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The principal eigenvalueλ of a network’s adjacency matrix often determines dynamics on the network (e.g., in
synchronization and spreading processes) and some of its structural properties (e.g., robustness against failure or
attack) and is therefore a good indicator for how “strongly”a network is connected. We study howλ is modified
by the addition of a module, or community, which has broad applications, ranging from those involving a single
modification (e.g., introduction of a drug into a biologicalprocess) to those involving repeated additions (e.g.,
power-grid and transit development). We describe how to optimally connect the module to the network to either
maximize or minimize the shift inλ, noting several applications of directing dynamics on networks.

I. INTRODUCTION

Spectral approaches for analysis of complex networks are
becoming increasingly important due to their ability to de-
scribe the effect of network structure on dynamical pro-
cesses. In particular, the principal eigenvalueλ of a network’s
weighted adjacency matrixA (Aij is nonzero if there exists a
link from nodei to nodej) is significant for dynamics on net-
works such as the synchronization of heterogeneous oscilla-
tors [1, 2], epidemic and information spreading [3], structural
robustness (percolation) [4], the stability of equilibriafor cer-
tain systems of network-coupled ordinary differential equa-
tions [5], the stability of gene expression in genetic networks
[6], and criticality in network-coupled excitable systems[7].

Given the importance ofλ in determining the outcome of so
many dynamical processes on networks, there has been much
interest in modifyingλ through structural perturbations. In
particular, the effect of removing nodej can be quantified by
its dynamical importance: Ij = −δλ/λ ≈ vjuj/v

Tu [8],
whereu (v) is the right (left) eigenvector corresponding to the
principal eigenvalueλ (i.e., Au = λu, vTA = λvT ), and
δλ is the decrease in the principal eigenvalue that would re-
sult from the removal of nodej. As an example application,
a node removal strategy targeting nodes with large dynamical
importance fragments a network more rapidly than targeting
nodes with large degree (number of links) [8]. Ref. [9] ex-
tended these results by finding perturbative expressions for the
change in eigenvalueδλ due to the removal of groups of nodes
as well as the addition or deletion of groups of links. Ref. [10]
considered a perturbative approach to study the spectrum of
networks with community structure.

In this study, we consider the effect on the largest eigen-
value of a network’s adjacency matrix from the addition of a
secondary network (referred to as the module or community).
As opposed to previous work [8–10], we explicitly consider
the effect of the module’s topology on the resulting eigenvalue
and use this information to discuss how one can make optimal
connections to either maximize or minimize the effect onλ.
There are many applications where smaller groups adhere to
a larger network in social and economical networks [11] (e.g.,
the merging of corporations or markets) and biological net-
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works (e.g., modifying a system of biochemical reactions with
a drug [12, 13] or the merging of ecosystems [14]). For ex-
ample, recent studies have shown that the effect on the largest
eigenvalue of the Jacobian matrix describing interactionsin
an ecological network due to the addition of a species may
be integral to the formation of ecological communities [15].
Moreover, our results offer new insight regarding the preva-
lence of subgraph motifs (recurrent subgraphs having a fre-
quency higher than expected). While motifs have been cited
as essential building blocks in biological networks [16], their
role is not fully understood. For example, in contrast to sev-
eral studies indicating that the global stability and robustness
of a system is strongly influenced by the structure of motifs
[17], our study suggests that “how” a motif is connected to
the remaining network may be as significant as its structure
(see Fig. 5).

This paper is organized as follows. In Sec. II we describe
the problem and introduce variables. In Sec. II A we present
perturbative approximations forδλ in terms of spectral prop-
erties ofA and the module to be added. In Sec. II B we test
these approximations on several real networks. In Sec. III we
discuss how our results can be used to optimize the connec-
tions between the original network and module. In Sec. IV
we discuss our results, citing several applications of how they
may be used to direct dynamics on networks. These results
have application from cases in which just a single merger
needs to be optimally designed to cases where a large num-
ber of small additions need to be optimized to quickly evolve
λ to a desired value.
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FIG. 1: (Color online) A module (described by matrixS) is con-
nected to the original network (described by matrixA) using directed
connections (described by the matricesX andY ).
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II. MODULE ADDITION

We consider the addition of a secondary network, or mod-
ule, to an existing network, as shown schematically in Fig. 1.
The original network of sizen is described by ann × n
weighted adjacency matrixA such that its entriesAij sat-
isfy Aij 6= 0 if there exists a link from nodei to nodej and
Aij = 0 otherwise. Another network of sizem (described by
am ×m adjacency matrixS) is to be connected to the orig-
inal network. We will refer to this secondary network as the
module. In what follows, we will sometimes refer to both the
original network and the module by their respective adjacency
matrices,A andS.

