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Abstract

The collective migration of cells in tissue pervades many important biological processes, such as

wound healing, organism development, and cancer metastasis. Recent experiments on wound heal-

ing show that the collective migratory behavior of cells can be quite complex, including transient

vortices and long-range correlations. Here, we explore cellular flows in epithelial tissues using a

model that considers the force distribution and polarity of a single cell along with cell-cell adhesion.

We show that the dipole nature of a crawling cell’s force distribution destabilizes steady cellular

motion. We determine the values of the physical parameters that are necessary to produce these

complex motions and use numerical simulation to verify the linear analysis and to demonstrate the

complex flows. We find that the tendency for cells to align is the dominant physical parameter

that determines the stability of steady flows in the epithelium.
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I. INTRODUCTION

When an animal’s skin is cut, a salient feature of the wound healing process involves

collective cell migration. Within hours after injury, epithelial cells at the periphery of the

wound crawl over the wounded region in order to reform a monolayer of epithelial cells, a

process known as re-epithelialization [1]. A standard experimental method for investigating

this process is the wound healing assay, where a continuous monolayer of epithelial cells is

“wounded” by scraping away or removing a swath of cells. The mechanism underlying re-

epithelialization was originally presumed to involve chemical signaling within the monolayer

that identified the wounded region and marshalled cells to crawl into the void. Experiments

over the last ten years, though, suggest a more mechanical viewpoint. For example, deacti-

vating a row of cells at the wound periphery does not inhibit wound closure [2], cells away

from the wound are motile [3], and long-range correlations and complex flow patterns that

include vortices are observed in the cellular velocity field [4, 5].

Based on these observations, a model was proposed recently to describe the relelvant

physical mechanisms that may drive re-epithelialization [6]. This model assumes that the

migratory behavior of cells in tissues can be described largely by a few basic biophysical

processes that are present in motile tissue cells. Specifically, the model proposes that the

fundamental driving force behind the collective migration that accompanies wound healing is

the active contractile stress generated within polarized epithelial cells coupled with cell-cell

adhesion.

II. DESCRIPTION OF THE MODEL

Most crawling eukaryotic cells drive motility in a similar fashion. Polymerization at the

leading edge pushes out the front of the cell, while contractile forces inside the cell pull the

rear of the cell forward. These cellular motions are driven by the motion of the internal

actin cytoskeleton. Proteins, such as integrin, connect the cell’s actin cytoskeleton to the

substrate or extracellular matrix [7], which allows these actin flows to exert traction stresses

onto the substrate [8–10]. It is likely that the contractile forces are the dominant forces that

control how a cell interacts with its surroundings, since cells plated on a semi-rigid substrate

pull forward at the rear of the cell and backward at the front of the cell [8, 9, 11, 12]. In
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other words, individual cells produce dipole-distributed stresses (Fig. 1). These dipole-

distributed stresses lead to a net thrust force F that propels the cell at roughly constant

velocity V0d when other cells are not present, where d is a unit vector that defines the

polarization direction of the cell (Fig. 1). Isolated Madin-Darby canine kidney (MDCK)

cells, which are often used in wound healing assays, are typically around 20 µm in diameter

and move at speeds of about 10 µm/hr [13]. The turnover rate of integrin is on order of

minutes [14], which is fast compared to the crawling speed fof the cell. This allows us to

treat the interaction between the cytoskeleton and the substrate as a resistive drag force

that is proportional to the velocity [15, 16]. The propulsive force is, therefore, F = ζV0d,

where ζ is a drag coefficient (Fig. 1).

Epithelial cells can also adhere to one another through cadherin junctions. Therefore,

when motile epithelial cells are in contact with one another, the contractile forces within

the cell are transmitted to its neighbors. The cadherin molecules that form the adhesions

turnover on time scales of less than an hour [17], whereas the bulk motions that occur during

wound healing take tens of hours to complete. Therefore, these adhesions behave more like

viscoelastic connections than rigid adhesions.

