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A variety of metrics have been proposed to measure the relative importance of nodes in a network.
One of these, alpha-centrality [P. Bonacich, Am. J. Sociology 92, 1170 (1987)], measures the number
of attenuated paths that exist between nodes. We introduce a normalized version of this metric and
use it to study network structure, for example, to rank nodes and find community structure of the
network. Specifically, we extend the modularity-maximization method for community detection to
use this metric as the measure of node connectivity. Normalized alpha-centrality is a powerful tool
for network analysis, since it contains a tunable parameter that sets the length scale of interactions.
Studying how rankings and discovered communities change when this parameter is varied allows us
to identify locally and globally important nodes and structures. We apply the proposed metric to
several benchmark networks and show that it leads to better insight into network structure than

alternative metrics.

PACS numbers: 89.75.Hc, 89.20.Hh, 89.65.Ef, 89.75.Fb, 02.10.Ud

I. INTRODUCTION

Centrality measures the degree to which network struc-
ture contributes to the importance, or status, of a node in
a network. Over the years many different centrality met-
rics have been defined. One of the more popular metrics,
betweenness centrality [1], measures the fraction of all
shortest paths in a network that pass through a given
node. Other centrality metrics include those based on
random walks [2-5] and path-based metrics. The sim-
plest path-based metric, degree centrality, measures the
number of edges that connect a node to others in a net-
work. According to this measure, the most important
nodes are those that have the most connections. How-
ever, a node’s centrality depends not only on how many
others it is connected to but also on the centralities of
those nodes [6, 7]. This measure is captured by the to-
tal number of paths linking a node to other nodes in a
network. One such metric, alpha-centrality [6, 8], mea-
sures the total number of paths from a node, exponen-
tially attenuated by their length. The attenuation pa-
rameter in alpha-centrality sets the length scale of inter-
actions. Unlike other centrality metrics, which do not
distinguish between local and global structure, a param-
eterized centrality metric can differentiate between lo-
cally connected nodes, i.e., nodes that are linked to other
nodes which are themselves interconnected, and globally
connected nodes that link and mediate communication
between poorly connected groups of nodes. Studies of
human [9-11] and animal [12] populations suggest that
such ‘bridges’ or ‘brokers’ play a crucial role in the infor-
mation flow and cohesiveness of the entire group. Recent
studies [13] showed the utility of this metric also in iden-
tifying influential nodes in online social networks.
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One difficulty in applying alpha-centrality in network
analysis is that its key parameter is bounded by the
spectrum of the corresponding adjacency matrix of the
network. As a result, the metric diverges for larger
values of this parameter. We address this problem by
defining normalized alpha-centrality. We show that the
new metric avoids the problem of bounded parameters
while retaining the desirable characteristics of alpha-
centrality, namely its ability to differentiate between local
and global structures.

In addition to ranking nodes, parameterized central-
ity can be used to identify communities within a net-
work [15]. In this paper, we generalize modularity
maximization-based approach [16, 17] to use normalized
alpha-centrality. Rather than find regions of the network
that have greater than expected number of edges con-
necting nodes [18], our approach looks for regions that
have greater than expected number of attenuated paths
connecting nodes. One advantage of this method is that
the attenuation parameter can be varied to identify local
vs. global communities.

Normalized alpha-centrality is a powerful tool for net-
work analysis. By differentiating between locally and
globally connected nodes, it provides a simple alternative
to previous attempts to quantify fine-grained structure
of complex networks, such as the motif-based [19, 20]
and role-based [21, 22] descriptions. The former mea-
sures the relative abundance of subgraphs of a certain
type, while latter classifies nodes according to their con-
nectivity within and outside of their community. Ap-
plying either of these descriptions to real networks is
computationally expensive: role-based analysis, for ex-
ample, requires the network to be decomposed into dis-
tinct communities first. Normalized alpha-centrality, on
the other hand, measures node connectivity at different
length scales, allowing us to resolve network structure in
a computationally efficient manner.

We use normalized alpha-centrality to study the struc-
ture of several benchmark networks, as well as a real-



world online social network. We show that this parame-
terized centrality metric can identify locally and globally
important nodes and communities, leading to a more nu-
anced understanding of network structure.

II. CENTRALITY AND NETWORK
STRUCTURE

Bonacich [6, 8] defined alpha-centrality C; (e, B,t) as
the total number of attenuated paths between nodes 4
and j, with 8 and « giving the attenuation factors [46]
along direct edges (from ¢) and indirect edges (from in-
termediate nodes) in the path from ¢ to j, respectively,
with ¢ specifying the length of the longest path.

Given the adjacency matrix of the network A, alpha-
centrality matrix is defined as follows:

t
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The first term gives the number of paths of length one
(edges) from i to j, the second gives the number of paths
of length two, etc. Although aj along different edges in
a path could in principle be different, for simplicity, we
take them all to be equal: o = «, Vk. In this case,
the series converges to C'(a, 8,t — 00) = SA(I — aA)fl,
which holds while & < 1/A1, where \; is the largest char-
acteristic root of A [23]. The computation of Ay is dif-
ficult, especially for large networks, which include most
complex real-world networks.

