflix data.
Therefore, we didn’t consider this method for further analysis.

III. DATA AND METRICS

To test the algorithmic performance, we use two benchmark datasets. The MovieLens (http://www.grouplens.org/)
data consists of 1682 movies (objects) and 943 users who can vote for movies with five level ratings from 1 (i.e., worst)
to 5 (i.e., best). The original data contains 105 ratings. Here we only consider the ratings higher than 2. After coarse
gaining the data contains 82520 user-object pairs. The Netflix data (http://www.netflixprize.com/) is a random
sampling of the whole records of user activities in Netflix.com. It consists of 10000 users, 6000 movies and 824802
links. Similar to the MovieLens data, only the links with ratings no less than 3 are considered. After data filtering,
there are 701947 links left. To test the algorithmic performance, the data (i.e., known links) is randomly divided into
two parts: The training set ET contains 90% of the data, and the remaining 10% of data constitutes the probe set
EP . Notice that, any isolate object can not be recommended to users through the algorithms considered in this paper.
Therefore to ensure the connectivity of the whole network, each time before moving a link to the probe set, we first
check if this removal will result in isolate user or object, and we do not allow the removal that leads to unconnected
nodes.
Accuracy is the most important aspect to evaluate the recommendation algorithmic performance. A good algorithm

is expected to give accurate recommendations, namely higher ability to find what the users like. Here we use Ranking
Score (R) [16] to measure the ability of a recommendation algorithm to produce a good ordering of objects that matches
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the user’s preference. For a target user, the recommender system will return a ranking list of all his uncollected object
to him. For each hidden user-object relation (i.e., the link in probe set), we measure the rank of this object in the
recommendation list of this user. For example, if there are 1000 uncollected objects for user ui, and object oα is at
10th place, we say the position of this object is 10/1000, denoted by Riα = 0.01. A good algorithm is expected to give
high ranks to the hidden objects, and thus leading to small R. Averaging over all the hidden user-object relations,
we obtain the mean value of ranking score R that can be used to evaluate the algorithm’s accuracy, namely

R =
1

|EP |

∑

iα∈EP

Riα, (7)

where iα denotes the probe link connecting ui and oα. Clearly, the smaller the ranking score, the higher the algorithm’s
accuracy, and vice versa. Since real users usually consider only the top part of the recommendation list, a more
practical measure may be to consider the number of user’s hidden links contained in the top-L places. Therefore,
we adopt another accuracy metric called Precision. For a target user ui, the precision of recommendation, Pi(L), is
defined as

Pi(L) =
di(L)

L
, (8)

where di(L) indicates the number of relevant objects (namely the objects collected by ui in the probe set) in the
top-L places of recommendation list. Averaging the individual precisions over all users with at least one hidden link,
we obtain the mean precision P (L) of the whole system.
Besides accuracy, diversity is taken into account as another important aspect to evaluate the recommendation

algorithm. There are two kinds of diversity. One is called Inter-Diversity which considers the uniqueness of different
users’ recommendation lists. Given two users ui and uj, the difference between their recommendation lists can be
measured by the Hamming distance [21],

Hij(L) = 1−
Cij(L)

L
, (9)

where Cij(L) is the number of common objects in the top-L places of both lists. Clearly, if ui and uj have the same
list, Hij(L) = 0, while if their lists are completely different, Hij(L) = 1. Averaging Hij(L) over all pairs of users we
obtain the mean distance H(L), for which greater or lesser values mean, respectively, greater or lesser personalization
of users’ recommendation lists. A good algorithm should not only give diverse recommendations among users (i.e.,
high inter-diversity), but also provide diverse recommendations for a single user (i.e., high intra-diversity) [22, 25].
The latter can be measured by Intra-Similarity. For a target user ui, his recommended objects are {o1, o2, · · · , oL},
then the intra-similarity of ui’s recommendation list is defined as [22]:

Ii(L) =
1

L(L− 1)