Assuming that the original eigenvalue problemsAu = λu
andvTA = λvT have been solved, the modified eigenvalue
problem after module addition may be formulated as

[

A X
Y T S

] [

u+∆U

∆L

]

= (λ+ δλ)

[

u+∆U

∆L

]

, (1)

where we use the following definitions: (i)δλ ≥ 0 denotes the
shift in the largest eigenvalue; (ii) matrixX (Y ) is sizen×m,
has positive entries, and describes all directed links fromA to
S (S to A); (iii) ∆U is a vector of lengthn which represents
the shift in eigenvectoru; and (iv)∆L is a vector of length
m which represents the new eigenvector components. For the
typical case in which no negative weights are allowed (i.e.,
Aij ≥ 0), the principal eigenvalues{λ, λ + δλ} and all en-
tries in{u, u+∆U ,∆L} are guaranteed to be nonnegative by
the Perron-Frobenius theorem for nonnegative matrices [18].
Although in this paper we only consider matrices with positive
entries so that the Perron-Frobenius theorem can be applied,
in general our analysis only requires that the eigenvalue with
largest magnitudeλ is real and well separated from the re-
maining eigenvalues. While this is typical for networks with
positive links [10], it is also observed for networks with neg-
ative links provided that they represent a small fraction ofthe
number of links (e.g., see Fig. 6 in [2]).

A. Effect of module addition

We restrict our analysis to cases where the effect of the
module addition is small, which will allow us to study its ef-
fect as a perturbation to the original eigenvalue problem. This
restriction is applicable for describing heavy-sided mergers
and applications for which a network is modified gradually,
such as the expansion of infrastructure. Considering the up-
per and lower blocks of Eq. (1) independently and after left-
multiplying the top block by the left principal eigenvectorvT

(i.e.,vTA = λvT ), we obtain

δλ =
vTX∆L

vT (u +∆U )

∆L = ((λ+ δλ)Im − S)
−1

Y T (u+∆U ),

whereIm is the identity matrix of sizem.
Assuming that the effect of the module addition is small,

we haveδλ ≪ λ, vT∆U ≪ vTu, andδλ ≪ |λ − λS |, where
λS is the largest eigenvalue of the module. To first order, we
find

δλ ≈
1

λvTu
vTXKSY Tu (2)

∆L ≈ λ−1KSY Tu, (3)

where we have definedKS ≡ (Im − S/λ)−1. These expres-
sions relate the change in the dominant eigenvalueδλ to the
topology of the added moduleS, the spectral properties of
the original networks (u, v, andλ), and the way in which
the module is coupled to the network by matricesX andY .
When the module contains few nodes, approximatingδλ by
inverting anm×m matrix is significantly more efficient and,
as we will see, offers more insight than solving the origi-
nal (m + n) × (m + n) eigenvalue problem. Usingv = u
andX = Y for undirected networks, Eq. (2) simplifies to
δλ ≈ λ−1(XTu)TKS(XTu).

If the connections between the module and original network
are made randomly, we can use Eq. (2) to estimate average
values ofδλ. Suppose that the entries of the matrixX are
independent random variables such thatXij = 1 with prob-
ability x/(nm) and0 otherwise, so that the expected number
of links from the original network to the added module isx.
Similarly, we assume that the entries ofY are independent
random variables which are1 with probabilityy/(nm) and0
otherwise. By averaging Eq. (2) and using the independence
of X andY , we find

〈δλ〉 =
ūv̄

λvTu

( x

m

)( y

m

)

∑

i,j

KS
ij , (4)

whereū = n−1
∑n

j=1 uj andv̄ = n−1
∑n

j=1 vj . Thus, in ad-
dition to properties dependent on the original network,〈δλ〉
is proportional to the product of the relative number of con-
nections to and from the module (xy/m2) and on the sum of
elements in the matrixKS. Moreover, for largeλ/λS we have
∑

ij K
S
ij ≈ m, the number of nodes inS. While this expres-

sion provides us with the average〈δλ〉 whenX andY are
chosen randomly, as discussed in Section III, strategically se-
lecting connection matrices (X ,Y ) (e.g., to maximizeδλ) can
lead to significant variations inδλ for a given module.