To get around this difficulty, we define normalized
alpha-centrality matrix as:

__ ClaBit = )
N(a,ﬂ,t%oo)_ Zijcij(a7ﬁ7t_>oo) (2)

As we show in the Appendix, in contrast to alpha cen-
trality, normalized alpha-centrality is not bounded by ;.
Also, we prove that, assuming |1 | is strictly greater than
any other eigenvalue, limg_,1/x,| NV (@, 8,1 — 00) exists;
and as « increases, N(«, 3,t — o) remains finite and
converges to this value.

Just like the original alpha-centrality, normalized
alpha-centrality contains a tunable parameter « that sets
the length scale of interactions. For o = 0, (normalized)
alpha-centrality takes into account direct edges only. As
« increases, N'(«, 8,t — 00) becomes a more global mea-
sure, taking into account ever larger network compo-
nents. The expected path length, or radius of centrality,
is (1 — )L

A. Node Ranking

Much of the analysis done by social scientists con-
sidered local structure, i.e., the number [24] and na-
ture [9, 10, 25] of an individual’s ties. By focusing on

local structure, however, traditional theories fail to take
into account the macroscopic structure of the network.
Many metrics proposed and studied over the years deal
with this shortcoming, including PageRank [3] and ran-
dom walk centrality [5]. These metrics aim to identify
nodes that are ‘close’ in some sense to other nodes in the
network, and are therefore, more important. PageRank,
for example, gives the probability that a random walk
initiated at node ¢ will reach j, while random-walk cen-
trality computes the number of times a node i will be
visited by walks from all pairs of nodes in the network.

Normalized alpha-centrality, N;(«a,3,t — o0) =
Zj Nij(a, B,t = 00), also measures how ‘close’ node i
is to other nodes in a network and can be used to rank
the nodes accordingly. The presence of a tunable pa-
rameter turns normalized alpha-centrality into a pow-
erful tool for studying network structure and allows us
to seamlessly connect the rankings produced by well-
known local and global centrality metrics. For o = 0,
normalized alpha-centrality takes into account local in-
teractions that are mediated by direct edges only, and
therefore, reduces to degree centrality. As a increases
and longer range interactions become more important,
nodes that are connected by longer paths grow in im-
portance. For a < 1/Aq, the rankings produced by nor-
malized alpha-centrality are equivalent to those produced
by alpha-centrality. Also as shown in the Appendix, for
symmetric matrices, as o — 1/|A1], normalized alpha-
centrality converges to eigenvector centrality [6]. The
rankings no longer change as « increases further, since
« has reached some fundamental length scale of the net-
work.

B. Community Detection

Newman & Girvan [18] proposed modularity as a met-
ric for evaluating community structure of a network. The
modularity-optimization class of community detection al-
gorithms [16, 17, 26] finds a network division that max-
imizes the modularity, which is defined as @ = (connec-
tivity within community)-(expected connectivity), where
connectivity is measured by the density of edges. We ex-
tend this definition to use normalized alpha-centrality as
the measure of network connectivity. According to this
definition, in the best division of a network, there are
more weighted paths connecting nodes to others within
their own community than to nodes in other communi-
ties. Modularity can, therefore, be written as:

Q) =Y Wi (ot = 00) = Nyj(ar, t = 00)]8(si, 55)

ij
3)
Nij(a,t — o) is given by Eq. (2). We vary a between 0
to 1. Since B factors out of modularity, without loss
of generality we take 8 = 1. Nj(a,t — o0) is the
expected normalized alpha-centrality, and s; is the in-
dex of the community ¢ belongs to, with §(s;,s;) = 1 if



s; = sj; otherwise, 0(s;, ;) = 0. We round the values of
Nij(a,t — o) to the nearest integer.

To compute Nj;j(a,t — 00), we consider a graph,
referred to as the null model, which has the same
number of nodes and edges as the original graph, but
in which the edges are placed at random. To make
the derivation below more intuitive, instead of normal-
ized alpha-centrality, we talk of the number of attenu-

ated paths. When all the nodes are placed in a sin-
gle group, then axiomatically, Q(«) = 0. Therefore
Wit — 00) = Njj(a,t — o0)] = 0, and we

set W = ZijATj(a,t — 00) = Y Nij(a,t — o0).
Therefore, according to the argument above, the to-
tal number of paths between nodes in the null model
> i Nij(a,t — o0) is equal to the total number of paths
in the original graph, 3°,. Njj(a,t — oo). We further
restrict the choice of null model to one where the ex-
pected number of paths reaching node j, Wj”, is equal
to the actual number of paths reaching the corresponding
node in the original graph. W™ = 37, Njj(a,t — 00) =
> Nij(a,t — 00) . Similarly, we also assume that in the
null model, the expected number of paths originating at
node i, W2 is equal to the actual number of paths orig-
inating at the corresponding node in the original graph
weut = ZjNZE(a,t — 00) = > Nij(a,t — o0). W,
Wi"“t and WJm are then rounded to the nearest integers.

