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The Parker model for coronal heating is investigated through a high resolution simulation. An
inertial range is resolved where fluctuating magnetic energy E

M
(k⊥) ∝ k−2.7

⊥
exceeds kinetic energy

E
K

(k⊥) ∝ k−0.6

⊥
. Increments scale as δb

ℓ
≃ ℓ−0.85, δu

ℓ
≃ ℓ+0.2 with velocity increasing at small

scales, indicating that magnetic reconnection plays a prime role in this turbulent system. We show
that spectral energy transport is akin to standard MHD turbulence even for a system of reconnecting
current sheets sustained by the boundary. In this new MHD turbulent cascade kinetic energy flows
are negligible while cross-field flows are enhanced and through a series of “reflections” between the
two fields cascade more than half of the total spectral energy flow.

PACS numbers: 47.27.Ak, 47.27.ek, 96.60.pf, 96.60Q-

The heating of solar and stellar atmospheres is an out-
standing astrophysical problem [1]. The solar corona
has temperatures (& 106 K) up to 3 orders of magni-
tude higher than the underlying photospheric and chro-
mospheric layers, sustained by an energy flux of about
107 erg cm−2 s−1 [2].

Most of the coronal X-ray and (E)UV radiation is emit-
ted in loops, bright structures threaded by a strong axial
magnetic field connecting photospheric regions of oppo-
site polarity. In the scenario proposed by Parker [3] mag-
netic field-lines are braided by convective photospheric
motions that shuffle their footpoints leading to the “spon-
taneous” development of small-scale current sheets where
the plasma is heated.

It has long been proposed [4] that this scenario can be
regarded as an MHD turbulence problem as photospheric
motions stir the magnetic field-lines’ footpoints and these
motions are transmitted inside by the field-line tension
stirring in this way (anisotropically) the whole plasma
akin to a body force. Simulations have indeed revealed
that the system exhibits many properties of an authentic
MHD turbulent system, including the formation of field-
aligned current sheets, power-law spectra for the energies,
and power-law distributions for energy release, peak dis-
sipation and duration of dissipative events [5, 6]. Fur-
thermore in recent papers [6] we have developed a phe-
nomenological scaling model for this turbulent cascade
where at the large scales nonlinearity is weak (i.e., de-
pleted similarly to [7]) and at the small scales strong [8].

However this new, line-tied, turbulent regime is quite
distinct from the classical MHD turbulence system where
energies are in approximate equipartition, as here fluc-
tuating magnetic energy dominates over kinetic energy
throughout the inertial range.

Certainly this system can also be seen as a set of recon-
necting current sheets sustained by the boundaries and a
large fraction of the kinetic energy might be contributed
by the magnetic field through reconnection itself rather
than from cascading large-scale kinetic energy.

It is therefore crucial to understand if turbulence is an

appropriate framework to model this problem, namely,
can a set of reconnecting current sheets be described
in terms of turbulence? The influence of turbulence on
magnetic reconnection is an active research topic (e.g.,
see [9] for a model), but are energy fluxes in a system
where magnetic reconnection plays a prime role similar
to those of MHD turbulence? We investigate here for
the first time how energy flows between different scales
and fields in Parker’s model in order to determine how
different the spectral fluxes are and what properties they
share with the standard MHD turbulence case [10–12].

A coronal loop is modeled in Cartesian geometry as a
plasma with uniform density ρ0 embedded in a strong ax-
ial magnetic field B0 directed along z (see [6] for a more
detailed description of the model and numerical code).
Magnetic field-lines are line-tied at the top and bottom
plates where a large-scale velocity field is imposed. In
the perpendicular direction (x-y) periodic boundary con-
ditions are used. The dynamics are modeled with the
(non-dimensional) equations of reduced magnetohydro-
dynamics (RMHD) [13]:
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with ∇
⊥
· u = ∇

⊥
· b = 0. Here gradient and laplacian

operators have only orthogonal (x-y) components as do
velocity and magnetic field vectors (uz=bz=0), while P is
the total (plasma plus magnetic) pressure. c

A
is the ratio

between the Alfvén velocity of the axial field (B0/
√

4πρ0)
and the rms of photospheric velocity (1 km s−1) and R is
the Reynolds number. In the simulation presented here
c
A

= 400, R = 2,000 and the domain spans 0 ≤ x, y ≤ ℓ,
0 ≤ z ≤ L, with ℓ = 1, L = 10 and 10242 × 512
grid points. Given the orthogonal Fourier transform
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FIG. 1. Magnetic (E
M

) and kinetic (E
K

) energy spectra as
a function of the orthogonal wavenumber n

⊥
(k

⊥
= 2πn

⊥
).

