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The principal eigenvalug of a network’s adjacency matrix often determines dynamice network (e.g., in
synchronization and spreading processes) and some afitsistl properties (e.g., robustness against failure or
attack) and is therefore a good indicator for how “stronglyietwork is connected. We study hovis modified
by the addition of a module, or community, which has broadiagtions, ranging from those involving a single
modification (e.g., introduction of a drug into a biologigabcess) to those involving repeated additions (e.g.,
power-grid and transit development). We describe how toragty connect the module to the network to either
maximize or minimize the shift i\, noting several applications of directing dynamics on oeks.

I. INTRODUCTION works (e.g., modifying a system of biochemical reactiorthwi

a drug [12, 13] or the merging of ecosystems [14]). For ex-
gmple, recent studies have shown that the effect on thestarge
eigenvalue of the Jacobian matrix describing interactions
an ecological network due to the addition of a species may
be integral to the formation of ecological communities [15]
Moreover, our results offer new insight regarding the preva
lence of subgraph motifs (recurrent subgraphs having a fre-
Suency higher than expected). While motifs have been cited
as essential building blocks in biological networks [168it

role is not fully understood. For example, in contrast to-sev
eral studies indicating that the global stability and rdbass

of a system is strongly influenced by the structure of motifs
[17], our study suggests that “how” a motif is connected to

. . . - the remaining network may be as significant as its structure
Given the importance of in determining the outcome of so

many dynamical processes on networks, there has been mu§1ee _Flg' %) ) ) )
interest in modifying\ through structural perturbations. In  This paper is organized as follows. In Sec. Il we describe
particular, the effect of removing nogecan be quantified by ~the problem and introduce variables. In Sec. Il A we present
its dynamical importance: I; = —dA/A ~ vju;/vTu [8], perturbative approximations for\ in terms of spectral prop-

whereu (v) is the right (left) eigenvector corresponding to the €rties ofA and the module to be added. In Sec. IIB we test
principal eigenvalue\ (i.e., Au = \u, vTA = MW7), and these approximations on several real networks. In Sec.dll w

S\ is the decrease in the principal eigenvalue that would rediscuss how our results can be used to optimize the connec-
sult from the removal of nodg. As an example application, tlons_ between the 0r|g|n_a_l network and mod_ule. In Sec. IV
a node removal strategy targeting nodes with large dyndmicve discuss our results, citing several applications of Huy t
importance fragments a network more rapidly than targeting™ay be used to direct dynamics on networks. These results
nodes with large degree (number of links) [8]. Ref. [9] ex-have apphcatlor_l from cases in which just a single merger
tended these results by finding perturbative expressionisdo N€eds to be optimally designed to cases where a large num-
change in eigenvalug\ due to the removal of groups of nodes ber of smgll additions need to be optimized to quickly evolve
as well as the addition or deletion of groups of links. Re@][1 A to a desired value.

considered a perturbative approach to study the spectrum of
networks with community structure.

In this study, we consider the effect on the largest eigen-
value of a network’s adjacency matrix from the addition of a
secondary network (referred to as the module or community).
As opposed to previous work [8-10], we explicitly consider
the effect of the module’s topology on the resulting eigéuwa
and use this information to discuss how one can make optimal
connections to either maximize or minimize the effect'on
There are many applications where smaller groups adhere to
a larger network in social and economical networks [11].(e.g
the merging of corporations or markets) and biological nety g 1. (Color online) A module (described by matif is con-

nected to the original network (described by mattixusing directed
connections (described by the matricéandY’).