A simple mean-field description of an epithelium can be constructed by considering small

volume elements that are larger than the size of a cell but small compared to the size of the

tissue. On these length scales, the adhesive forces that act between neighboring cells can

be described by a stress tensor, σc. In addition to this stress, there is also the active dipole

stress that is created by a single cell, which is defined by the tensor σd. If the cell is oriented

along a direction d̂, then the simplest form for the dipole-distributed stress is σd = f0bd̂d̂,

where f0 is the magnitude of the force that the cell exerts against the substrate and b is the

length of the cell. In addition to these two stresses, a crawling cell also exerts the propulsive

force against the substrate that is mentioned above, and there is a resistive force exerted on

the cell when it moves with respect to the substrate. In the presence of other cells, a single

cell does not move at velocity V0d̂ because the interaction between neighboring cells change

the total force that is exerted on the cell. The cell therefore crawls at velocity v, and the

resistive force is ζv. Force balance for a unit volume in the epithelial tissue is then governed

by

∇ · σc −∇ · (bdd) + ζV0d− ζv = 0 . (1)
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As mentioned previously, turnover of the cadherin molecules in the cell adhesion junctions

leads to viscoelastic behavior. On timescales shorter than the cadherin turnover time, τ , the

molecules in the adhesion are firmly anchored and neighboring cells that move with respect

to each other experience elastic restoring forces. On timescales longer than τ , there can be

sliding of the cells with respect to each other, and the response is more like a viscous fluid

with viscosity η [6, 15, 16, 18]. In addition, cells in an epithelial monolayer overlap with

one another [3]. Therefore, when one treats the monolayer as a two-dimensional object, the

total area occupied by the layer can change. However, we expect that larger resistive forces

are encountered when the cell motions act to change the total density rather than when

they result in pure shear deformations. We, therefore, define a volumetric viscosity λ that

describes the resistive forces that arise due to motions that change the density. The simplest

model that contains these features is the Maxwell fluid model, and it can be shown that

chemical reaction kinetics with spring like adhesion molecules satisfy this type of equation

in the limit where the force is small compared to the maximum force that the molecules can

withstand [6]. The cell-cell adhesion stress then obeys

σc + τ
∂σc

∂t
=

η

2
(∇v + (∇v)T ) + (λ−

η

2
)(∇ · v)I , (2)

where I is the identity matrix.

Finally, we need to account for the dynamics of the cell orientation. We assume that

there is a tendency for nearby cells to align. Presumably this interaction may be driven by

the cell elasticity. If a cell is slightly elongated in its direction of motion, then splay between

neighboring cells will produce an elastic restoring force. This interaction will behave like the

splay force in a nematic liquid crystal. We define a single Franck constant K to define the

magnitude of the restoring force in terms of the splay. The orientation of the cells is also

affected by local cellular motion, where vorticity in the cellular flow field will reorient the

cells. Balancing the convective derivative with the reorientational effects of elasticity and

vorticity, we get a nematic hydrodynamic-like equation for the dynamics of the orientation

field:

ζr

(

∂d

∂t
+ v · ∇d−

1

2
(∇× v)× d

)

= K∇2d , (3)

where ζr is a rotational drag coefficient.

This system of equations was recently analyzed numerically and was shown to agree

quantitatively with many of the observed features in wound healing assays [6]. In this
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paper, we explore the linear stability of these equations, which should serve to provide a

quantitative view of the parameter space and how the collective dynamics of cells in tissue

can be regulated. Indeed, different cell lines are observed to behave quite differently [5], and

this analysis may provide a useful measure for how these differences arise. It should also

be noted that these equations are similar to the equations that have been used to describe

the collective motion of self-propelled micro-organisms, which have been studied by several

groups [19–22]. There are two primary differences between our equations and those used

for swimming bacteria. First, it has been shown that the overall dynamics during wound

healing are not srongly dependent on cell division. We therefore do not directly treat the

density of the cells in our system. Second, the interactions between our cells are mediated

by a viscoelastic stress, as opposed to a purely viscous fluid stress.

III. RESULTS

Linear Stability Analysis. It is useful to non-dimensionalize the system of equations using

a characteristic tissue size L, a time scale L/V0, and the thrust force ζV0. There are then

five non-dimensional parameters of the model:

b̃ =
bf0
ζV0L

, η̃ =
η

ζL2
, λ̃ =

λ

ζL2
,

K̃ =
K

ζrLV0

, τ̃ =
V0τ

L
. (4)

The dimensionless velocity and stress are

ṽ =
v

v0
, σ̃ =

σc

ζV0
. (5)