Inset : increments, velocity increasing at high wavenumbers.

i.e., it has only components in the “shell” K with
wavenumbers K-1< |n

⊥
|≤K. The boundary photospheric

velocities at z=0, L are given random amplitudes for all
wavenumbers 3≤n

⊥
≤4 and then normalized so that the

rms value is 1/2 [see 6]. As a result the forcing boundary
velocity has only components in shells 3 and 4.

Since fields filtered in different shells are orthogonal,
and indicating the volume integrals with 〈...〉, the equa-
tions for kinetic and magnetic energies E(K)

u
= 〈u2

K
/2 〉,

E(K)
b

= 〈b2
K

/2 〉 in shell K follow from eqs. (1):
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These are obtained as for the 3-periodic case [11] except
for terms ∝ ∂z in (1) that contribute the Poynting flux
S(K) (the work done by photospheric motions on mag-
netic field-lines’ footpoints) entering the system at the
boundaries in shell K:

S(K) = c
A

(∫

z=L

da u
K
· b−

∫

z=0

da u
K
· b

)
. (5)

This does not cancel out along the non-periodic axial
direction z. As photospheric velocities have only compo-
nents in shells 3 and 4 S(K) vanishes outside these 2 shells
(the injection scale). In similar fashion the dissipative

terms D(K)
u

= 〈|∇u
K
|2〉, D(K)

b
= 〈|∇b

K
|2〉 contribute

only at dissipative scales with large K.
Between the injection and dissipative scales only the

following terms contribute:
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FIG. 2. (color online) Spectral fluxes (6), (9), (7) and (10)
showing incoming and outgoing energy transfers between dif-
ferent shells and fields to/from shell Q=20.
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These represent energy fluxes between fields in different
shells. In fact given two fields v and w (either veloc-
ity or magnetic fields) the relation T (Q,K)

vw
= −T (K,Q)

wv

holds for the flux between shells Q and K, and together
with equations (3)-(4) define the fluxes [11]. For exam-
ple, T (Q,K)

ub
represents conversion of kinetic energy in

shell Q to magnetic energy in shell K.

A(K)
ub

is the flux due to the linear terms ∝ ∂z in eqs. (1).
It does not transfer energy between different shells, but
only in the same shell between fields u and b. Notice
that it has been symmetrized so that A(K)

ub
= −A(K)

bu
, as

can be verified integrating by parts.

Eqs. (3)-(4) show that at the injection scale (shells 3
and 4) the photospheric forcing supplies energy at the

same rate to both kinetic and magnetic energies, i.e., the
forcing injects Alfvén waves unlike standard forced MHD
turbulence where a mechanical force injects only kinetic
energy.

The simulation is started with vanishing orthogonal
velocity and magnetic fields (u = b = 0) and a uni-
form axial magnetic field B = B0 êz inside the computa-
tional box. As shown in our previous works [6] the con-
stant forcing velocity at the boundary advects magnetic
field-lines generating a perpendicular component b. This
initially grows linearly in time before saturating nonlin-
earities develop, and kinetic and magnetic energies then
fluctuate around a mean value, with magnetic field fluc-
tuations dominating: E

M
/E

K
∼ 87 for the simulation

presented here.