Next, we reduce the original graph G to a new graph
G’ that has the same number of nodes as G and total
number of edges W, such that each edge has weight 1
and the number of edges between nodes i and j in G’ is
Nij(a, B,t — 00). Now the expected number of paths be-
tween 4 and j in graph G could be taken as the expected
number of the edges between nodes ¢ and j in graph G’
and the actual number of paths between nodes i and j
in graph G can be taken as the actual number of edges
between node 7 and node j in graph G’. The equivalent
random graph G” is used to find the expected number of
edges from node ¢ to node j. In this graph the edges are
placed in random subject to constraints: (i) The total
number of edges in G” is W; (i) The out-degree of node
i in G"” = out-degree of node i in G’ = WP (iii) The
in-degree of a node j in graph G” =in-degree of node j
in graph G’ = W]m Thus in G” the probability that an
edge will emanate from a particular node depends only
on the out-degree of that node; the probability that an
edge is incident on a particular node depends only on the
in-degree of that node; and the probabilities of the two
nodes being the two ends of a single edge are indepen-
dent of each other. In this case, the probability that an
edge exists from i to j is given by edge in G’ emanates
from i - edge in G' incident on j=(W"* /W)(Wi™/W).
Since the total number of edges is W in G”, there-
fore the expected number of edges between i and j is
W - (Wt J WY (Wi /W) = Nij(a,B,t = o), the ex-
pected « centrality in G.

Once we compute Q(«), we have to select an algorithm
to divide the network into communities that maximize

Q(«). Brandes et al. [27] have shown that the decision
version of modularity maximization is NP-complete. Like
others [17, 28], we use the leading eigenvector method to
obtain an approximate solution. In this method, nodes
are assigned to either of two groups based on a single
eigenvector corresponding to the largest positive eigen-
value of the modularity matrix. This process is repeated
for each group until modularity does not increase further
upon division.

While computational complexity of normalized alpha-
centrality (described below) is greater than that of edge
density, using an approximate algorithm [14] or parallel
programming techniques, e.g., map-reduce [29], can im-
prove the scalability of the modularity-based community
detection method that uses alpha-centrality.

C. Relation to Other Centrality Measures

We can generalize the centrality metric presented
above to a notion of path-based connectivity and relate it
to other centrality metrics. Let ¢ = (¢;;) be a nxn matrix
such that n is the number of nodes in the network and
qu is the number of paths of length ¢ connecting nodes
i and j. The number of paths of length one connecting
i and j is gj; = Ajj; the number of paths of length two
is qu = (A x A);;, etc. The expected number of paths
connecting nodes ¢ and j is E(g;;) where:

E(q)=(W1-q"+Wz-q®+...+ W q* +...),

where Wy can be a scalar or a vector. E(g;;) can be
thought of as the proximity score, used to find out how
connected or close two nodes in a network are.

Several path-based centrality metrics can be expressed
in terms of E(g;;), including random walk models [3, 5,
30-32], degree centrality, Katz score [7], as well as alpha-
centrality. In a random walk model, a particle starts
a random walk at node ¢, and iteratively transitions to
its neighbors with probability proportional to the corre-
sponding edge weight. At each step, the particle returns
to ¢ with some restart probability (1 —¢). The proximity
score is defined as the steady-state probability r; ; that
the particle will reach node j [31].

o If Wi, = ¢* - D% where ¢ is a constant and D is a
diagonal n x n matrix with D;; = Z;Zl Ajjifi=j
and 0 otherwise; then, E(g;;) reduces to proximity
score in random walk models [30, 31].

o If W, = Hé?:laj, where the scalar «; is the atten-
uation factor along the j-th link in the path, then
E(gs5) reduces to alpha-centrality score from ¢ to j
(normalizing leads to normalized alpha-centrality).
For ease of computation, we have taken oy = [
and a; = «, Vi # 1. Alpha-centrality holds for
a < 1/A1 (A is the largest eigenvalue of A). How-
ever, as shown in the Appendix, normalized alpha-
centrality holds for all values of «.



e When 8 = a, this in turn reduces to the Katz status
score [7].

o If Wi = «, and adjacency matrix A is symmetric,
then as @« — 1/\1, E(q) is proportional to the in-
ner product of the eigenvector corresponding to A1,
with itself. It would lead to eigenvector centrality
as shown in Appendix.

¢ When W7 = 1 and W, = 0, Vk > 1, then
E(gij) is the degree centrality used in modularity-
maximization approaches [16].

We have implemented [13] a simple iterative algorithm
to compute alpha-centrality:

Cla,B,t+1)= A+ aC(a, B,1)A 4)

For any given value of «, this method iteratively com-
putes C(a, 3,t — oo) and consequently N (o, 8,1 — 00)
until convergence. Experimentally we have observed that
for o < 1/|A1] this method converges after fewer than 10
iterations. Considering a network with n nodes and m
links, each iteration of this algorithm (for a given value
of &) has a runtime complexity of O(mn) and space com-
plexity of O(m).

In order to study how normalized alpha-centrality
varies with « before convergence (i.e., for a < 1/|A\1]),
we must choose a small enough increment as « step
size. According to Gershgorin circle theorem [33], |A1]| <
min(do¥,  din ), where d%% —and d'7, . are the max-
imum out- and in-degrees of the network respectively.
Therefore, o step size is of order oc 1/min(d%%,, di", ).
For undirected networks, do% = di" .

Normalized alpha-centrality can be implemented using
the map-reduce paradigm [29], guaranteeing the scala-
bility of this algorithm. In addition, [14] recently pre-
sented an approximate algorithm that computes alpha-
centrality scores that are guaranteed to be within the
specified error ¢ of the exact values, and proved that
the algorithm has runtime complexity of O(%dgt,). Us-
ing the approximate algorithm, we were able to compute
alpha-centrality for a network with 70,000 nodes and 30

million edges on a single desktop computer.