∑

α6=β

soαβ, (10)

where soαβ is the similarity between objects oα and oβ in ui’s recommendation list. There are many similarity indices

that can be used to quantify the similarity between objects [26]. Here we adopt the widely used cosine similarity to
measure object similarity. For two objects oα and oβ their similarity is defined as

soαβ =
1

√

koαkoβ

m
∑

l=1

alαalβ . (11)

Averaging Ii(L) over all users we obtain the mean intra-similarity I(L) for the system. A good recommendation
algorithm is expected to give fruitful recommendations and has the ability to guide or help the users to exploit their
potential interest fields, and thus leads to a lower intra-similarity (i.e., higher intra-diversity).
High accurate recommendations might not be satisfied by the users. For example, recommending popular film

Avatar to a user on MovieLens website is not always the best, because he/she might have already seen this film at
the cinema. A diverse recommender system is expected to find the niche or unpopular objects that can not be easily
known by other ways yet match users’ preferences. The metric Popularity quantifies the capacity of an algorithm to
generate novel and unexpected results, that is to say, to recommend less popular items unlikely to be already known
about. The simplest way to calculate popularity is to use the average collected times over all the recommended items,
as:

Ni(L) =
1

L

∑

oα∈Oi
R

koα , (12)
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TABLE I: Algorithmic performance for MovieLens data. The precision, intra-similarity, hamming distance and popularity are
corresponding to L = 50. Heter-NBI is an abbreviation of NBI with heterogenous initial resource distribution, proposed in Ref.
[21]. RE-NBI is an abbreviation of redundant-eliminated NBI, proposed in Ref. [22]. Hybrid-PH refers to the hybrid method
which combines ProbS and HeatS algorithms. PD is an abbreviation of preferential diffusion method presented in this paper.
Heter-PD is an abbreviation of PD with heterogenous initial resource distribution. The parameters (ranging in the interval
[0,1] for Hybrid-PH and [-1,0] for the rest five algorithms with step 0.05) for the parameter-dependent algorithms are set as
the ones corresponding to the lowest ranking scores (for Heter-NBI, θopt = −0.80; for RE-NBI, ηopt = −0.75; for Hybrid-PH,
λopt = 0.20; for PD, εopt = −0.85; for Heter-PD, (θ, ε)opt = (−0.25,−0.8)). Each number is obtained by averaging over five
runs with independently random division of training set and probe set. The entries corresponding to the best performance over
all methods (except Heter-PD) are emphasized in black.

Algorithms Ranking Score Precision Intra-Similarity Hamming Distance Popularity
NBI 0.106 0.071 0.355 0.617 233

Heter-NBI 0.101 0.074 0.340 0.680 220
RE-NBI 0.082 0.085 0.326 0.788 189

Hybrid-PH 0.085 0.083 0.296 0.821 167
PD 0.082 0.084 0.282 0.847 155

Heter-PD 0.081 0.086 0.278 0.858 153

TABLE II: Algorithmic performance for Netflix data. The precision, intra-similarity, hamming distance and popularity are
corresponding to L = 50. The parameters (ranging in the interval [0,1] for Hybrid-PH and [-1,0] for the rest five algorithms
with step 0.05) for the parameter-dependent algorithms are set as the ones corresponding to the lowest ranking scores (for
Heter-NBI, θopt = −0.70; for RE-NBI, ηopt = −0.75; for Hybrid-PH, λopt = 0.20; for PD, εopt = −0.85; for Heter-PD,
(θ, ε)opt = (−0.2,−0.8)). Each number is obtained by averaging over five runs with independently random division of training
set and probe set. The entries corresponding to the best performance over all methods (except Heter-PD) are emphasized in
black.

Algorithms Ranking Score Precision Intra-Similarity Hamming Distance Popularity
NBI 0.050 0.050 0.366 0.424 2366

Heter-NBI 0.047 0.051 0.341 0.545 2197
RE-NBI 0.039 0.062 0.336 0.629 2063

Hybrid-PH 0.045 0.057 0.311 0.625 1998
PD 0.041 0.057 0.295 0.639 1900

Heter-PD 0.040 0.057 0.266 0.708 1742

where Oi
R is the recommendation list for user ui. Clearly, lower popularity indicates higher novelty and surprisal.