Spectral approaches for analysis of complex networks ar
becoming increasingly important due to their ability to de-
scribe the effect of network structure on dynamical pro-
cesses. In particular, the principal eigenvalug a network’s
weighted adjacency matriA (A4;; is nonzero if there exists a
link from node: to nodeyj) is significant for dynamics on net-
works such as the synchronization of heterogeneous oscill
tors [1, 2], epidemic and information spreading [3], stuuat
robustness (percolation) [4], the stability of equilibida cer-
tain systems of network-coupled ordinary differential &qu
tions [5], the stability of gene expression in genetic nekso
[6], and criticality in network-coupled excitable systefik
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II. MODULE ADDITION we haved\ < \, vTAY <« vTu, andd\ < |A — Ag|, where
Ag is the largest eigenvalue of the module. To first order, we

We consider the addition of a secondary network, or modfind
ule, to an existing network, as shown schematically in Fig. 1 1
The original network of size: is described by am x n o\ =~ MTUUTXKSYTU (2)
weighted adjacency matri¥ such that its entriesl;; sat- AL ~ A-1ESYT 3
isfy A;; # 0 if there exists a link from nodéto node; and = w, ®)
A;; = 0 otherwise. Another network of size (described by
am x m adjacency matriX) is to be connected to the orig-
inal network. We will refer to this secondary network as the
module. In what follows, we will sometimes refer to both the
original network and the module by their respective adjagen
matrices, A andsS.

Assuming that the original eigenvalue problers = \u
andv” A = ™ have been solved, the modified eigenvalue
problem after module addition may be formulated as

where we have definel® = (I,,, — S/\)~!. These expres-
sions relate the change in the dominant eigenvalu& the
topology of the added modulg, the spectral properties of
the original networks«, v, and X), and the way in which
the module is coupled to the network by matricésandY'.
When the module contains few nodes, approximatindy
inverting anm x m matrix is significantly more efficient and,
as we will see, offers more insight than solving the origi-
nal (m + n) x (m + n) eigenvalue problem. Using = u

U U and X = Y for undirected networks, Eq. (2) simplifies to

[;‘T ﬂ {“ZLA ] N [“ZLA } L @) oA~ AL (XTu)TKS(XTw).

If the connections between the module and original network
where we use the following definitions: @i\ > 0 denotesthe are made randomly, we can use Eq. (2) to estimate average
shift in the largest eigenvalue; (i) matriX (Y) is sizen x m, values ofd\. Suppose that the entries of the matfixare
has positive entries, and describes all directed links frotn~ independent random variables such thgf = 1 with prob-

S (S to A); (i) AV is a vector of lengtm which represents  ability z-/(nm) and0 otherwise, so that the expected number

the shift in eigenvecton; and (iv) A" is a vector of length  of links from the original network to the added moduleris

m which represents the new eigenvector components. For th@imilarly, we assume that the entries Bfare independent

typical case in which no negative weights are allowed (i.e.fandom variables which adewith probabilityy/(nm) and0

A;; > 0), the principal eigenvalue§\, A + A} and all en-  otherwise. By averaging Eq. (2) and using the independence

tries in{u,u+ AY, AL} are guaranteed to be nonnegative byof X andY’, we find

the Perron-Frobenius theorem for nonnegative matricels [18 -

Although in this paper we only consider matrices with pesiti (5)) = u; (E) (ﬁ) STKS. (4)

entries so that the Perron-Frobenius theorem can be applied Avtu Am/ Am/ 4=

in general our analysis only requires that the eigenvaltle wi

largest magnitude\ is real and well separated from the re- whereu = n~! Z?Zl uj ando = n~! Z;;l v;. Thus, in ad-

maining eigenvalues. While this is typical for networkstwit dition to properties dependent on the original netwdsk)

positive links [10], it is also observed for networks withgre  is proportional to the product of the relative number of con-

ative links provided that they represent a small fractiothef  nections to and from the modulesy(/m?) and on the sum of

number of links (e.g., see Fig. 6 in [2]). elements in the matrix . Moreover, for large\/\s we have
>; K75 =~ m, the number of nodes ifi. While this expres-
sion provides us with the averagé\) when X andY are

A. Effect of moduleaddition chosen randomly, as discussed in Section Il strategisal
lecting connection matricesX(,Y)) (e.g., to maximizé\) can
We restrict our analysis to cases where the effect of thdéead to significant variations i\ for a given module.