III. EMPIRICAL RESULTS

We apply the formalism developed above to benchmark
networks studied in literature and a network extracted
from the social photosharing site Flickr.

A. Karate Club Network

First, we study the friendship network of Zachary’s
karate club [34] shown in Figure 1. During the course of
the study, a disagreement developed between the admin-
istrator and the club’s instructor, resulting in the division

of the club into two factions, represented by circles and
squares in Figure 1. We find community division of this
network for different values of a. The first bisection of
the network results in two communities, regardless of the
value of «, which are identical to the two factions ob-
served by Zachary. However, when the algorithm runs to
termination (no more bisections are possible), different
groups are found for different values of a. For a = 0,
the method reduces to edge-based modularity maximiza-
tion [26] and leads to four groups [15, 35] (Figure 1(a)).
For 0 < v < 0.14 it discovers three groups (Figure 1(b)),
and for a > 0.14, two groups that are identical to the fac-
tions found by Zachary (Figure 1(c)). Thus, increasing
a allows local groups to merge into more global commu-
nities. Note that the minimum value of « for which two
groups are found is close to the reciprocal of the largest
eigenvalue of the adjacency matrix of this network, which
is 0.1487.

Figure 2 shows how the normalized alpha-centrality
scores of nodes change with a. Varying « allows us to
smoothly transition from a local measure of centrality to
a global measure. For a = 0, normalized alpha-centrality
reproduces the rankings given by degree centrality. As
we show in the appendix, the final rankings produced by
normalized alpha-centrality for this symmetric matrix are
the same as those given by eigenvector centrality. This
is confirmed by Fig. 3, which plots (converged) normal-
ized alpha-centrality and eigenvector centrality scores of
karate club nodes. Note that the scale of eigenvector
centrality is given by the right hand y-axis. The values
overlap almost perfectly after rescaling the axis.

Nodes 34 and 1 have the highest centrality scores, es-
pecially at lower « values. These are the leaders of their
communities. It was the disagreement between these
nodes, the club administrator (node 1) and instructor
(node 34), that led to the club’s division. Nodes 33 and
2 also have high centrality and hold leadership positions.
All these nodes are also scored highly by betweenness
centrality and PageRank. Note that centrality scores of
these nodes decrease with «, indicating that they are far
more important locally than globally.

A node may also have high centrality if it is connected
to many nodes from different communities. Such nodes,
which bridge communities, are crucially important to
maintaining cohesiveness and facilitating communication
flow in both human [9, 10] and animal [12] groups. We
can identify these nodes because their normalized alpha-
centrality increases with «, i.e., they become more im-
portant as longer paths become more important. Cen-
trality of nodes 3, 14, 9, 31, 8, 20, 10, etc., increases with
« from moderate to relatively high values. While most
of these nodes are directly connected to both communi-
ties, some are only indirectly connected by longer paths.
Other centrality metrics fail to detect such nodes. For
example, betweenness centrality of these nodes is low,
though non-zero.

Nodes 25, 26 and 17 have low centrality which de-
creases with a. These are peripheral members. Between-



(b) 0< o < 0.14
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FIG. 1. Zachary’s karate club data. Circles and squares represent the two actual factions, while colors stand for discovered
communities as the strength of ties increases: (a) a =0, (b) 0 < @ < 0.14, (c) a > 0.14.
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FIG. 2. Centrality scores of Zachary club members vs. a.

ness centrality of 17 is zero, as expected, but 25 and 26
have scores similar to 31. PageRank scores of these pe-
ripheral nodes are higher than nodes 21, 22, 23, which
are connected to central nodes, and comparable to scores
of the bridging nodes 20 and 31. While both betweenness
centrality and PageRank correctly pick out leaders, they
do not distinguish between locally and globally connected
nodes.

Guimera and collaborators [21] proposed a role-based
description of complex networks as an alternative to the
‘average description’ approach, which characterizes net-
work structure in terms of average degree or degree dis-
tribution. They define a role in terms of the relative
within-community degree z (which measures how well the
node is connected to other nodes in its community) and
participation coefficient P (which measures how well the
node is connected to nodes in other communities). They
propose a heuristic classification scheme to assign roles
to nodes based on where they fall in the z—P plane and
find similar patterns of role-to-role connectivity among
networks with similar functional needs and growth mech-
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FIG. 3. Comparison of eigenvector centrality and converged
normalized alpha-centrality scores of nodes in the Zachary’s
karate club network.

anisms [22].

Figure 4 shows the positions of nodes in the karate club
network in the z—P plane. Shaded regions demarcate
the boundaries of different roles according to Guimera et
al.’s classification scheme. Nodes separate into provin-
cial hubs (34, 1), peripheral (33, 2, 28, 14, 31, 29, 20,
3, 9, 10) and ultra-peripheral nodes (rest of the nodes).
No special role is assigned to the bridging nodes, such as
9. Even if the boundary of non-hub connectors is shifted
to slightly less than P = 0.5 in order to identify nodes
3,9, 10 as serving a special role, the method would still
miss node 14, whose position in the network is very sim-
ilar to node 9. This is because the method takes into
account direct links only, rather than complete connec-
tivity between nodes. The method also requires one to
first identify communities in the network, which is a com-
putationally expensive for large networks. Our method,
on the other hand, provides a computationally scalable
way to characterize local and global network structure
without the added expense of community identification.
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FIG. 4. (Color online) Classification of karate club nodes ac-
cording to the roles scheme proposed by Guimera et al. [21]:
(i) non-hubs (z < 2.5) are divided into wultra-peripheral, pe-
ripheral, and connector nodes (kinless nodes whose links are
homogeneously distributed among all communities are not
shown); (ii) hubs (z > 2.5) are subdivided into provincial
(majority of link within their own community), connector
hubs (many links to other communities). Global hubs whose
links are homogeneously distributed among all communities
are not shown.