The magnetic and kinetic energy imbalance is reflected
in the energy spectra shown in Fig. 1. Both spectra are
peaked at the injection wavenumbers 3 and 4, but beyond
n
⊥
=5 an inertial range is resolved where both spectra

exhibit a power-law behavior with a steep index for the
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FIG. 3. (color online) Energy flows between scales (log bands)
of the magnetic field. Log bands (pk]=(2k−2, 2k−1], see text.

magnetic energy (−2.7) and a flatter one for the kinetic
energy (−0.6). Since increments are obtained from band-
integrated spectra [e.g. δb2(k

⊥
) ≃ k

⊥
EM (k

⊥
)], this implies

δb
ℓ
≃ ℓσ

b , δu
ℓ
≃ ℓσu , σ

b
∼ 0.85, σ

u
∼ −0.2, (12)

i.e., while magnetic energy decreases at small scales ki-
netic energy increases as it is expected for magnetic re-
connection [9] where velocity is concentrated at small-
scale current sheets [6].

Energy fluxes are shown in Fig. 2. As their behavior
is similar along the whole inertial range, here we plot
the fluxes in and out of shell Q = 20. Respect to the
equipartition case [11] (hereafter EQPT ) the most strik-
ing difference is the small value of the transfers between
kinetic energy shells T (Q=20,K)

uu
, negligible respect to the

others. Indeed the velocity eddies are not distorted by
other velocity eddies as they are too weak compared to
the strength of the magnetic field: both the orthogonal
component b and the strong axial field B0 are responsible
for shaping the velocity field.

We analyze first the energy flows between shells of the
magnetic field T (Q=20,K)

bb
. They are negative for all K<Q

and positive for all K>Q meaning that the field is receiv-
ing energy from shells at smaller K and giving energy to
shells of greater K. In contrast to EQPT for K<Q there
is an almost constant small contribution from smaller
K shells. As in [11] a similar “tail” is also present for
T (Q=20,K)

bu
, the magnetic field in shell 20 is receiving en-

ergy from smaller K shells of the velocity field and trans-
ferring it to larger K shells. T (Q=20,K)

ub
= −T (K,Q=20)

bu

has the corresponding behavior.
The large peaks at K=20 represent conversion of mag-

netic to kinetic energy in the same shell and are due to
A(K=20)

bu
> 0 (A(K)

ub
= −A(K)

bu
). Its large value is linked

to the field-line tension of the dominant axial field B0 as
A

bu
is obtained from the linear terms ∝ c

A
∂z in eqs. (1),

this is the Alfvén propagation term that in presence of a
b
⊥

contributes with a velocity u
⊥

of the same shape. In
Fig. 2 the values of the cross-field fluxes T

bu
and T

ub
for

FIG. 4. (color online) Energy fluxes from magnetic to velocity
fields scales. Log bands, e.g., (p3]=[3, 4], (p6]=[17, 32]

K=20 without these contributions are shown respectively
with an empty circle and a diamond.

The “tails” shown in Fig. 2 are also present for higher
values of Q. In [11] they were present only in cross-fields
transfers, while here a comparable tail appears also in
T

bb
, due to the steeper spectrum of the magnetic field as

in flux (9) for K<Q b
K

is bigger. This feature has been
indicated as evidence of the nonlocal nature of energy
transfers in MHD turbulence [11] because the cumulative
transfers of farther shells seem to be more important than
those of close shells.

However in scaling models of MHD turbulence [7, 8]
and of Parker’s model [6] scales are defined as log bands
of shells. In fact a single shell does not represent a scale

since, for the uncertainty principle, its associated field (2)
is delocalized in space and cannot represent an eddy, the
building block of K41 phenomenology.

Thus in order to understand how energy flows across
scales we must use such log bands [12]. Log band (p] is de-
fined as the shells included in (p/2, p], equally spaced on a
logarithmic scale. Considering pn = 2n−1 we will indicate
these intervals with their index n: (pn] = (2n−2, 2n−1]
(n=1,...,10). With a 10242 grid we have “only” 10 dis-
tinct intervals. Figs. 3 and 4 show the fluxes summed
over these log bands of shells, e.g., T̃ (q,k)

bb
= T ( (pq ],(pk] )

bb

for q=6, 7 and 8. The injection scale is now (p3]=[3,4],
while (p6]=[17,32], (p7]=[33,64], (p8]=[65,128], etc..