Averaging Ni(L) over all users we obtain the mean popularity N(L) for the system.

IV. RESULTS

Summaries of the results for all algorithms and metrics on MovieLens and Netflix datasets are shown respectively
in Table I and Table II. The so-called optimal parameters are subject to the lowest ranking score. And the other four
metrics, namely precision, intra-similarity, hamming distance and popularity, are obtained at the optimal parameters.
Clearly, PD outperforms Heter-NBI over all the five evaluation metrics. Among all four previous algorithms, RE-NBI
gives the highest accuracy by considering the high-order correlations between objects, while Hybrid-PH has the best
performance on diversity and novelty. Comparing with these two outstanding algorithms, PD can reach or closely
near the best accuracy without considering high-order correlation between objects, and provide much more diverse
results. By considering the heterogenous initial resource distribution the algorithmic performance can be further
improved. For example, in MovieLens Heter-PD decreases the ranking score to 0.081 with the parameters θ = −0.25
and ε = −0.8, which is the lowest among all the methods referred in this paper. Although with a heterogenous
initial resource distribution, both accuracy and diversity can be improved, comparing with pure PD algorithm, such
improvements are less remarkable. This indicates that PD actually plays the main role of improvements.
For PD algorithm, the dependence of parameter ε on accuracy measured by ranking score is shown in figure 2.

The optimal values of parameter ε corresponding to the lowest ranking score on two datasets are both equal to 0.85.
Comparing with the standard case NBI, namely ε = 0, the ranking score can be reduced by 23% for MovieLens and
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FIG. 2: The ranking score R vs. ε. Each data point is obtained by averaging over five runs, each of which has an independently
random division of training set and probe set. The optimal parameters ε for MovieLens and Netflix, corresponding to the
minimal R, both equal to -0.85.
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FIG. 3: (Color online) The dependence of ranking score 〈R〉 on the object degree. For a given x, its corresponding R is obtained
by averaging over all the objects whose degrees are in the range of (a(x2 − x),a(x2 + x)], where a is chosen as 1

2
log 5 for a

better illustration. Insets show R against logarithm of x.

18% for Netflix. We further investigate the dependence of ranking score on the object degree of four methods, namely
NBI, Heter-NBI, Hybrid-PH and our method PD. The results are shown in figure 3. Notice that, for a given x, its

corresponding R is obtained by averaging over all the objects whose degrees are in the range of (x
2−x
2

log 5,x
2
+x
2

log 5].
Insets show the R against logarithm of x. It can be seen that the ranking score decreases with the increasing of the
object degree for all these four algorithms. This indicates that in average popular objects can be more accurately
recommended than the unpopular objects. The significant differences of these four algorithms are embodied on their
ability of accurately recommending unpopular objects. Clearly, PD works best for this task, and is followed by
Hybrid-PH. Moreover, comparing the results of Heter-NBI with PD, we can see that although they both consider the
preferential diffusion from user to object, considering at the first step (i.e., Heter-NBI) has much less effect on the
unpopular objects than directly acting on the final step (i.e., PD).
Figure 4 shows how the precision changes with the parameter ε for four typical lengths of recommendation list.

Given L there exists an optimal parameter ε leading to the highest precision. Although this optimal parameter ε1 is
different from that subject to the lowest ranking score ε2, the precision obtained with ε2 is also considerably higher
than that obtained by NBI. For example, when L = 50 with the optimal parameter corresponding to the lowest
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FIG. 4: (Color online) The dependence of precision on parameter ε. Each data point is obtained by averaging over five
independent runs with data division identical to the case shown in figure 2. The vertical dotted line indicates the optimal
parameter ε subject to the lowest ranking score.