module addition is small, which will allow us to study its ef-  For the optimization objectives explored later in this texst
fect as a perturbation to the original eigenvalue problems T  e|| as situations in which computing is inconvenient, it
restriction is applicable for describing heavy-sided neesg s yseful to represent Egs. (2) and (3) using a series expansi
and applications for which a network is modified gradually,for xS, For \g < \, we haveKs = (I, — S/N)7! ~
such as the expansion of infrastructure. Considering the up—« j . _ I
per and lower blocks of Eq. (1) independently and after left- FO(S//\) + We thus define the-th order approximations:

multiplying the top block by the left principal eigenvector

k—1

(i.e.,vT A = XoT), we obtain _ 1 i, T x §iyT
M = Z)\ v XSy Tu (5)
UTXAL j=0
5)\ = W k—1
vl (u+ AY) X AF = Z/\*(jJrl)Siju' (6)
AL = ((/\+5/\)Im —S)i YT(U+AU), j=0
wherel,, is the identity matrix of sizen. Because the matriceX(Y") are often sparse and the module

Assuming that the effect of the module addition is small,is often much smaller than the network, Eq. (5) is typically



Network and reference N [{@)] N | X
Neural network of C. elegans [19297 | 7.9 | 9.2 | 5.7
Network of political blogs [20] {1490{12.8|34.4|26.8
Yeast PPI network [21] 2361| 5.6 |12.1]1 9.4
Word association network [22] 5018(12.7[13.4{10.2

0.02

TABLE [: Test networks used and their characteristics: nerddf
nodesN; mean degreéd); largest eigenvalug; and second largest
eigenvalue\,.

very computationally efficient. We note that for large enloug
k, the error introduced by Eq. (2) dominates the error of serie
truncation in Egs. (5) and (6). No gain was found by using -3
k > 4 in the experiments that are to follow. 1
/N
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B. Numerical testson real networks

FIG. 2: (Color online)dA and approximation errors, were aver-

We test our approximations by considering module add'aged over 0* realizations of connecting a three-node module to the

tions to four ne.t.works' a neural network of C. elegans [19]' anetworks in Table | using 10 random links (see text). Eq. $4ar6)
_network_ of F’_Ol't'cal blog§ [20]; & ”et‘_"’Qrk (_)f Protein-prate g shown to be accurate in the upper panel for typical resoitthe
interactions in the organism S. cerevisiae (i.e., brewek®rs  neyral network of C. elegans. The average relative dgofor the
yeast) [21]; and a network of associations between words [22 neural network of C. elegans (circles) and a network of jpaliblogs
Their characteristics are summarized in Table I. We begirtriangles) are given in the lower plot, where Eq. (2) (sahé$) and
by examining the average effects for adding a module usingqg. (5) withk = 1 (dotted) andc = 2 (dashed) are shown.
random connections. First, matrices were constructedtpy ra

domly selectingl0 entries inX andY to bel and the rest

to be0 (i.e., in the previous notation; = y = 10). For s shown by considering the addition of two bidirectionally
each realizatiod A3 the actual eigenvalue shift [i.e. solv- Jinked nodes# — 2) to an undirected protein-protein inter-
ing Eqg. (1)], was compared to our approximations given byaction (PPI) network and a directed network of word asso-
Egs. (2) and (5). In the top panel of Fig. 2, Eq. (4) (stars) isciations (see Table 1). In order to illustrate the dependenc
shown to accurately predict the numerically-observedayer of 5\ on the matrices\ andY’, we will consider two con-
(6A) (solid line) for connecting the modules to the directednection strategies: connecting the module to nodes with ei-
neural network of C. elegans usig* realizations of §,Y).  ther (A) increasing nodal degrees or (B) increasing eigenve
Average values for the relative error= (51 — 6X8%Y /6X3Ct  tor entries. For strategy A, the nodes in the original nekwor
are plotted in the bottom panel for both the neural networkare ordered so that the in-degrees monotonically increase:
(circles) and an network of political blogs (triangles) €se di" < di* < --- < d%. Then fork € {1,2,..., N — 20},
Tablel) for all 13 non-isomorphic, directed modules of sizewe establish a directed link from nodfs, k+1, ..., k+20}
3. (Results for the other networks were found to be similarto both nodes in the module. The nodal out-degrees are then
and are omitted for clarity.) Solid lines correspond to B}, ( ordered such thafy** < d9** < ... < d?"*, and links are
while dotted (dashed) lines correspond to Eq. (5) wkits 1 made to node$iy, ixi1,...,%ik+20} from both nodes in the
(k=2). module. The casé = 0 corresponds to connecting the net-

