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Quantum tunneling rates through a barrier separating two-dimensional, 

symmetric, double-well potentials are shown to depend on the classical 

dynamics of the billiard trajectories in each well and, hence, on the shape of the 

wells.  For shapes which lead to regular (integrable) classical dynamics the 

tunneling rates fluctuate greatly with eigenenergies of the states sometimes by 

over two orders of magnitude.  Contrarily, shapes which lead to completely 

chaotic trajectories, lead to tunneling rates whose fluctuations are greatly 

reduced, a phenomenon we call regularization of tunneling rates.  We show that 

a random-plane-wave theory of tunneling accounts for the mean tunneling rates 

and the small fluctuation variances for the chaotic systems. 
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Quantum mechanics and classical mechanics have qualitatively different attributes, yet, 

according to the correspondence principle, they should coincide in the limit of small quantum 

wavelength.  This supposed correspondence is particularly intriguing when the classical 

dynamics of a quantum system is chaotic, since the defining attribute of classical chaos, 

namely, exponential sensitivity of orbits to small perturbations, does not have a clear 
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quantum counterpart.  Thus it is of fundamental interest to explore generic short wavelength 

signatures distinguishing the quantum behaviour of systems whose classical counterparts 

yield chaos from those whose classical counterparts are integrable [1].  Here we examine the 

symmetric/antisymmetric splitting of energy levels in quantum-dot-type systems that are 

weakly coupled through a tunneling barrier. Since tunneling and energy levels are uniquely 

quantum concepts, the impact of chaotic versus integrable classical dynamics on quantum 

behaviour is especially relevant and has received much previous attention [2,3].   Our studies 

reveal a particularly striking distinction between the short wavelength quantum behaviour of 

classically chaotic and classically integrable systems: Energy level splitting in the classically 

integrable  system can have enormous fluctuations, while, in contrast, when the classical 

system is chaotic, these extreme fluctuations are absent.  Our theoretical analysis of this 

phenomenon uses a previously formulated, correspondence-principal-based concept  [4] 

which gives a statistical characterization of the quantum eigenfunctions of classically chaotic 

systems. 

We examine several, differently-shaped, two-dimensional, flat-potential, symmetric, 

double-well systems in which the two wells are separated by tunneling barriers that run along 

most of one side of each well.  We refer to the difference in energies between a symmetric 

and antisymmetric pair of states as the tunneling rate, and we denote this difference EΔ .  For 

integrable wells the tunneling rates can differ by several orders of magnitude for states that 

are very close in energy.  However, as we move to systems with ubiquitous chaos, at short 

wavelength the variation of the tunneling rates with energy decreases to a narrow range.  We 

show here that a theory based on ergodicity of classical chaotic orbits in combination with the 

correspondence principle quantitatively explains this striking phenomenon. 

We note that several other works have focused on tunneling rates for dynamical 

tunneling [3,5].  These consider tunneling between regular and chaotic portions of phase 
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space in some cases where there are local modes in each portion of phase space which are 

degenerate.  They approach the problem using a random matrix approximation of the wave 

function in the chaotic portion which is similar in spirit to our method below.  In particular, 

Löck, et al. [3] show that dynamical tunneling rates can vary by several orders of magnitude 

depending on the allowed routes between torus islands and the chaotic sea.  Our work here 

differs in that we examine the differences in potential barrier tunneling rates for regular as 

compared to chaotic well shapes as a function of eigenstate energy. 

We numerically solve Schrödinger's equation in the Helmholtz form, 

, where , E is the eigenstate energy, and V is the potential 

energy (V=0 in the wells, V=Vb > E in the barrier region, and V=∞ elsewhere).  We take 

 so all energies are in inverse-length-squared units.  Energy level differences are 

determined to within 1% or smaller accuracy.  We calculated all eigenenergies and states 

from the ground state up to an energy of approximately 800 (just below the barrier potential).  