Figs. 3-4 show that the apparently dominating contri-
butions of distant shells (tails in Fig. 2) strongly decrease
when considering log-bands. In these bands the number
of shells increases exponentially at higher wavenumbers
and the aggregate effect of local transfers asymptotically
dominates [12, 14]. Recently an analytical upper bound
has been set for locality of energy transfers [12], although
within these bounds the energy transfers can be quite
spread [15]. In fact while cross energy transfers (Fig. 4)
are quite local as energy flows between neighboring scales

decrease swiftly, the transfers between scales of magnetic
field (Fig. 3) are more spread. However for the Parker
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FIG. 5. Diagram of energy flows between fields and scales.

problem we do not observe a direct flow of energy be-
tween the forcing scale and the small scales [16].

Overall energy is transferred from larger to smaller
scales in similar fashion as in MHD turbulence with ener-
gies in equipartition, except for the velocity field that is
too weak compared to the magnetic field. As a result the
magnetic field creates and shapes the velocity field. In
fact from cross-field flows (Fig. 4) we see that magnetic
field-line tension enhanced by line-tying, and predomi-
nantly represented by the fluxes A

bu
, converts magnetic

energy to kinetic energy at the same scale. In turn kinetic
energy at larger scales is converted to magnetic energy at
smaller scales, due to the magnetic stretching term. The
magnetic advection term transfers a (smaller) fraction of
energy toward smaller magnetic field scales (Fig. 3). A
pictorial summary of the cascade is shown in Fig. 5 (mag-
netic flux spread not shown), the repeated conversion of
kinetic to magnetic energies by the cross-fields flows ef-
fectively cascades energy toward the small scales.

The upper bound for locality of energy transfers found
by [12] has been restricted to the case 0 < σ

b,u
< 1 in

analogy to the hydrodynamic case [14] but this condi-
tion is over-restrictive for MHD and we show that those
bounds are valid also for case (12) where σ

b
∼ 0.85 but

σ
u
∼ −0.2 instead of the standard σ

b,u
∼ 1/3.

If [K] is the log-band of shells [K/2, K] heuristic scal-
ings (12) can be written more precisely for the generic
band-summed field a

[K] =
∑

a
K

with K ∈ [K] (2) as

〈|a[K]|3〉1/3 ≃ K−σa → 〈|∇a
[K]|3〉1/3 ≃ K1−σa . (13)

Since the scaling for the derivative is valid independently
of the sign of σ

a
, following [12] the bound for locality of

cross-field transfers between band-summed fields is:
∣∣∣ T ( [Q],[K] )

bu

∣∣∣ ≤ K−(σu+σb) Q1−σb , for Q ≪ K (14)
∣∣∣ T ( [Q],[K] )

bu

∣∣∣ ≤ K1−σu Q−2σb , for Q ≫ K (15)

At fixed K contributions from smaller bands (14) is neg-
ligible if σ

b
< 1 so as from bigger bands (15) for σ

b
> 0.

In similar fashion we obtain the following bound for
magnetic fluxes:

∣∣∣ T ( [Q],[K] )
bb

∣∣∣ ≤ K−(σu+σb) Q1−σb , for Q ≪ K (16)

∣∣∣T ( [Q],[K] )
bb

∣∣∣ ≤ K1−σb Q−(σu+σb), for Q ≫ K (17)

The requirement for asymptotic locality is still σ
b

< 1 for
(16), but σ

u
+ σ

b
> 0 for (17), all satisfied in our case.

The sign of the exponents containing σ
u

remains un-
altered respect to the classic case σ

b,u
∼ 1/3, but while

in (14) and (16) K−0.65 decreases for large K in (15)
and (17) we have a positive power (respectively K1.2 and
K0.15) as in the standard case [12] with K2/3. As in
the hydrodynamic case [14] the origin of this pathologi-
cal behavior stems from the use of Hölder inequality for
fluxes (6)-(9) to set the upper bound, since only the ab-
solute values of their terms is considered, and any can-
cellation effect due to the scalar products in (6)-(9) is
neglected. This conclusion is reinforced by the fact that
for Parker problem fluxes (6)-(9) exhibit scalings (not
shown) in Q well below upper bounds (14)-(17).
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