For the optimization objectives explored later in this text, as
well as situations in which computingKS is inconvenient, it
is useful to represent Eqs. (2) and (3) using a series expansion
for KS . For λS < λ, we haveKS = (Im − S/λ)−1 ≈
∑k

j=0(S/λ)
j . We thus define thek-th order approximations:

δλk =
1

λvTu

k−1
∑

j=0

λ−jvTXSjY Tu (5)

∆L
k =

k−1
∑

j=0

λ−(j+1)SjY Tu. (6)

Because the matrices (X ,Y ) are often sparse and the module
is often much smaller than the network, Eq. (5) is typically
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Network and reference N 〈d〉 λ λ2

Neural network of C. elegans [19]297 7.9 9.2 5.7
Network of political blogs [20] 1490 12.8 34.4 26.8

Yeast PPI network [21] 2361 5.6 12.1 9.4
Word association network [22] 5018 12.7 13.4 10.2

TABLE I: Test networks used and their characteristics: number of
nodesN ; mean degree〈d〉; largest eigenvalueλ; and second largest
eigenvalueλ2.

very computationally efficient. We note that for large enough
k, the error introduced by Eq. (2) dominates the error of series
truncation in Eqs. (5) and (6). No gain was found by using
k > 4 in the experiments that are to follow.

B. Numerical tests on real networks

We test our approximations by considering module addi-
tions to four networks: a neural network of C. elegans [19]; a
network of political blogs [20]; a network of protein-protein
interactions in the organism S. cerevisiae (i.e., brewers/bakers
yeast) [21]; and a network of associations between words [22].
Their characteristics are summarized in Table I. We begin
by examining the average effects for adding a module using
random connections. First, matrices were constructed by ran-
domly selecting10 entries inX andY to be1 and the rest
to be 0 (i.e., in the previous notation,x = y = 10). For
each realizationδλact, the actual eigenvalue shift [i.e. solv-
ing Eq. (1)], was compared to our approximations given by
Eqs. (2) and (5). In the top panel of Fig. 2, Eq. (4) (stars) is
shown to accurately predict the numerically-observed average
〈δλ〉 (solid line) for connecting the modules to the directed
neural network of C. elegans using104 realizations of (X ,Y ).
Average values for the relative errorǫ = (δλ − δλact)/δλact

are plotted in the bottom panel for both the neural network
(circles) and an network of political blogs (triangles) (see
TableI) for all 13 non-isomorphic, directed modules of size
3. (Results for the other networks were found to be similar
and are omitted for clarity.) Solid lines correspond to Eq. (2),
while dotted (dashed) lines correspond to Eq. (5) withk = 1
(k = 2).

It can be observed in Fig. 2 that〈δλ〉 changes substantially
for the different three-node modules (for all networks,〈δλ〉
typically increased∼ 20% from module 1 to module 13). Ob-
serve that the average error〈ǫ〉 of Eq. (5) when the module
structure is not used [k = 1 (dotted lines in lower plot)] is
strongly correlated with〈δλ〉 (upper plot). This is to be ex-
pected as the error from neglecting module structure should
be related to that structure’s ability to modifyλ. Note that for
the political blog network (triangles), usingk = 2 in Eq. (5)
is nearly as accurate as directly using Eq. (2). As previously
mentioned, for large enoughk the dominant source of error
comes from neglecting higher orders ofδλ/λ in the deriva-
tion of Eq. (2) [as opposed to series truncation in Eq. (5)].