ranking score, the precision is prominently improved by 18% and 14% for MovieLens and Netflix respectively.
Hamming distance actually measures the ability that an algorithm give personalized recommendation. How the

parameter ε affects the Hamming distance is shown in figure 5. Clearly, a smaller ε leads to a higher Hamming
distance (i.e., higher inter-diversity), and thus a more personalized recommendation. Comparing with the standard
case NBI, given L = 50, Hamming distance can be enhanced by 37% for MovieLens and 56% for Netflix with optimal
parameters corresponding to their respective lowest ranking scores, even higher than the Hybrid-PH algorithm. As
a result, our method has higher ability to find the niche (unpopular) objects that may be liked by users, and thus
give a more personalized recommendation to the target user. To give more evidences, for a given algorithm we
collect the top-L recommended objects for each user. Denote by d the number of distinct objects among all the
recommended objects. Then we rank the d objects according to their recommended times, denoting by Qi (i = 1, · · · ,
d), in decreasing order. The relationships between the objects’ recommended times Q and their ranks are shown in
figure 6. We have tested for many different L, and here take L = 50 and L = 100 as typical examples. Two important
phenomena can be obtained from figure 6. Firstly, comparing three algorithms, NBI, Hybrid-PH with λ = 0.2 and
PD with ε = −0.85, we have dPD > dHybrid > dNBI . That is to say PD provides larger number of distinct objects to
users than NBI and Hybrid-PH. For example, when the length of recommendation list is 50, in MovieLens data, NBI
can only recommend 293 distinct objects, Hybrid-PH can recommend 787 distinct objects, while PD increases this
number to more than 1000. In Netflix data, for the case L = 50, more than 5000 distinct objects can be recommended
through PD algorithm, namely almost every object has the chance to be recommended. Secondly, the curves for
NBI are remarkably steeper than these from Hybrid-PH and PD. Take the MovieLens data for example (the case
L = 50), with NBI algorithm, six movies are recommended over six hundred times. Since there are only 943 users
in this dataset, it means that each of these movies is recommended to more than two-thirds of the users. The result
with Hybrid-PH is much better, the No.1 object is recommended 341 times. However, comparing with Hybrid-PH,
see the insets of figure 6, PD performs better, which indicates that with PD algorithm users are more likely to be
recommended with different objects, namely PD can provide more personalized recommendations.
Another metric to measure the algorithm’s diversity is intra-similarity. Different from Hamming distance, intra-

similarity measures the ability that an algorithm provides diverse recommendations for a single user. The dependence
of intra-similarity on parameter ε is shown in figure 7. It shows that the parameter ε is positively correlated with intra-
similarity, namely the smaller ε the lower intra-similarity (i.e., higher intra-diversity). Comparing with NBI, when L =
50, intra-similarity can be decreased by 21% forMovieLens and 23% for Netflix with optimal parameters corresponding
to their respective lowest ranking scores. Even comparing with the Hybrid-PH algorithm, the improvement can reach
up to 5% for both datasets. This claims that our method is effective to generate more fruitful recommendations.
Furthermore, we investigate how the two parameters (ε, L) affect intra-similarity. The intra-similarity I in (ε, L)
plane for two datasets are shown in figure 8. The dashed line indicates the intra-similarity of the system which is
obtained by averaging soαβ over all the object pairs. Thus the intra-similarity as obtained from (ε, L) on the dashed
line is equal to that of L randomly chosen objects from the system. The left region has lower intra-similarity while
the right region has higher intra-similarity. As a metaphor, one can think the dashed line as a plane lens keeping the
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FIG. 5: (Color online) The Hamming distance vs. ε. Each data point is obtained by averaging over five independent runs with
data division identical to the case shown in figure 2. The vertical dotted line indicates the optimal parameter ε subject to the
lowest ranking score.
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FIG. 6: (Color online) The relationship between the recommended times Q of objects and their ranks for two datasets. Insets of
two MovieLens sub-figures show the results of top-200 frequently recommended objects. Insets of two Netflix sub-figures show
Q against logarithm of x (i.e., Rank). For NBI, only the objects inside the blue region have the chance to be recommended.
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FIG. 7: (Color online) The intra-similarity as a function of ε. Each data point is obtained by averaging over five independent
runs with data division identical to the case shown in figure 2. The vertical dotted line indicates the optimal parameter ε

subject to the lowest ranking score.
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FIG. 8: (Color online) The intra-similarity I in (ε, L) plane for two datastes. The numerical simulation run over the parameter
L in the interval [10,100] with step length equal to 10, and the parameter ε in the interval [-1,0] and [-1.2,0] for MovieLens and
Netflix respectively, with step 0.05. All the results are obtained by averaging over five independent runs with data division
identical to the case shown in figure 2. The dashed line indicates that with the parameter combination (ε, L) on this line the
intra-similarity equals the value of the system.