This gives about 600 states per double-well system or about 300 symmetric-antisymmetric 

pairs.  Figures 1 (a,b) show the tunneling rates for two extreme cases as a function of the 

mean energy of the splitting pairs along with some typical eigenstates.  Figure 1(a) plots the 

tunneling rates for a rectangular double well system.  This is one of the few 2D systems that 

can be solved in closed form.  While the tunneling rate is often thought to be determined by 

the energy the tunneling rates actually depend directly on the momentum  px normal to the 

barrier . Here px and py in the wells are good labels for each state and only the px value affects 

the tunneling rate. This results in horizontal lines of equal valued tunneling rates for states 

that all have the same px value, but different py values and, hence, energies.   It is surprising to 

see that the tunneling rates for eigenstates of almost equal energy can be vastly different by 

ratios of over two orders of magnitude.  The two wave functions in the inset of Fig. 1 (a) 

show two extremes of this; on the left py is maximal, but, for an energetically nearby state on 

∇2 + k2( )ψ (r) = 0 k = E − V

 =2 / 2m = 1
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the right, px is maximal.  In Fig. 1 (b) we show tunneling rates for concave-walled double 

wells.  This system is strongly chaotic[6].  In contrast with Fig. 1(a), the tunneling rates as a 

function of doublet energies is approximately within a factor of 2 for neighbouring states – a 

decrease of two orders of magnitude from Fig. 1 (a).   

 

FIG. 1 Tunneling rates for integrable and chaotic wells and their sliding averages. Rates for (a) a two-

dimensional integrable well, (b) a two-dimensional chaotic well, and (c) their sliding averages.  Insets 

show the double-well and barrier configuration (not to scale) and some typical eigenstates.  For the 

rectangular well (a) low tunneling and high tunneling rate states are shown. The sliding average 
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window width in E used for (c) is 4 k. Parameters (see Fig. 2 (a) for definitions) used for both (a) and 

(b) are Δ=0.1, L=2.4,  Vb=1000, and A=4.8.  

Thus, despite the common intuitive association of classical chaos with enhanced 

uncertainty and randomness, we see that the opposite appears to prevail in our quantum 

tunneling problem.  Further, in contrast to the extreme difference in the fluctuation 

characteristics between the classically regular and chaotic systems, we also find that there is 

an equally striking similarity between them when averaged behaviour (rather than 

fluctuations) is considered.  This is illustrated in Fig. 1 (c) which shows sliding averages, 

E< Δ > , of the data for both the integrable example of Fig. 1 (a) and the chaotic example of 

Fig. 1 (b).  It is seen that these sliding averages agree well. We now outline our theory 

quantitatively explaining this contrast between fluctuational and averaged tunneling behavior 

in classically chaotic and regular systems (a more detailed version of the theory below will be 

shown in a future publication [7]). 

 We consider the situation shown in Fig. 2(a).  Assuming that the splitting ΔE is small 

compared to the spacing between adjacent energy levels.  This allows us to treat the problem 

using standard perturbation theory, which yields an expression for ΔE in terms of an 

unperturbed eigenfunction ψ 0
. To apply this perturbation theory result we need information 

on the unperturbed eigenfunction ψ 0
.  To obtain this information, we work in the 

semiclassical regime and make use of the classical chaos and the correspondence principle. 

In the classical limit, particle orbits in the well of Fig. 2(a) move with constant speed 

along straight lines, experiencing specular reflection at the well boundaries, and these orbits 

are chaotic. As a consequence of this chaos, if we consider a very long typical orbit examined 

at a randomly chosen instant of time, (i) the probability density of the orbit location within 

the well is spatially uniform, and (ii) the probability density for the direction of orbit motion 

is isotropic in angle. These characteristics of the classical orbits lead to the following 
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properties suggest, through the correspondence principal, the following semiclassical 

hypothesis for the character of the wavefunction ψ 0
: (i) the coarse-grain average of ψ 0

2  over 

regions small compared to the well dimensions, but large compared to a wavelength, is 

approximately uniform in space within the well, and (ii) at any given point in the well 

interior, ψ 0
 has the local character of an isotropic superposition of plane waves. Berry [4] 

who introduced this idea has called it the random plane wave hypothesis. 