It can be observed in Fig. 2 that\) changes substantially work nodes with smallesf’™™ to both module nodes, which
for the different three-node modules (for all networks)) in turn connect to the nodes with smallest*; whereas the
typically increased- 20% from module 1 to module 13). Ob- casek = N — 20 corresponds to connecting the nodes with
serve that the average err@) of Eg. (5) when the module largestd’™ to both module nodes, both of which in turn con-
structure is not usedc[= 1 (dotted lines in lower plot)] is nect to the nodes with largegt“’ (shown schematically in
strongly correlated witdA) (upper plot). This is to be ex- the cartoon in Fig. 3a). For strategy B, we now order the
pected as the error from neglecting module structure shouldodes in the original network in order of increasing entries
be related to that structure’s ability to modify Note that for  of the left eigenvectow so thatv; < vy < -+ < wy.
the political blog network (triangles), usiig= 2 in Eq. (5)  As before, fork € {1,2,.., N — 20}, we connect nodes
is nearly as accurate as directly using Eq. (2). As previousl{k,k+ 1,...,k + 20} in the network to both module nodes,
mentioned, for large enoughthe dominant source of error both of which in turn connect to nodés;, ix+1, . - -, %k+20},
comes from neglecting higher orders®f/\ in the deriva- where the indices; now correspond to the ordering of the
tion of Eq. (2) [as opposed to series truncation in Eq. (5)].  right eigenvector entries such that, < u;, < -+ < u;y.

The validity of our approximations for specific connectionsFor both strategies, the indices simplify for undirected+ ne
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Word association network it was found that when removing a single nodés most de-

; creased by removing the node with largest dynamical impor-
tance. We consider a closely related issue: given a matiule
to be added to a network with given constraints (such as a
fixed number of connections), how should the links between
the network and module be chosen to either maximize or min-
imize 6\? Given some set of constraints and staying within
our previous assumptions, we will look for matrices,t")
that maximize (or minimizey \ in Eq. (2). In the examples
that follow, it is helpful to assume that the node indices are
now ordered such that the left eigenvector entries are in de-
creasing ordery; > vy > --- > v, > 0. In addition, the
PPI network entries of the right eigenvector are ordered using ind{é¢gs

S/

0 2500 5000

10 sothatu;, > w;, > -+ > w, > 0. (If Aissymmetricu = v
b andl;, = i.) We will present our optimization methodology
for two examples, yet the techniques presented are gemetral a

~ 107 have potential application beyond these particular caigs.
= =S OA, strategy B
- % +  Eq.(2), strategy B

107 x O\, strategy A ] A. Examplel: multiplelinks per module node

Eq. (2), strategy A
0 1200 2400 In the first example we assume that the number of connec-
k tions from the original network to the module,and the num-

ber of connections from the module to the original netwgrk,
are fixed and less thamn the number of nodes in the original
FIG. 3: (Color online) Eigenvalue shift\ for connecting a two-node network. It is also assumed that all links have strength one
module to (a) the word association network and Sb) the PRVorét (i.e., Xi;, Y € {0, 1}) and multiple links per module node
Eq. (2) (crosses) agrees well with actual valia&©(solid line) for  are allowed.
strategy B. The x's and circles show the same respectivetigjean The right hand side of Eq. (2), which approxi-
for strategy A. As indicated by the cartoon, increasingprresponds mates the quantity to be maximized, is proportional to

to connecting the module to nodes with increasing degreegdgy . -(XT’U)TKS-(YTU)J‘ This sum can be maximized by (i)
(2%] K3 k¥} "