B. Florentine Families

Padgett [36] studied the structure of political and busi-
ness relationships among the elite families of Renais-
sance Florence. The two rival factions during this pe-
riod were the oligarchs, composed of the patrician fami-
lies, and the Mediceans, who formed close ties with the
“new men,” the newly powerful businessmen. Before the
rise of Medicis, the oligarchs dominated Florentine pol-
itics and economics and cemented their power through
marriage. They were less willing to enter into business
relationships with the “new men.” The Medicis, on the
other hand, consolidated their power through business
and marriage relationships. Scholars have studied the
business and marriage networks of Renaissance Florence
to explain the outcomes of the power struggles between
the factions and the rise of the Medici family during this
important period of Western European history.

We applied our community detection algorithm to
the heterogenous network containing both marriage and
business ties shown in Figure 5. The marriage ties are
shown by solid lines. The dashed lines show the differ-
ent business relations. The marriage ties are asymmet-
ric, with the wife-giving family being considered superior
to the wife-receiving family. All relations are weighted
equally. We symmetrized the resulting adjacency matrix
by adding it to its transpose. We studied community
division of this network for difference values of a. For
0 < a < 0.05 we found seven distinct groups, shown

in Fig. 5(a), for 0.05 < a < 0.1 we found six groups
(Fig. 5(b)), and for 0.1 < a < 0.25 five groups (Fig. 5(c)).
In every division of the network, two of the groups are
small and disconnected from the rest of the network. The
first of these is composed of Guadigni, Fioravanti and Bis-
cheri families and the second of Orlandini and Davazati
families. These small groups are not shown in Fig. 5.

The three largest groups within the connected com-
ponent are: (1) families aligned with Medici, (2) fami-
lies aligned with the oligarchs, such as Strozzi, Peruzzi,
and (3) mostly oligarch families with split loyalties, like
the Alibizzi. For lower values of «, the oligarchs are
split into two groups (Fig. 5(a), (b)). The rift within
the oligarchs detected by our algorithm is corroborated
by historic events. When a lottery randomly produced
too many Medici officeholders in the Signoria (1433), Ri-
naldo Albizzi, the titular head of the oligarchs, sent out a
word to assemble troops in order to forcibly seize Signoria
from the Medicis. However, his repeated efforts to assem-
ble troops (especially from Palla Strozzi) were frustrated
by other supporters’ changing their minds and drifting
away [36], indicating factional split within the oligarchs.
In contrast, Medicis could immediately and effectively
mobilize their supporters, as the result of which no mil-
itary action ensued and Cosimo Medici took over the
budding Florentine state.

As we increase the scale of interactions by increasing
«, the five groups within the connected component grad-
ually coalesce into three distinct, as shown in Fig. 5.
First, the group comprising of Guasconi, Da-Uzzano
and Ardinghelli merge with the Medicis (Fig. 5(b)).
When « is further increased, the group comprising of
Rondinelli, Solosmei and Della Casa merge with the oli-
garchs (Fig. 5(c)).

Figure 6 shows how the normalized alpha-centrality
scores of the families in the heterogeneous business-
marriage network change with «. Guasconi family has
the highest centrality score across all values of . This is
not surprising given this family’s central position in the
network bridging the oligarchs and the Mediceans. This
observation is corroborated by the findings that cross-
pressurised (by the Mediceans and the oligarchs) Guas-
conis were split in their partisan loyalties [36]. Similarly,
the Medicis, who were able to expertly exploit both busi-
ness and marriage connections, increase in importance
as « increases. On the other hand, the oligarchs such
as Strozzi and Peruzzi families, who were patrician to
the core and had few business relations outside of their
faction, see their centrality decrease with «. Thus, the
historic ascendance of the Mediceans can be observed
already in the business and marriage networks they cre-
ated.

Although the heterogenous network of Florentine fam-
ilies is not undirected, since it contains asymmetric mar-
riage relations, we find that rankings produced by alpha-
centrality as o — 1/|A1| are well correlated with those
produced by eigenvector centrality. However, as observed
by Bonacich [6], for asymmetric marriage network, there
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FIG. 6. (Color online) Normalized alpha-centrality scores of
the families within the business-marriage network. Some of
the nodes are identified, with the rest shown as dashed light
grey lines.

are important differences between the rankings of eigen-
vector centrality and alpha-centrality. For instance, the
eigenvector centrality scores of Bischeri, Guadigni and
Orlandini are zero, even though they were wife-giving
families. The reason for this is their segregation from the
large connected component. This anomaly is corrected
by the normalized alpha-centrality, though the scores it
gives to Bischeri, Guadigni and Orlandini are very small.

C. Other Real-World Networks

In addition to the social networks described above, we
evaluated the performance of our community division al-
gorithm on three other real-world networks: the US Col-
lege football and the political books networks, as well as
the social network retrieved from the social photosharing
site Flickr. We were not able to evaluate rankings due to

the lack of ground truth for these data sets.