 Using the random plane wave hypothesis  we arrive at the following approximate statistical 

model for the splittings, 

ΔE = wm Δm
m =1

m*

∑ ,        (1) 

where wm > 0 are random weights satisfying the normalization wm = 1∑ , Δm is the splitting 

that applies for a state of the rectangle (Fig. 1(a)) with vertical wavenumber ky = mπ / L with 

the same area and barrier parameters (L, Δ, Vb) as the chaotic well, and   m*
is the integer part 

of kL / π  (i.e., L  is measured in half wavelengths, where L is the barrier length in the y 

direction), which is large in the semiclassical limit. As will be shown in our planned 

subsequent publication [7] the weights are given in terms of m* independent, Gaussian, 

random variables with zero mean and unit variance. 
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 FIG. 2. Well coordinates and Tunneling rates.  The coordinates for the theory are shown in (a).  The 

sliding averages of the splittings are shown in (b) for the theory (red) and for the data from 

calculations of the concave wells (black) and the rectangular wells (blue).  The standard deviations of 

the tunneling rates are shown in (c) for the theory (red), bowtie wells (black), and rectangular wells 

(blue). 

We have called Eq. (1) a ‘statistical model’ by which we mean the following. Even 

though the splittings for the chaotic well shown in Fig. 1(b) are deterministic, we regard them 

as pseudorandom. At any given energy E , we can use (1) to generate a random ΔE  by 
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making a random choice for the m* Gaussian variables. Our claim is that the statistics of these 

randomly generated ΔE  are similar to those of the pseudorandom ΔE  splitting values 

obtained via solution of the wave equation. We test this numerically. We use (1) to generate 

“pseudodata”: for every value of E  corresponding to one of the points plotted in Fig. 1(b), 

we use (1) to generate a value of ΔE . We then statistically compare the actual data with the 

pseudodata, both for its sliding average (as in Fig. 1(c)), as well as for its fluctuation 

characteristics. 

Figure 2(b) shows the sliding average ΔE  obtained from the data in Fig. 1(a) and 

1(b) and plotted in Fig. 1(c) as the black and blue curves, along with what we obtain applying 

the same sliding average procedure to one pseudodata random realization (the red curve). 

They are seen to be nearly equal.  

  Equation (1) also suggests an explanation of our observation from Fig. 1(c) that the 

sliding averages of the chaotic and regular cases are the same. We first note that according to 

our derivation (appearing in the supplemental material) the weights wm appearing in Eq.(1) 

have averages corresponding to an isotropic angular distribution of incident plane waves on 

the barrier. Furthermore, if the sliding average for the rectangle includes a sufficient number 

of modes in the averaging window, then it reduces to the same isotropic incident angle 

averaging as in the chaotic case. We consequently expect the two sliding averages to be the 

same as observed in Fig. 1 (c). The above also provides for the understanding of the reduced 

fluctuation level in the chaotic case: Each ΔE  calculated from (1) involves an average over 

the rectangular well ΔE  values of Δm
 using the randomly fluctuating weights wm. Thus we 

expect that fluctuations of  the chaotic ΔEvalues will be reduced by this averaging by a factor 

of the order of    1 / m* ~ 1 / kL  as compared to the case of the rectangle. Therefore, we can 

think of the reduced fluctuations in the chaotic case as due to self-averaging over angle done 
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by each individual chaotic eigenmode, and this contrasts with the rectangle case, where each 

mode corresponds to a single incidence angle, i.e. ΔE = Δm .  

We now  test our model (1) for its prediction of fluctuation properties of the splittings. 

To do this, we consider the quantity δ E = ΔE− < ΔE >  where < ... > denotes the sliding 

average, and we form δ E  for each energy of a data point in Fig. 1(b). Next, we compute 

σ 2
ΔE =< (δ E)2 >  using the same sliding window procedure as for < ΔE >. The resulting 

values of σ ΔE
 are shown as the black curve in Fig. 2(c). Next we generate 104  pseudodata 

realizations, and from each such set we determine σ ΔE
. Averaging over these 104  

realizations, we obtain the red curve in Fig. 2(c). In addition, we obtain the standard deviation 

of our set of 104  pseudodata realizations from the red curve, which we have plotted as error 

bars on the red curve. We see that the black and red curves are consistent to within the error 

bars, as would be expected if Eq. (1) is a valid statistical model for the splitting fluctuations. 

For comparison, we also plot in Fig. 2(c) the result for σ ΔE
 obtained using the rectangle data 

of Fig. 1(a) (blue curve). 