A) or eigenvector entries (strategy B). I
) g ( v B) finding indicese andb such thatk,, = max;;{K;;} and

(ii) choosingX andY to make(X 7 v)I and(Y T u), as large
as possible. The scaléX 7v)I is maximized by placing the

works, for which we have, = v, d°*! = d, andij, = k. _ : -
N tk 2 ones in thex-th column of X and in positionsl, 2, ..., x

In Fig. 3,0\ is plotted for strategies A and B as a function . . PN
of the parametek for both (a) the directed word-association corrgspondlng to the largest val_ues wfwhile (Y u), is
network and (b) the undirected PPl network. For strategymax'm'.zed by placing thg ones in .theb-column ofY and
B, the crosses show the approximation given by Eq. (2) and! posmonsll, la, ... ’%y (:Torrespondlmng to the Iar%estTvaIues
the solid line shows the numerically-calculated value fidim of u. In this way, (X ?)i = ia 2y vy @A (Y u)i_ -
rectly solving the eigenvalue problem Eq. (1). The x’s anddib 2_;j—1 u,, Whered;; is Kronecker's delta. The maximum
circles respectively show the same quantities for straegy ©f EQ. (2) is then
The first observation is that the approximation #or works Y .
well, with only a small deviation as the perturbation beceme SATAT K5, " Z w @)
large (not shown). One can observe that strategy B is supe- T p ! — ’
rior for yielding either large or smaliA for both networks.

However, the two strategies are similar for producing l@ye  This result impliesyA may be maximized for the constraints
for the PPI network in Fig. 3b. This is expected when thegf example (1) by connecting thenodes with the largest left
first-order approximations to the eigenvectars€ d** and  eigenvector entries; in the original network to a single node
v; o d;" [8]) are valid. The results of this experiment sug- in the module (having index), and by also originating all
gest that it may be useful to devise connection strategies tnks from the module to the original network from a single
systematically maximize (or minimizé). module node (having indel) to they nodes in the original
network with the largest entries of the right eigenveator
For large values ol /), the maximum entry of matrix®
[11. OPTIMIZING CONNECTIONS is typically in its diagonal, yielding = b as shown in Fig.4.
For a heuristic interpretation of this result, let us assume

The issue of efficiently decreasingby removing nodes or that4;; € {0,1} and denotel;"” = 3 (AP),; andL;” =
links from a network has been recently addressed [8], wher_,(A?);; as the number of paths of lenghoriginating
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¢ T" T This expression is maximized § contains a directed com-
\ }/ / plete bipartite graph for disjoint subsefg and SO such that
/4 y\ /' \ every node inSI points to every node IO (see Fig. 5a).
¢ i Assuming that one can be found, we may $gt,,, = 1 and
look for setsN O and NI that solve
FIG. 4: (Color online) A typical optimal connection for expta (1): ma 1
node: (a point of contraction with large left eigenvector entry;) oA ~ ety Norg%/)fr:@ Z Uj Z Uk

points to a node in the module, which in turn points to ngd@ JENO keNI
point of expansion with large right eigenvector entry;).
Let@Q = {i}¥_, Nn{l;}?_,. If @ = 0 then Eq. (8) is solved by

letting NO = {i}*_, andNI = {l;}Y_,, which yields
from and terminating at nodg respectively. Thud., = ) . Y
> i (/_l’_’)ij is T[he to(')[f'zll rllimfer of pathst?f Ingtjin These SATAT S Z”ﬂ' Zul (9)
quantities satisfy|L;"”||5 " L? — w,, ||L77]3 LY — v, vt 4
andL,+1/L, — X asp — oo [23]. Therefore connecting
nodes with largey; (which receive many paths) to nodes with As indicated in Fig. 5a, this corresponds to selecting nofles
large u; (which distribute many paths) will have the largest contraction forNO and nodes of expansion fof1.
impact in howLZ, grows withp, which determines\. We The significance of link choices for maximizing\ is
therefore define a nodewith largev; as apoint of contraction  shown in Fig. 5b, where the module in Fig. 5a was added to
and a nodg with largew; as apoint of expansion. Therefore
our result for example (1) is that the effect of the whole mod-
ule is to act as a bridge from points of contraction to poiriits o
expansion in the original network.