To carry out the linear stability analysis, we consider a scenario that precedes some of the

recent wound healing assay experiments. Silberzan and coworkers have developed a micro-

patterned stencil that allows them to grow an epithelial monolayer inside a rectangular

well [4]. The stencil can then be removed, and the cells crawl to fill in the newly vacated

substrate. We consider a system such as this before the stencil is removed: an infinite swath

of cells bounded on the top and bottom by rigid walls. We define the swath to be aligned

with the x-axis and assume that the cells are also initially aligned with the x-axis. It is

straightforward to show that if the cell alignment is uniformly directed along the x axis,
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then the velocity of the cells is also along the x axis. We, therefore, consider perturbations

to the steady flow solution:

d = x+ ǫdyy , (6)

v = (1 + ǫvx)x+ ǫvyy , (7)

where ǫ << 1 and we have not included an equation for σ as it is possible to remove σ from

the equations using the divergence of Eq. 2.

Expanding the force balance equation (Eq. 1) and the orientational dynamics equation

(Eq. 3) to first order in ǫ using Eqs. 6–7 leads to the following linearized equations:

∂dy
∂t

= −
∂dy
∂x

+
1

2
(
∂vy
∂x

−
∂vx
∂y

) +K∇2dy , (8)

τ
∂vx
∂t

= η∇2vx − vx + (λ−
η

2
)(
∂2vx
∂2x

+
∂2vy
∂x∂y

)

−b
∂dy
∂y

− τb
∂2dy
∂t∂y

, (9)

τ
∂vy
∂t

= η∇2vy − vy + (λ−
η

2
)(

∂2vx
∂x∂y

+
∂2vy
∂y2

)

−b
∂dy
∂x

+ dy − τb
∂2dy
∂t∂x

+ τ
∂dy
∂t

. (10)

In Eqs. 8-10, we have dropped the tildes from the non-dimensional parameters. We maintain

this notation throughout the remainder of the paper.

We now look for solutions of the form dy = d̂y(k)e
i(k·x−ωt), where k = (kx, ky) is the wave

vector and the corresponding frequency is ω = γR + iγI . The real part of the frequency, γR,

gives the oscillation frequency of the mode and the growth rate is γI . Similar equations are

used for vx and vy. Substituting these expressions for dy, vx, and vy into Eqs. 8–10, leads to

a linear system of equations with determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

K|k|2 − iω + ikx
1
2
iky −1

2
ikx

ibky(1− iτω) Ω + Λk2
x Λkxky

(ibkx − 1)(1− iτω) Λkxky Ω+ Λk2
y

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (11)

with Ω = 1 − iτω + η|k|2 and Λ = λ− η

2
. For non-trivial solutions the determinant is zero,

which gives a cubic equation that sets ω in terms of the wavenumber k and the parameters

τ , b, η, λ, and K.
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Following [21], we define θ to be the angle between k and x. In Fig. 2a, we plot the

maximal growth rate as a function of the magnitude of the wave number and θ using rea-

sonable parameter values for MDCK epithelial cells: b = 0.1; η = 0.0025; K = 0.025;

and τ = 0.025 [6]. The non-dimensionalization that is used to compute these parameters

corresponds with a wound size L ≈ 200µm, a crawling speed V0 = 10µm/hr, and a drag co-

efficient ζ = 100 pN·hr/µm3. For these parameters, we find that uniform motion of the cells

is unstable, with a maximum growth rate when k = 10.8. This wavenumber corresponds to

a wavelength of ∼ 120µm, which is approximately equal to the velocity correlation length

that is observed in experiments [4]. The growth rate is largest for perturbations along the x

direction (Fig. 2a), therefore, we expect uniform crawling to initially break into a roll-type

pattern at the onset of the instability. The temporal frequency increases roughly linearly

with k.

In order to gain intuition for the physics that leads to complex flows in epithelial tissues,

we determined the parameter regimes where uniform motion of the epithelium are stable

(i.e., where the maximal growth rate is negative). In Fig. 2, we plot the bifurcation dia-

grams as a function of pairs of the dimensionless parameters. We find that the dimensionless

dipole stress magnitude b and the viscoelastic time scale τ are destabilizing factors that drive

the system to non-steady flow patterns, whereas the orientational Franck constant K is a

stabilizing factor. Indeed, without a tendency to align, the uniform state is uncondition-

ally unstable, as in the case of active suspensions [21]. This finding also agrees with the

dimensional analysis arguments that were given in [22], which suggested that complex flows

in bacterial systems involve a competition between the tendency to algin and convective

instabilities. We also find that the cell-cell viscosity η does not strongly affect the stability

of the uniform flow state. Fig. 2 also shows the magnitude of the dominant wavenumber,

which gives an indication of the size of the vortices that would be observed in experiments.