The validity of our approximations for specific connections
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FIG. 2: (Color online)δλ and approximation errors,ǫ, were aver-
aged over104 realizations of connecting a three-node module to the
networks in Table I using 10 random links (see text). Eq. (4) (stars)
is shown to be accurate in the upper panel for typical resultsfor the
neural network of C. elegans. The average relative error〈ǫ〉 for the
neural network of C. elegans (circles) and a network of political blogs
(triangles) are given in the lower plot, where Eq. (2) (sold lines) and
Eq. (5) withk = 1 (dotted) andk = 2 (dashed) are shown.

is shown by considering the addition of two bidirectionally-
linked nodes (m = 2) to an undirected protein-protein inter-
action (PPI) network and a directed network of word asso-
ciations (see Table I). In order to illustrate the dependence
of δλ on the matricesX andY , we will consider two con-
nection strategies: connecting the module to nodes with ei-
ther (A) increasing nodal degrees or (B) increasing eigenvec-
tor entries. For strategy A, the nodes in the original network
are ordered so that the in-degrees monotonically increase:
din1 ≤ din2 ≤ · · · ≤ dinN . Then fork ∈ {1, 2, ..., N − 20},
we establish a directed link from nodes{k, k+1, . . . , k+20}
to both nodes in the module. The nodal out-degrees are then
ordered such thatdouti1

≤ douti2
≤ · · · ≤ doutiN

, and links are
made to nodes{ik, ik+1, . . . , ik+20} from both nodes in the
module. The casek = 0 corresponds to connecting the net-
work nodes with smallestdin to both module nodes, which
in turn connect to the nodes with smallestdout; whereas the
casek = N − 20 corresponds to connecting the nodes with
largestdin to both module nodes, both of which in turn con-
nect to the nodes with largestdout (shown schematically in
the cartoon in Fig. 3a). For strategy B, we now order the
nodes in the original network in order of increasing entries
of the left eigenvectorv so thatv1 ≤ v2 ≤ · · · ≤ vN .
As before, fork ∈ {1, 2, ..., N − 20}, we connect nodes
{k, k + 1, . . . , k + 20} in the network to both module nodes,
both of which in turn connect to nodes{ik, ik+1, . . . , ik+20},
where the indicesij now correspond to the ordering of the
right eigenvector entries such thatui1 ≤ ui2 ≤ · · · ≤ uiN .
For both strategies, the indices simplify for undirected net-
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FIG. 3: (Color online) Eigenvalue shiftδλ for connecting a two-node
module to (a) the word association network and (b) the PPI network.
Eq. (2) (crosses) agrees well with actual valuesδλact (solid line) for
strategy B. The x’s and circles show the same respective quantities
for strategy A. As indicated by the cartoon, increasingk corresponds
to connecting the module to nodes with increasing degrees (strategy
A) or eigenvector entries (strategy B).

works, for which we haveu = v, dout = din, andik = k.
In Fig. 3,δλ is plotted for strategies A and B as a function

of the parameterk for both (a) the directed word-association
network and (b) the undirected PPI network. For strategy
B, the crosses show the approximation given by Eq. (2) and
the solid line shows the numerically-calculated value fromdi-
rectly solving the eigenvalue problem Eq. (1). The x’s and
circles respectively show the same quantities for strategyA.
The first observation is that the approximation forδλ works
well, with only a small deviation as the perturbation becomes
large (not shown). One can observe that strategy B is supe-
rior for yielding either large or smallδλ for both networks.
However, the two strategies are similar for producing largeδλ
for the PPI network in Fig. 3b. This is expected when the
first-order approximations to the eigenvectors (ui ∝ douti and
vi ∝ dini [8]) are valid. The results of this experiment sug-
gest that it may be useful to devise connection strategies to
systematically maximize (or minimize)δλ.

III. OPTIMIZING CONNECTIONS

The issue of efficiently decreasingλ by removing nodes or
links from a network has been recently addressed [8], where

it was found that when removing a single node,λ is most de-
creased by removing the node with largest dynamical impor-
tance. We consider a closely related issue: given a moduleS
to be added to a networkA with given constraints (such as a
fixed number of connections), how should the links between
the network and module be chosen to either maximize or min-
imize δλ? Given some set of constraints and staying within
our previous assumptions, we will look for matrices (X ,Y )
that maximize (or minimize)δλ in Eq. (2). In the examples
that follow, it is helpful to assume that the node indices are
now ordered such that the left eigenvector entries are in de-
creasing order:v1 ≥ v2 ≥ · · · ≥ vn ≥ 0. In addition, the
entries of the right eigenvector are ordered using indices{li}
so thatul1 ≥ ul2 ≥ · · · ≥ uln ≥ 0. (If A is symmetric,u = v
and li = i.) We will present our optimization methodology
for two examples, yet the techniques presented are general and
have potential application beyond these particular constraints.