same size of the user’s vision. And in the left region especially the area corresponding to smaller ε and larger L, the
algorithm is like a concave lens that broadens the user’s vision, while in the right region corresponding to larger ε and
smaller L, the algorithm is like a convex lens that narrows user’s vision. The focal length is determined by parameter
ε. A smaller ε in the left region indicates a smaller focal length for concave lens, and hence a broader view, while in
the right region indicates a larger focal length for convex lens, hence a narrow view.
In figure 9, we report the dependence of popularity on parameter ε. Similar with intra-similarity, a smaller ε

yields a smaller popularity P , and thus a more novel recommendation. Comparing with the NBI, popularity can be
remarkably improved by 33% and 23% for MovieLens and Netflix datasets. Even comparing with the Hybrid-PH
algorithm, the improvement can reach 7% and 5% respectively.
In real application, the computation complexity and memory space are crucial factors. It is obvious that any highly

accurate recommendation algorithm will become meaningless if the consuming time or memory is unacceptable. After
investigation, we find that our proposed algorithm is very efficient especially for the large yet sparse network. In
average, for one recommendation the time complexity of PD algorithm is about O(Min(Nu〈Ku〉, 〈Ku〉

2〈Ko〉)), where
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FIG. 9: (Color online) The dependence of popularity (i.e., average degree) on ε. Each data point is obtained by averaging over
five independent runs with data division identical to the case shown in figure 2. The vertical dotted line indicates the optimal
parameter ε subject to the lowest ranking score.

TABLE III: The basic properties of the two datasets (the training set) and the average computing time for one recommendation

〈T 〉 with PD algorithm. Sparsity is defined as |E|
NuNo

.

Network |E| Nu No 〈Ku〉 〈Ko〉 Sparsity 〈T 〉

MovieLens 74249 943 1561 79 48 5.04 × 10−2 0.24ms
Netflix 634588 10000 5586 63 113 1.13 × 10−2 2.6ms

Nu is the number of users, 〈Ku〉 and 〈Ko〉 respectively indicate the average degree of users and objects. Since the
maximum value of Min(Nu, 〈Ku〉〈Ko〉) is Nu, in the worst case the complexity is approximate to O(Nu〈Ku〉) ≈ O(|E|)
where |E| is the number of links (i.e., user-object pairs). The basic properties of the two datasets (consider the training
sets) and the average computing time for one recommendation 〈T 〉 with PD algorithm are shown in Table III. The
computations were carried out in a desktop computer with an Intel Core 2 Duo 3.0GHz CPU. From Table III, we can
see that on MovieLens the real computing time is about 10 times faster than Netflix, which is approximately equal to
the theoretical number, namely the ratio of their number of links (634588/74249=8.5). Moreover, for a network like
Netflix which is large yet sparse, the recommendation for a user only takes 2.6ms. That is to say, in one second we
can do recommendations for about 384 users. Besides the time complexity, the memory space is another limitation
for algorithmic implementation for huge-size networks. For PD algorithm, the memory required is of the order O(|E|)
which is the minimum space needed to store the network topology.