The Franck constant and the cell-cell viscosity both lead to longer length correlations in the

cellular flow field, whereas the viscoelastic timescale decreases the correlation length.

Numerical simulations. In order to validate our linear analysis and to determine the

overall large scale behavior of the system after onset, we simulated Eqs. 1–3, on a rectangular

domain (200µm × 800µm). We used periodic boundary conditions on the left and right sides

of the domain, and treated the top and bottom as rigid walls. On these walls, the normal

component of the velocity was set to zero. In addition, we assumed no net torque on the
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walls ((n̂·∇)d̂ = 0), and zero tangential force (̂t·σ ·n̂ = 0), where n̂ is the normal to the wall

and t̂ is the tangent. To numerically solve the equations we used a finite volume approach

described in [23]. For any values of parameters that we used that fell in the stable regime,

we observed steady migratory behavior along the x axis (Fig. 3a). It should be noted that

this is idealized behavior that would not be noticed in an experiment, as the x extent is

finite and prevents net constant displacements. For parameters in the unstable regime, cells

initially migrate along the x direction, but after a while, perturbations adjacent to walls

and then propogate in through the whole domain (Fig. 3b-d). The emerging vortices are

transient, appearing and disapperaing in a seemingly random fashion.

IV. CONCLUSION

The results presented here show that the basic physics of eukaryotic cell motility are

sufficient to drive complex collective motions in populations of cells that can adhere to one

another. We find that for reasonable values of the model parameters (i.e., those corre-

sponding to MDCK cell lines) that transient vortical flows are expected in these tissues and

that the length scale of the dominant mode is comparable to what has been observed in

experiments [4]. In addition, we have elucidated the role that the model parameters play

in creating the complex flows and the dependence of the dominant wavelength on these pa-

rameters. Experiments that can alter these physical parameters, such as using substrates of

varying stiffness or altering expression levels of proteins that influence actin dynamics, can

be used to test these predictions. Because this model is based on the general physical be-

havior of crawling cells, we expect that this phenomenon is not only applicable to epithelial

sheets, but may also be relevant for the collective migration of cells during organism devel-

opment and cancer metastasis [24, 25]. An interesting question remains: Do these complex

flows serve an important biological function?
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FIG. 1. (Color online) Schematic of the interactions affecting a cell crawling through a tissue. (A)

A cell has a polarization direction, which is defined by the unit vector d, and crawls with velocity

v. The cell exerts dipole-distributed forces against the substrate (small, black arrows). The cell is

connected to its neighbors via adhesion proteins. Differences in velocity between the cell and its

neighbors, therefore, lead to viscoelastic stresses in the tissue. (B) A single crawling cell exerts a

thrust force −F on to the substrate. The substrate resists the motion of the cell with a force that

is proportional to the velocity. Equal but opposite forces are exerted back on to the cell.
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FIG. 2. The complex frequency as a function of the magnitude of the wavenumber k for θ = π/8

(solid line), π/4 (dotted line), and 3π/8 (dashed line). (a) The imaginary part of the frequency

is the growth rate, which has a peak when k = 10.8. (b) The temporal frequency increases with

wavenumber and is only weakly dependent on θ.
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FIG. 3. (Color online) Two parameter bifurcation diagrams showing the regimes with stable,

uniform cellular motion and those with complex cellular flows (unstable). Stability is shown as a

function of (a) viscoelastic relaxation time τ and dipole stress strength b; (b) τ and orientational

Franck constant K; and (c) τ and cell-cell viscosity η. The value of the other parameters are given

above each panel. The colormap shows the magnitude of the wavenumber that corresponds to the

maximally unstable mode.
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FIG. 4. Cellular flows of a confined epithelial layer: (a) Stable flow in the x direction. (b-d) Time

series of the onset of the instability at T = 0.03, T = 0.097, and T = 0.22. Parameters used in the

simulations are b = 0.1; η = 0.0025; λ = 0.25; K = 0.0025; and τ = 0.025.
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