A. Example I: multiple links per module node

In the first example we assume that the number of connec-
tions from the original network to the module,x, and the num-
ber of connections from the module to the original network,y,
are fixed and less thann, the number of nodes in the original
network. It is also assumed that all links have strength one
(i.e.,Xij , Yij ∈ {0, 1}) and multiple links per module node
are allowed.

The right hand side of Eq. (2), which approxi-
mates the quantity to be maximized, is proportional to
∑

i,j(X
Tv)Ti K

S
ij(Y

Tu)j. This sum can be maximized by (i)
finding indicesa and b such thatKab = maxij{Kij} and
(ii) choosingX andY to make(XT v)Ta and(Y Tu)b as large
as possible. The scalar(XT v)Ta is maximized by placing the
x ones in thea-th column ofX and in positions1, 2, . . . , x
corresponding to the largest values ofv, while (Y Tu)Tb is
maximized by placing they ones in theb-column ofY and
in positionsl1, l2, . . . , ly corresponding to the largest values
of u. In this way,(XT v)Ti = δia

∑x

j=1 vj and(Y Tu)Ti =

δib
∑y

j=1 ulj , whereδij is Kronecker’s delta. The maximum
of Eq. (2) is then

δλmax ≈
Ks

ab

λvTu

y
∑

i=1

vi

x
∑

j=1

ulj (7)

This result impliesδλ may be maximized for the constraints
of example (I) by connecting thex nodes with the largest left
eigenvector entriesvi in the original network to a single node
in the module (having indexa), and by also originating all
links from the module to the original network from a single
module node (having indexb) to they nodes in the original
network with the largest entries of the right eigenvectoru.
For large values ofλ/λs, the maximum entry of matrixKs

is typically in its diagonal, yieldinga = b as shown in Fig.4.
For a heuristic interpretation of this result, let us assume

thatAij ∈ {0, 1} and denoteLo,p
i =

∑

j(A
p)ij andLt,p

i =
∑

j(A
p)ji as the number of paths of lengthp originating
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FIG. 4: (Color online) A typical optimal connection for example (I):
nodei (a point of contraction with large left eigenvector entryvi)
points to a node in the module, which in turn points to nodej (a
point of expansion with large right eigenvector entryuj).

from and terminating at nodei, respectively. ThusLp =
∑

ij(A
p)ij is the total number of paths of lengthp. These

quantities satisfy||Lo,p
i ||−1

2 Lo,p
i → ui, ||L

t,p
i ||−1

2 Lt,p
i → vi,

andLp+1/Lp → λ asp → ∞ [23]. Therefore connecting
nodes with largevi (which receive many paths) to nodes with
largeui (which distribute many paths) will have the largest
impact in howLp grows with p, which determinesλ. We
therefore define a nodei with largevi as apoint of contraction
and a nodej with largeuj as apoint of expansion. Therefore
our result for example (I) is that the effect of the whole mod-
ule is to act as a bridge from points of contraction to points of
expansion in the original network.

B. Example II: one link per node

In the second example we require that, in addition to a
fixed number of linksx andy with unity strength, no more
than one link can be added to a particular node in the module
or original network. Because undirected links are equivalent
to two links and violate our constraint, it is reasonable (al-
though not necessary) to assume the network and module are
directed. To treat this case, we maximize successive terms in
Eq. (5). The first term,vTXY Tu/λ, vanishes since any entry
of XY T is nonzero only if there is a module node that has
links both to and from the network, a situation which is not
allowed by our constraint. Therefore, we maximize the next
term,(XT v)TS(Y Tu)/λ2. As shown in Fig. 5a, let us denote
the set of nodes in the original network that point to the mod-
ule asNO (network outgoing), the set of nodes in the module
that are pointed to by the original network asSI (module in-
coming), the set of nodes in the module that point to the origi-
nal network asSO (module outgoing), and the set of nodes in
the original network that are pointed to by the module asNI
(network incoming). Because no node can have more than
one new link, there is a one-to-one correspondence between
nodes inNO and nodes inSI. The index of nodes inSI will
be represented asij , where nodej in NO points to nodeij in
SI. We have(XT v)Tij = vj if j ∈ NO andij ∈ SI, and0
otherwise. With a similar notation forSO andNI, we have
(Y Tu)mk