Our considerations here can also be applied to other situations. For example, we expect 

that similar fluctuation behaviour will result when a single well is coupled through a 

tunneling barrier to an unbounded region. In this case, the lifetime of states within the well 

(inverse of the imaginary part of the energy level) should display the same type of chaos 

regularization of fluctuations seen in Fig. 1 (c). 
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FIG. 3. Tunneling rates for various two-dimensional wells. Tunneling rates for (a) circular, (b) 

stadium, and (c) Sinai shaped systems.  Insets show the double-well and barrier configuration (not to 

scale) and some typical eigenstates. Other chaotic well shapes (butterfly and various concave-sided 

wells) also show the same regularization of tunneling rates.  Roughly speaking as the systems become 

more chaotic the tunneling rate  variation falls drastically. 

With the general view of the random plane wave tunneling theory in place, we  now 

understand results for other systems which range from integrable to strongly chaotic.  In Fig. 
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3 (a), results for circular wells show a similar range of strongly fluctuating tunneling as in the 

rectangular well case. Here the angular momentum is conserved, and this leads to similar 

behaviour as in the rectangle.  

In Fig. 3 (b) -- stadium shaped wells -- we begin to see changes in the variations of 

tunneling rates.  Notably absent in the higher energy states (>150) are the smallest rates 

common in Fig. 1 (a) and Fig. 3 (a).  This is because of the absence of states with maximal py 

momentum which results from the curved ends of the stadia destabilizing that family of 

orbits.  Some remnants of the lines of higher tunneling rates for the rectangular wells are still 

evident.  The latter can be traced to the family of neutrally stable periodic orbits of maximal 

px magnitude.  One of the insets shows an example of a wave function of that kind called a 

‘scarred’ state [8]. 

The Sinai  well shown in Fig. 3 (c) shows more contraction of the energy variation 

beyond that of the stadium case.  The high lines of tunneling rates are absent and the overall 

maximum variability is now down to about an order of magnitude.  In the Sinai billiard there 

are still a considerable number of neutrally stable periodic orbits.  

We note that we have concentrated on symmetric well structures since the energy 

splittings come about purely from tunneling and in that way we do not have a more 

complicated situation of asymmetric wells where it is hard to gauge the origin of the splitting.  

However, we expect that in open, asymmetric systems the lifetimes of the states (essentially 

the resonances remaining from the closed system) will follow the same distribution as for the 

symmetric closed shapes.  Some preliminary calculations using our random plane wave 

theory for escape from an open system through a barrier for an integrable and nonintegrable 

shape show that the lifetimes of the states (essentially the resonances remaining from the 

closed system) follow the same distribution as for the symmetric closed shapes. 
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 Our results suggest that tunneling currents may appear noisier in   quantum devices 

with regular shapes where even a narrow energy window encompasses vastly different 

tunneling rates than in chaotic wells. Furthermore, it may be possible to engineer well shapes 

that  assure certain tunneling rates in some windows of the energy spectrum.  One could now 

change tunneling rates  by changing the device shape, rather than by barrier height 

adjustment.  This could be useful in devices which operate just below or in the semiclassical 

limit, since certain 2D quantum dot and graphene systems already operate in this regime. For 

example, single electron devices and solid state lasers whose operation relies on tunneling 

could be designed with shapes that enhance or suppress their operation, perhaps in real time if 

the shapes are defined electrostatically.  However, we note that in open systems the situation 

is more nuanced.  The size, orientation, and placement of  channels interacts with the 

structure of the closed system's eigenstates to affect conductances  [9]. These lead to 

enhancements and suppression of conductances via resonances (e.g. resonance trapping) 

which along with our work here suggests their roles in regular vs. chaotic cavities deserve 

more study. 

Our results also open up several theoretical questions.  Do all integrable systems have 

tunneling rate fluctuations which increase with energy?  Our numerical results show this is 

true for rectangular, circular, and elliptic shapes, but we know of no theoretical proofs of this 

behavior.  Do completely chaotic systems have tunneling rate fluctuations which eventually 

decrease with energy?  Our random plane wave theory strongly suggests this, but, again, we 

know of no proof.  

In summary, we have presented strong evidence that tunneling rates for classically 

chaotic quantum states are semiclassically regularized to have relatively small local 

fluctuations with energy.  This contrasts with integrable systems which suffer from very large 

fluctuations in tunneling rates.   
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