The first network represents the schedule of Division
1 games for the 2001 season where the nodes represent
teams and the edges represent the regular season games
between teams [37]. The teams are divided into confer-
ences containing 8 to 12 teams each. Games are more fre-
quent between members of the same conference, though
inter-conference games also take place. This leads to an
intuition, that the natural communities may be larger
than conferences.

The political books network represents books about US
politics sold by the online bookseller Amazon[47]. Edges
represent frequent co-purchasing by the same buyers, as
indicated by the “customers who bought this book also
bought these other books” feature of Amazon. The nodes
were labeled liberal, neutral, or conservative by Mark
Newman on a reading their descriptions and reviews on
Amazon[48]. We take these labels as communities.

To collect the final data set, we sampled Flickr’s so-
cial network by identifying roughly 2000 users interested
in one of three topics: portraiture, wildlife, and technol-
ogy. We used the Flckr API to perform a tag search
using relevant keywords to retrieve 500 ‘most interest-
ing’ images for each topic and extracted the names of
users who uploaded these images [49]. Further, we iden-
tified four users (eight for the wildlife topic) who were
interested in each topic by studying their profiles, specif-
ically group membership and user’s tags. Groups such
as “Big Cats”, “Zoo”, “The Wildlife Photography”, etc.
pointed to user’s interest in wildlife. In addition, tags
that users attached to their images could also help iden-
tify their interests. Users who used nature and macro
tags were probably interested wildlife rather than tech-
nology. Similarly, users interested in human, rather than
animal, portraiture tagged their images with baby and
family. We then used Flickr API to retrieve these users’
contacts, as well as their contacts’ contacts, and labeled
all by the topic through which they were discovered. We
reduced this network to an undirected network of mu-
tual contacts only, resulting in a network of 5747 users,



with 1620, 1337 and 2790 users labeled technology, por-
traiture and wildlife respectively. Although we did not
verify that all the users were interested in the topics they
were labeled with, we use these ‘soft’ labels to evaluate
the discovered communities.

We use Wallace criterion [38] to evaluate the quality
of discovered communities. This metric, which we call
purity, measures the fraction of correct pairs (belonging
to the same community) that are assigned to the same
group by the algorithm. We found this to be a very
useful metric, particularly in cases for which the exact
ground truth is not known and only a “soft” community
division is provided; for example, in the football data set
a community could be a union of two or more conferences.
Note that the purity would be maximum when the entire
network is taken as one single community. This would
be problematic if the metric was used as the criterion to
find groups. However, since we generally find multiple
groups using an independent method, this does not pose
a problem.

TABLE I. The number and purity of communities discovered
at different values of «

karate club football flickr
a |grps| Pu a |grps| Pu a |grps| Pu
0.00| 4 |0.505({0.00f 8 [0.715(|0.000| 4 |0.501
0.12| 3 |0.736{{0.02| 8 [0.723(/0.001| 3 |0.565
0.14| 2 |1.000{{0.04| 8 [0.723(/0.002| 3 |0.567
florentine 0.06| 7 (0.723]/0.003| 3 |0.567
0.00] 7 |0.341{]0.08| 7 [0.723(/0.004| 3 |0.567
0.05| 6 |0.34(/0.10| 7 [0.791{/0.005| 3 |0.568
0.10| 5 | 0.421/0.12| 6 [0.803(0.006| 3 |0.570
political books [|0.14| 6 [0.813(/0.007| 3 |0.571
0.00] 4 |0.633{|0.16| 6 [0.813(/0.008| 3 |0.572
0.04| 3 |0.805({0.18| 4 10.862(/0.009| 3 |0.574
0.08( 2 |0.917

The number and purity of the communities found in
networks as a function of the parameter o are shown
in Table I. The a = 0 case corresponds to the stan-
dard modularity method. As « increases, the number of
groups discovered in all networks goes down, while their
purity increases. This is consistent with our hypothesis
that using smaller values of « allows us to identify more
local network structure, while larger values of « lead to
more global structure. In the Karate club network, for
example, at a« = 0, there are four small communities,
as shown in Fig. 1(a). These local communities coalesce
into two large groups as « increases (Fig. 1(c)), which
are identical to the groups identified by Zachary [34].

To evaluate the communities discovered in the Floren-
tine families network, we use the tight constraint of party
loyalty. Hence the families could be either Medicean, oli-
garch, or have split loyalties. We note that this is a very
conservative evaluation criterion, since there were fac-
tions present within the parties themselves [36]. Since
families with split loyalties would be correctly classified

as belonging to either of the two parties, we remove them
from purity calculation, focusing instead on identifying
community of party loyalists only. Purity is further re-
duced by the presence of the two isolated groups. How-
ever, purity of discovered communities increases with a.
The small local communities found at lower value of «
could indicate factions within parties.

IV. RELATED WORK

A variety of metrics have been proposed to measure
node’s centrality in a network [1, 3, 5-7, 24, 39, 40], yet
few studies systematically evaluated their performance
on real-world networks. Liben-Nowell and Kleinberg [41]
compared the performance of several commonly used cen-
trality metrics on the link prediction task and found Katz
score [7] to be the most effective measure for this task,
outperforming PageRank [3] and its variants. The alpha-
centrality metric modifies the Katz score by introducing
a parameter «, that gives a weight to indirect links and
also sets the length scale of interactions in the network.
We showed recently [13] that normalized alpha-centrality
outperforms other centrality metrics on the task of pre-
dicting influential nodes in an online social network.