= uk if mk ∈ SO andk ∈ NI, and0 otherwise. It
follows that Eq. (5) yields

δλ2 =
1

λ2vTu

∑

j∈NO

vj
∑

k∈NI

Sijmk
uk.

This expression is maximized ifS contains a directed com-
plete bipartite graph for disjoint subsetsSI andSO such that
every node inSI points to every node inSO (see Fig. 5a).
Assuming that one can be found, we may setSijmk

= 1 and
look for setsNO andNI that solve

δλmax
2 =

(

1

λ2vTu

)

max
NO∩NI=∅





∑

j∈NO

vj
∑

k∈NI

uk



 . (8)

LetQ = {i}xi=1 ∩ {li}
y
i=1. If Q = ∅ then Eq. (8) is solved by

lettingNO = {i}xi=1 andNI = {li}
y
i=1, which yields

δλmax ≈
1

λ2vTu

x
∑

j=1

vj

y
∑

i=1

uli . (9)

As indicated in Fig. 5a, this corresponds to selecting nodesof
contraction forNO and nodes of expansion forNI.

The significance of link choices for maximizingδλ is
shown in Fig. 5b, where the module in Fig. 5a was added to

X
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FIG. 5: (Color online) (a) Typical optimal link selections for example
(II) for x = y = 2. Two points of contraction (NO) link to two
module nodes (SI) and the remaining two module nodes (SO) link
to two points of expansion (NI). The module also contains a directed
complete bipartite graph pointing fromSI to SO. (b) Under the
restrictions of example (II), the module in Fig. 5a was connected to
the neural network for C. elegans using various orientations. Solid
lines indicate lettingNI = {l1, l2} and eitherNO = {1, 2} (thick)
or NO = {2, 1} (thin). Symbols show Eq. (2). Approximating
points of contraction (expansion) by nodes with largedin (dout) also
offers a decent strategy (dashed).
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the neural network of C. elegans with constant node selections
for NI andNO but using several module orientations (de-
fined as a particular choice for the disjoint setsSO andSI in
the module, and shown in the horizontal axis of Fig. 5b). The
solid lines showδλ/λ found numerically usingNI = {l1, l2}
and eitherN0 = {1, 2} (thick) or N0 = {2, 1} (thin) (see
next paragraph for discussion). Symbols indicateδλ/λ found
using Eq. (2). One can observe that our maximization strategy
for example (II) (Fig. 5a) does in fact maximizeδλ (see orien-
tation 6). An important practical issue is that the eigenvectors
may be unknown and require estimation using local informa-
tion. One can observe that attempting to maximizeδλ using
the first-order approximationsvi ∝ dini andui ∝ douti [8] may
also be a good strategy (dashed lines). If necessary, a more re-
fined approximation for the eigenvectors may be sought (e.g.,
using second-order neighbors [9]).

It is important to note that we have so far neglected higher
order terms of Eq. (5) in addressing example (II), which
are responsible for the difference inδλ for the permutation
NO = {1, 2} or NO = {2, 1}. Attempting to maximize
the third term of the series in Eq. (5) (which is proportional
to vTXS2Y Tu) while using the nodes of contraction, 1 and
2 (with v1 ≈ 0.58 andv2 ≈ 0.23), we see that the more-
dominant point of contraction (node 1) should link to the mod-
ule node indicated by the violet arrow in Fig. 5a. (Note that
there is a path of length 2 stemming from this node to each
node inSO, whereas there are none for the other node inSI.)
Unlike permuting nodes inSI, permuting nodes inSO had
little effect for this network sinceul1 ≈ ul2 ≈ 0.23.