a

B. Examplell: onelink per node

In the second example we require that, in addition to a
fixed number of linkst andy with unity strength, no more
than one link can be added to a particular node in the module
or original network. Because undirected links are equivale
to two links and violate our constraint, it is reasonable (al
though not necessary) to assume the network and module ab (002
directed. To treat this case, we maximize successive terms i
Eq. (5). The first termy” XY Tu/\, vanishes since any entry
of XYT is nonzero only if there is a module node that has
links both to and from the network, a situation which is not
allowed by our constraint. Therefore, we maximize the next
term,(XTv)TS(YTwu)/A\2. As shown in Fig. 5a, let us denote :
the set of nodes in the original network that point to the mod-
ule asN O (network outgoing), the set of nodes in the module
that are pointed to by the original network.é$ (module in-
coming), the set of nodes in the module that point to the origi ST m 'ﬁ m EZI @ %
nal network assSO (module outgoing), and the set of nodesin SO {
the original network that are pointed to by the moduleVas
(network incoming). Because no node can have more than
one new link, there is a one-to-one correspondence betwedfC: >: (Color online) (a) Typical optimal link selectiorsrfexample

nodes inVO and nodes ir§ 1. The index of nodes is 7 will (D for = =y = 2. Two points of contraction{0) link to two
be represented ds, where nodg in NO points to node; in module nodes{I) and the remaining two module nod&s®) link

ST, We have(XT ) — v, if j € NO andi; € SI, andO to two points of expansion\( ). The module also contains a directed

complete bipartite graph pointing froi to SO. (b) Under the
otherwise. With a similar notation f#O and NI, we have restrictions of example (11), the module in Fig. 5a was carnee to

(YT ), = uy if my, € SO andk € NI, and0 otherwise. It the neural network for C. elegans using various orientatiddolid

==

NO={12}

NO={2.1}

follows that Eq. (5) yields lines indicate lettingVl = {l,l»} and eithetNO = {1, 2} (thick)
1 or NO = {2,1} (thin). Symbols show Eq. (2). Approximating
H 1 H 1 A out
Shy — - Z v Z Sijmkuk- points of contraction (expansion) by nodes with ladgfe (d°**) also