Guimera and collaborators [21, 22] proposed role-based
description of complex networks. They define a role in
terms of the relative within-community degree z (which
measures how well the node is connected to other nodes
in its community) and participation coefficient P (which
measures how well the node is connected to nodes in
other communities). They proposed a heuristic classi-
fication scheme based on where the nodes lie in the z—P
plane. This classification scheme is similar to the local vs.
globally-connected distinction we are making, with con-
nector nodes being more globally connected nodes while
provincial hubs and peripheral nodes are more locally
connected. Role-based analysis requires community de-
composition of the network to be performed first. This
is a computationally expensive procedure for most real-
world networks. Our approach, on the other hand, allows
us to differentiate between roles of nodes in a more com-
putationally efficient way.

Community detection is another active area in net-
works research (see [15] for a comprehensive review).
Like us, Arenas et al. [42] have generalized modularity
to find correlations between nodes that go beyond near-
est neighbors. Their approach relies on the presence of
motifs [19, 20], i.e., connected subgraphs such as cycles,
to identify communities within a network. For example,
higher than expected density of triangles implies pres-
ence of a community, and a triangle modularity may be
defined to identify it. The motif-based modularity uses
the size of the motif to impose a limit on the proximity of
neighbors. Our method, on the other hand, imposes no
such limit. The measure of global correlation computed
using alpha-centrality is equal to the weighted average
of correlations for motifs of different sizes. Our method



enables us to easily calculate this complex term.

V. CONCLUSION

In this paper, we introduced normalized alpha-
centrality as a metric to study network structure. Like
the original alpha-centrality [6] on which it is based, this
metric measures the number of paths that exist between
nodes in a network, attenuated by their length with the
attenuation parameter a. This parameter sets the length
scale of the interaction. When a = 0, the centrality met-
ric takes into account direct edges only and is equivalent
to degree centrality. As « increases, the metric takes into
consideration more distant network interactions, becom-
ing a more global measure. Normalized alpha-centrality
allows us to smoothly interpolate between local met-
rics, such as degree centrality, and global metrics, such
as eigenvector centrality [6]. Unlike the original alpha-
centrality, which bounds « to be less than the reciprocal
of the largest eigenvalue of the adjacency metric of the
network, normalized alpha-centrality sets no such limit.

We used normalized alpha-centrality to study the
structure of networks, specifically, identify important
nodes and communities within the network. We extended
the modularity maximization class of algorithms [37] to
use (normalized) alpha-centrality, rather than edge den-
sity, as a measure of network connectivity. For small
values of «, smaller, more locally connected communities
emerge, while for larger values of a, we observe larger
globally connected communities. We also used this met-
ric to rank nodes in a network. By studying changes
in rankings that occur when parameter « is varied, we
were able to identify locally important ‘leaders’ and glob-
ally important ‘bridges’ or ‘brokers’ that facilitate com-
munication between different communities. We applied
this approach to benchmark networks studied in litera-
ture and found that it results in network division in close
agreement with the ground truth. We can easily extend
this definition to multi-modal networks that link entities
of different types, and use approach described in this pa-
per to study the structure of such networks [43].
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Appendix A: Proofs of Convergence

In this section we prove some properties of the normal-
ized alpha-centrality metric proposed in this paper. The

alpha-centrality matriz C(a, 8,t) Yo € [0,1] is defined
as:

C(auﬁut):ﬁA(I+CYA+042A2+...+atAt)

t
=BAY ok Ak

k=0

(A1)

The normalized alpha-centrality matriz is then given by:
C(a, 8,1)
Z (Cla, B, t))ij

4]

N(a, B,t) = (A2)

The normalized alpha-centrality vector is N;(83,a,t —
00) = eN(a, 8,t — 00) where e is a 1 X n unit vector and
n is the number of nodes in the network.

If A\ is an eigenvalue of A, then

1
Invertibility of (I — +A) would lead to the trivial solu-
tion of eigenvector x (z = 0). Hence for computation of

eigenvalues and eigenvectors, we require that no inverse
of (I — +A) should exist, i.e.

(A3)

1
Det(I — XA) =0. (A4)
Equation (A4) is called the characteristic equation, solv-
ing which gives the eigenvalues and eigenvectors of the
adjacency matrix A.
The adjacency matrix A can be written as:

A=XAX""=)"N\Y (A5)
i=1

where X is a matrix whose columns are the eigenvectors
of A, and A is a diagonal matrix whose diagonal elements
are the eigenvalues of A, A;; = )\;, arranged according to
the ordering of the eigenvectors in X. Without loss of
generality we assume that A\; > Ay > .-+ > \,. The
matrices Y; can be determined from the product

Y, =XZ, X! (A6)

where Z; is the selection matriz having zeros everywhere
except for element (Z;),, =1 [44].
Adjacency matrix A raised to kth power is given by

AF = XAPXTE =) Y, (A7)
=1

Using Equation (A7), Al reduces to

n t
Cla, B,1) = BAY > kMY,
i=1k=1

=BAY N =™ g,l,
i=1

_ at+1)\i_5+1)
v Y
P (1 —aN)




where p; = 0 if a|N| < 1, and p; = 1 if a |\ > 1.
For the equations A1l and A8 to hold non-trivially, o #
1|\, ¥i€ 1,2+ ,n

We characterize the series {N(
[0,1] as follows:

a,f,t = o0)} for a €

1.a x ﬁ: If o < ﬁ , Cla,B,t — o) (and
N(a, 8,t — o0) ) would be independent of «, since

C(a, 8,t = 00) =~ BA
A

Zij (A)ij

N(a, B,t — 00) & (A9)

2.a < ﬁ: The sequence of matrices {C(a, S3,t)}

converges to C(a, B) as t — oo if all the sequences
{(C(a, B,1)),;} for every fixed i and j converge to

(Cla, B));; [45). If o < 3,
to C(a, B).