Up to this point we have assumedQ = ∅, whereQ is de-
fined just after Eq. (8); however this may not always be the
case. For example, as more links are made (i.e., for increas-
ing x, y), one would expect some nodes to have large values
for both vi andui. This may also occur for networks with
correlations betweendin anddout and, in fact, always occurs
for undirected networks whereli = i ∀ i. For these situa-
tions, nodes inQ must be allocated to eitherNO or NI and
additional nodes must be selected. Considering the limiting
case of an undirected network under the constraints of exam-
ple (II), maximization of the second-order term in Eq. (5) in-
dicates that we should chooseNO,NI ⊂ {i}x+y

i=1 . (Recall
that the first-order term is zero by our constraints.) The allo-
cation of these indices should then correspond to successively
maximizing the third-, fourth-, ...,kth-order terms until all de-
grees of freedom have been exhausted. While this strategy of
successive maximization does not guarantee the optimal con-
nections (which would require considering all possible links
betweenS andA), it is computationally efficient and ensures
a near-optimal solution.

IV. DISCUSSION

While we have presented an efficient strategy for maximiz-
ing δλ for the addition of a module under two examples of
constraints, our methodology is general and is thus applica-
ble for many constraints not discussed here. For example, the
problem of minimizingδλ under the constraints of example

(II) may be solved by minimizing successive terms of Eq. (5).
Heuristically, this corresponds to connecting nodes inA with
small values ofvn to the module, and then from the module
to nodes inA with small values ofun. The module should
also be oriented so as few links as possible point fromSI to
SO. We now discuss several applications of using module
addition(s) to direct dynamics on networks.

Increasingλ has many real-world applications. For exam-
ple, becauseλ relates to the ability of network-coupled os-
cillatory systems to synchronize [1, 2], one or several module
additions to increaseλ may be useful to promote synchroniza-
tion in, for example, a biological process or power grid. More-
over, epidemic thresholds of spreading processes on networks
are often dependent onλ−1 [3]. Increasingλ can increase
the connectivity of a network, improving flow and reducing
the epidemic threshold. This may be useful, for example, if
one wants to improve communication over a social network
or routing-system. The related problem of percolation on net-
works (where nodes and/or links are randomly removed) is
also related toλ−1 [4]. Increasingλ can increase a network’s
robustness against network degradation under failure, black-
out, jamming, or attack.

For other dynamical systems, it is beneficial to have a small
value for λ. For example, the instability of equilibria for
a system of network-coupled ODE’s (e.g., interactions in a
metabolic network) is related to the largest eigenvalue of a
weighted adjacency matrix defined in terms of the system’s Ja-
cobian [5] (i.e., ifλ < 1, then the equilibria are stable). When
the eigenvalue of the Jacobian matrix with largest magnitude
is real and well separated from the bulk of the spectrum, our
method is applicable. For example, besides choosing appro-
priate link weights to keepδλ small, choosing optimal con-
nections and module orientation (as shown in Sect. III) may
also aid in preserving the stability of equilibria for a system
undergoing modification. Such analysis may be relevant, for
example, in understanding the formation of ecological com-
munities for which the largest eigenvalue of the system’s Ja-
cobian has already been suggested to guide the network’s evo-
lution under species additions and subtractions [15].

Future applications of our results are also not limited to net-
work dynamics for which the dependency onλ is currently
well-established. For example, minimizingδλ for a mod-
ule addition may present an effective strategy for minimizing
global effects during a network modification. Possible appli-
cations may include aiding the in development of systems-
level drug design by indicating candidate drug targets thatare
less invasive (e.g., nodes with middle-valued degrees are typ-
ical [12]). The importance of developing mathematical ap-
proaches for this promising field are often mentioned [13].
Another open question is the implications of our results on
the prevalence of subgraph motifs, which have been proposed
to be the basic building blocks of biological networks [16].In
contrast to several studies showing that global dynamics ofa
system can depend on the structure of subgraph motifs [17],
our results suggest that “how” motifs are connected in the net-
work may be as important as their structure.

The work of D. T. and J. G. R. was supported by NSF Grant
No. DMS-0908221.
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