V. EFFECTS OF DATA SPARSITY

In this section, we investigate the effects of data sparsity on the algorithmic performance. Since Hybrid-PH is
the most similar algorithm with our method, we choose it for comparison (although RE-NBI is more accurate, it
considers the high-order correlations between objects). We investigate the effects of data sparsity on the algorithmic
performance in two ways: (i) For the whole dataset, we select p% (ranging from 10% to 90% with step 10%) links
as training set, and the rest (100 − p)% links constitute the probe set. Clearly, lower p indicates sparser data (i.e.,
less information). (ii) Given a 90%-10% division of training set and probe set, we randomly choose p% of the known
links in the prepared training set to predict the links in probe set. To do this, the probe links keep unchanged. For
example, p =10 means that we actually use 9% of the whole dataset to predict the links in probe set which contains
10% links of the whole dataset. Lower p indicates sparser data. The numerical results on two datasets are shown in
figure 10 for method (i) and figure 11 for method (ii). Each point is obtained with the optimal parameter subject to
the lowest ranking score. From figure 10, it can be seen that the ranking score decreases with the increasing of the size
of the training set, which agrees with the intuition that we can obtain better recommendation with more information.
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FIG. 10: (Color online) The ranking score changes with the size of training set measured by the percentage of the whole data
set. That is to say, we change the size of training set from 10% to 90% to respectively predict the rest 90% to 10%. Each data
point is obtained with the parameter (ε ∈ [−1, 0] for PD and λ ∈ [0, 1] for Hybrid-PH with step 0.05) subject to the lowest R.
The optimal parameters are labeled in black for PD and red for Hybrid-PH. Insets show the R-improvement of PD comparing
with Hybrid-PH against the size of training set.
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FIG. 11: (Color online) The ranking score changes with the size of training set measured by the percentage of the 90% training
set. That is to say, given a 90%-10% division of training set and probe set, we randomly choose p% of the known links in
training set to predict the links in the unchanged probe set. Each data point is obtained with the parameter (ε ∈ [−1, 0] for
PD and λ ∈ [0, 1] for Hybrid-PH with step 0.05) subject to the lowest R. The optimal parameters are labeled in black for PD
and red for Hybrid-PH. Insets show the R-improvement of PD comparing with Hybrid-PH against the size of training set.

Furthermore the optimal parameters of both methods decrease with the increasing of p for both methods. It shows
that when training set contains 10% links, the optimal parameters are λ = 1 for Hybrid-PH and ε = 0 for PD,
which are all corresponding to the standard case NBI. Insets show the R-improvement (IR) of PD comparing with
Hybrid-PH, which is defined as

IR =
R∗

Hybrid −R∗
PD

R∗
Hybrid

, (13)

where R∗ indicates the lowest ranking score for a given training and probe set division. Generally speaking, the
R-improvement increases with the increasing of the size of training set. That is to say, PD performs much better than
Hybrid-PH for denser datasets. The qualitative behaviors in figure 11 are the same as what we obtained in figure 10,
which further demonstrates that PD can give much better predictions than Hybrid-PH for denser datasets.
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VI. CONCLUSION AND DISCUSSION

The preferential diffusion proposed in this paper is a kind of biased random walk taking into account the hetero-
geneity of users’ degrees. The present process indeed defines a new local index of similarity in bipartite networks (like
the original NBI algorithm is corresponding to the so-called resource-allocation similarity index [26, 27]) and thus it
has potential applications in similarity-based link prediction [28, 29], community detection [30], node classification
[31], and so on. The biased random walk itself has already found extensive application in many branches of science
and engineering, including detecting the navigation rules on complex network [32], the design of routing strategy in
transportation networks [33], quantifying the centrality of vertex and edge [34], modeling the animal movements [35]
and information discovery in wireless sensor networks [36]. Here we applied the biased random walk in dealing with
the information filtering process, which may also broaden the understanding of the applicability of biased random
walk
Accuracy metrics have been widely used to evaluate the performance of recommendation algorithms and considered

to be the most important factor. For example, the Netflix Prize [37] focuses only on accuracy. However, user
satisfaction is not always correlated with high recommendation accuracy [25, 38]. The recommendations on popular
objects (those are more easily to be found in other channels) are less likely to excite users. On the contrary, the
unexpected and fortuitous recommendations which are usually related with cold objects are more favorable. Such
serendipity recommendation will improve user experience and thus enhance their loyalty to the system. In order to
provide accurate as well as diverse and novel recommendations, in this paper, motivated by the perspective of physics,
we proposed an algorithm, named PD, based on preferential diffusion process on bipartite networks. We tested our
algorithm on two benchmark datasets, MovieLens and Netflix, and applied five metrics, from the aspects of accuracy,
diversity and novelty, to evaluate the algorithmic performance. Comparing with the standard algorithm NBI, the
accuracy measured by ranking score can be further improved by 23% for MovieLens and 18% for Netflix. Even
comparing with the state-of-the-art algorithm, Hybrid-PH, the improvement can reach 4% for MovieLens and 9%
for Netflix. Moreover, the performance of PD can be further improved by considering a heterogenous initial resource
configuration.
Furthermore, statistical result on the ranking score of individual objects shows that our method has much higher