C(a, B,t) converges

Ola 5,1 = 00) = FAY 2V, = BA(T — ad)
i=0 ¢

=C(a, B)
Cle, B)
Zij (C(avﬁ))ij

(A10)

N(a, B,t = o00) = (A11)

3. a > ﬁ and t — oo, BatA'T! dominates in the
Equation (AS8).
~ Bal A1
At+1

ZAt+l

Ca, B,t = )

N(a, B,t — o0) = (A12)

Theorem 1 The induced ordering of nodes due to nor-
malized alpha-centrality is equal to the induced ordering
of nodes due to alpha-centrality for o < 1/|\1].

Proof. Since centrality score due to alpha-centrality
is eC(a, B,t — o0) and that due to normalized alpha-
centrality is eN(a, 8, — 00), where e is a unit vector,
from equations A9 and All, the ordering of nodes pro-
duced by alpha-centrality (o < 1/|A1]) would be equal
to the ordering of nodes produced by normalized alpha-
centrality (a < 1/|\1]).

Theorem 2 The wvalue of normalized alpha-centrality
matriz remains the same Yo € (1/|\],1] N(a >
1/|)\1| 7ﬂvt - OO) :N/(Oé,ﬂ)).

Proof. As can be seen from equation A12 when o >
1/|A1| and ¢ — oo, ./\/(a > 1/|A1], B, = o0) reduces to

AtJrl/Z At+1

The remammg theorems hold under the condition that
|A1] is strictly greater than any other eigenvalue, which
is true in most real life cases studied.

a, B) and is independent of a.
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Theorem 3 lim,_,1 /5, Ni(«
limg 1, | Ni(, B8 = 00) =
1/l Bot 5 00) = cAVA /S,

,B,t — o0) exists and
= N/(a,8) = Ni(a >
(AY1),;-

Proof. Under the assumption that |A;| is strictly

greater than any eigenvalue, as o — 1/|A{|, Equa-
tion (A11) reduces to
_ B
Cla— 1/|AT], 8,t = o0) = AV, (A13)
1-— Ou\l

This is because all other eigenvectors shrink in impor-
tance as @ — 1/|A7| [6]. Therefore, as @ — 1/|A7]| , we
have

AYy

Z (AYl)ij

4,J

N(a = 1/|A\T|,8,t = o) ~ (A14)

Under the assumption that |A;| is strictly greater than
any other eigenvalue, Sa’ A} AY; dominates in the Equa-
tion (AS8), A12.

Cla = 1/|A{], 8, = o0)
Nl = 1/|]AF], B,t = o0) ~

~ Bal AT AY;
AY;

> (An),

2%

(A15)

Hence from equation A15, as a — 1/|\f|, we have

AY;
N(a = 1M ],B,t = 00) ¥ ————  (Al6)
Z (Ayl)ij
]
Since,
lim  MN(a,B,t - o0)=lim N(a,B,t— o)
a—1/|A7 | a—1/|Af]
AY;

B Zz] (Ayl)ij7

therefore, the limit limg_,q )z, N(a, B, — 00) exists
and

AYy
atit Nl Brt = 00) = =y
:M(aaﬁ)

Since N;(a, B,t — o) = eN(a,§,t 00), therefore,
limg_yq /| Nie, B, 8 — OO) = N/(a ﬂ) = Ni(a >
1/[\], Bt — 00) = eAY /37, 5 (AY1),;.

Theorem 4 For symmetric matrices, the induced order-
ing of nodes due to eigenvector centrality Cg is equivalent
to the induced ordering of nodes given by normalized cen-
trality N (o, B) = limq 1 /)5, | Ni(a, B, = 00) = Nj(a >
/Al B,t = 00) = eAV1 /37, (AY1)



Proof. For symmetric matrices

A=XAX""'=XAXT (A17)
Therefore equation A6 reducesto Y; = XZ; X7 = Xl-XZ-T,
where X is the column of X representing the eigenvector

corresponding to \;. Hence, for symmetric matrices

N (a, B) = Ni(a > 1/|\1], B, t — 00)
= iy, MileoBrt = o)
6AY1

B Zi,j (Ayl)ij

= c1eAX 1 XT = eoXT (A18)

11

where ¢ = = and ¢y = c1eAX;.

1
i, (AYl)ij

Since X{ corresponds to the eigenvector centrality vec-
tor Cg, hence for symmetric matrices, the induced order-
ing of nodes given by eigenvector centrality C'g is equiv-
alent to the induced ordering of nodes given by normal-
ized centrality N (v, 8) = limg_,q 1z, Ni(e, 8,1 — 00) =
Ni(a > 1/|\], B, t = o) = eAYl/Z (AYl)
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