5o s offers a decent strategy (dashed).
J



the neural network of C. elegans with constant node selestio (I1) may be solved by minimizing successive terms of Eq. (5).
for NI and NO but using several module orientations (de- Heuristically, this corresponds to connecting noded iwith
fined as a particular choice for the disjoint s8t3 andS/ in  small values of,, to the module, and then from the module
the module, and shown in the horizontal axis of Fig. 5b). Theo nodes inA with small values ofu,,. The module should
solid lines show A/ found numerically usingvI = {l;, 12} also be oriented so as few links as possible point fiHhto
and eitherN0 = {1,2} (thick) or NO = {2,1} (thin) (see SO. We now discuss several applications of using module
next paragraph for discussion). Symbols indiegtg\ found  addition(s) to direct dynamics on networks.
using Eqg. (2). One can observe that our maximization styateg Increasing\ has many real-world applications. For exam-
for example (1) (Fig. 5a) does in fact maximida (see orien-  ple, because\ relates to the ability of network-coupled os-
tation 6). An important practical issue is that the eigefwec  cillatory systems to synchronize [1, 2], one or several ni@du
may be unknown and require estimation using local informaadditions to increask® may be useful to promote synchroniza-
tion. One can observe that attempting to maximizeusing  tion in, for example, a biological process or power grid. Btor
the first-order approximations oc d* andu; oc d9* [8]may  over, epidemic thresholds of spreading processes on rietwor
also be a good strategy (dashed lines). If necessary, a more rare often dependent oki—! [3]. Increasing)\ can increase
fined approximation for the eigenvectors may be sought,(e.gthe connectivity of a network, improving flow and reducing
using second-order neighbors [9]). the epidemic threshold. This may be useful, for example, if
It is important to note that we have so far neglected highebne wants to improve communication over a social network
order terms of Eg. (5) in addressing example (II), whichor routing-system. The related problem of percolation dn ne
are responsible for the difference i\ for the permutation works (where nodes and/or links are randomly removed) is
NO = {1,2} or NO = {2,1}. Attempting to maximize also related to\~! [4]. Increasing\ can increase a network’s
the third term of the series in Eq. (5) (which is proportionalrobustness against network degradation under failurekbla
to v X S2Y ") while using the nodes of contraction, 1 and out, jamming, or attack.
2 (with v; ~ 0.58 andvy, ~ 0.23), we see that the more-  For other dynamical systems, it is beneficial to have a small
dominant point of contraction (node 1) should link to the mod value for \. For example, the instability of equilibria for
ule node indicated by the violet arrow in Fig. 5a. (Note thata system of network-coupled ODE’s (e.g., interactions in a
there is a path of length 2 stemming from this node to eaclnetabolic network) is related to the largest eigenvalue of a
node inSO, whereas there are none for the other nodgfi)  weighted adjacency matrix defined in terms of the system’s Ja
Unlike permuting nodes i¥/, permuting nodes irfO had  cobian [5] (i.e., ifA < 1, then the equilibria are stable). When
little effect for this network since;, ~ wu;, ~ 0.23. the eigenvalue of the Jacobian matrix with largest mageitud
Up to this point we have assumétl = (), whereQ is de- s real and well separated from the bulk of the spectrum, our
fined just after Eq. (8); however this may not always be themethod is applicable. For example, besides choosing appro-
case. For example, as more links are made (i.e., for increagriate link weights to keep\ small, choosing optimal con-
ing z,y), one would expect some nodes to have large valuegsections and module orientation (as shown in Sect. Ill) may
for bothv; andu;. This may also occur for networks with also aid in preserving the stability of equilibria for a syrst
correlations betweed™ andd°“* and, in fact, always occurs undergoing modification. Such analysis may be relevant, for
for undirected networks wherlg = i V i. For these situa- example, in understanding the formation of ecological com-
tions, nodes ir) must be allocated to eitheé¥O or NI and  munities for which the largest eigenvalue of the system's Ja
additional nodes must be selected. Considering the lignitin cobian has already been suggested to guide the network’s evo
case of an undirected network under the constraints of exanation under species additions and subtractions [15].
ple (I1), maximization of the second-order term in Eq. (5) in  Future applications of our results are also not limited te ne
dicates that we should choo$eO, NT c {i}7’. (Recall work dynamics for which the dependency aris currently
that the first-order term is zero by our constraints.) The-all well-established. For example, minimizig\ for a mod-
cation of these indices should then correspond to suc@gsiv ule addition may present an effective strategy for minimggzi
maximizing the third-, fourth-, .. kth-order terms until all de-  global effects during a network modification. Possible appl
grees of freedom have been exhausted. While this strategy ehtions may include aiding the in development of systems-
successive maximization does not guarantee the optimal coevel drug design by indicating candidate drug targetsahat
nections (which would require considering all possiblddin |ess invasive (e.g., nodes with middle-valued degreesyare t
betweenS and A), it is computationally efficient and ensures ical [12]). The importance of developing mathematical ap-
a near-optimal solution. proaches for this promising field are often mentioned [13].
Another open question is the implications of our results on
the prevalence of subgraph motifs, which have been proposed
IV. DISCUSSION to be the basic building blocks of biological networks [16.
contrast to several studies showing that global dynamies of
While we have presented an efficient strategy for maximiz-system can depend on the structure of subgraph motifs [17],
ing 4\ for the addition of a module under two examples of our results suggest that “how” motifs are connected in tlte ne
constraints, our methodology is general and is thus applicavork may be as important as their structure.
ble for many constraints not discussed here. For exampe, th The work of D. T. and J. G. R. was supported by NSF Grant
problem of minimizingd A under the constraints of example No. DMS-0908221.
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