ability to accurately recommend the low-degree objects. That is to say, such prominent improvement on accuracy
comes mainly from the highly accurate recommendation on unpopular objects, and thus it indeed enhances the
recommendation diversity and novelty. For example, if we recommend 50 objects to each user, in MovieLens, NBI
can only recommend 293 distinct objects to all users, Hybrid-PH can recommend 787 distinct objects, while PD
increases this number to more than 1000. In Netflix data, more than 5000 distinct objects can be recommended
through PD algorithm, namely almost every object has the chance to be recommended. Specially, we found that
the recommender system may play different roles from the aspect of intra-similarity — the similarity within a user’s
recommendation list, which is determined by the algorithm’s parameter ε and the length of recommendation list
L. Given (ε, L), if the intra-similarity generated by algorithm is higher than that of L randomly selected objects
(i.e., average intra-similarity of the whole system), the recommender system plays the role as a convex that narrows
users’ vision, whereas if intra-similarity generated by algorithm is lower than that of the system, the recommender
system plays the role as a concave that broadens users’ vision. Besides, we investigated the dependence of algorithm
performance on data density. The results show that comparing with Hybrid-PH, PD algorithm gives more significant
improvement for denser data.
A good recommendation algorithm can guide the system for a better development. You can think that the system

itself and the recommendation algorithm constitute a symbiotic system. Generally speaking, there is no best rec-
ommendation algorithm, but the most suitable algorithm for a given system or a user. Just like the marriage game
[39]: choose the right but not the best. In this sense, the most equitable evaluation on recommendation algorithm
should be based on the user experience which is difficult to capture in metric. Notice that, the optimal algorithm
(or parameter) for the whole system is usually different from the optimal algorithm (or parameter) for an individual
user. Thus an applicable and feasible way is building an open recommender system where users can help themselves
to find their best experienced algorithm (or parameter). For example, we can set a bar controlling the parameter
of the algorithm on the website. Take the PD algorithm as an example, the user may set large value of ε to obtain
recommendations of popular and hot items, and set small value of ε to obtain recommendations of niche and novel
items. Here we argue that the design of user-centric recommender systems will become one of the challenges of the
next generation information filtering techniques. Finally, we believe that this paper may shed some light on this
interesting and exciting direction.
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[31] Q.-M. Zhang, M.-S. Shang and L. Lü, Int. J. Mod. Phys. C 21, 813 (2010).
[32] A. Fronczak and P. Fronczak, Phys. Rew. E 80, 016107 (2009).
[33] W.-X. Wang, B.-H. Wang, C.-Y. Yin, Y.-B. Xie and T. Zhou, Phys. Rew. E 73, 026111 (2006).
[34] S. Lee, S. H. Yook and Y. Kim, Eur. Phys. J. B 68, 277 (2009).
[35] E. A. Codling, R. N. Bearon and G. J. Thorn, Ecology 91, 3106 (2010).
[36] K. K. Rachuri and C. S. R. Murthy, Proceedings of the 2009 IEEE International Conference on Communications p. 5035

(IEEE Press Piscataway, NJ, USA, 2009).
[37] J. Bennett and S. Lanning, Proceedings of KDD Cup and Workshop 2007 p. 3 (ACM Press, New York, 2005).
[38] S. M. McNee, I. Albert, D. Cosley, P. Gopalkrishnan, S. K. Lam, A. M. Rashid, J. A. Konstan and J. Riedl, Proceedings

of the 2002 ACM Conference on Computer Supported Cooperative Work p. 116 (ACM Press, New York, 2002).
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