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We analyze the conformations and mechanical properties of closed diblock fibers. In our model,
the length fraction of each component and the total fiber length are controlled by tunable chemical
potentials. Our formalism can describe fibers in which one block is a bare polymer while the
other is an adsorbed protein-filament complex; these blocks maintain different bending rigidities
and spontaneous curvatures. We analytically calculate the shape of two-component polymers for all
values of the material parameters and chemical potentials. Our results yield: a complete analytical
description of all possible two-component polymer conformations, a phase portrait detailing the
parameter spaces in which these shapes occur, and the identification of spontaneous transitions
between shapes driven by environmental changes.
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INTRODUCTION

Many biological filaments exhibit complex conforma-
tion transformations upon adsorption of proteins. DNA
looping can occur, for example, when proteins bind, ag-
gregate, and subsequently induce bending and twisting.
Protein adsorption further promotes changes in the ef-
fective mechanical properties of the DNA molecule [1]
and its conformation [2, 3]. Other biological polymers
including actin, microtubules, and general cytoskeletal
filaments exhibit similar behavior in addition to self-
assembling processes upon interaction with crosslinking
and motor proteins [4–6]. Transformations in many
biofilaments play an integral role in biological activity.
Loops in DNA, for example, affect downstream functions,
such as protein-DNA assembly during replication, recom-
bination, and condensation [7]. It has been further
suggested that nucleosome repositioning on short
DNA segments is mediated by DNA looping [8].

The intricate relationship between chemical interac-
tions and associated mechanical transformations in biofil-
aments is yet to be fully explored. The diversity of natu-
rally occurring molecular complexes calls for a systematic
analysis of the underlying mechanisms governing confor-
mation transformations. Resolution of these mechanisms
could yield opportunities to develop new types of envi-
ronmentally responsive molecular systems.

In this work we study the properties of closed, het-
erogeneous, two-component polymers. The mechanics of
linear polymers and fibers has been studied extensively
with a variety of theoretical formalisms [9–16]. To date,
however, a comprehensive analytical treatment of multi-
component polymers is yet to be adequately completed.
We consider a model in which each polymer is comprised
of a single flexible diblock. For example, one block may
consist of a bare polymer while the second is rich in ad-
sorbed proteins. Since adsorbed molecules can change
the effective length of a polymer, we consider a formal-

ism in which the relative lengths are not fixed but rather
controlled by tunable chemical potentials.
Our model specifically focuses on planar structures.

The framework and results presented in this paper are
directly useful for describing many systems physically
confined to surfaces such as those examined by electron
or atomic force microscopy [17]. DNA-protein interac-
tions, in particular, are frequently studied on surfaces
[18]; characterization of DNA often requires its adsorp-
tion onto surfaces in the presence of proteins’ multivalent
ions [19].
Closed structures with nonuniform bending

rigidity arise in a variety of systems [20]. One
biological example in which structural hetero-
geneities affect functionality is the marginal band
in thrombocytes; in addition to providing struc-
tural support to the cell membrane and resistance
to capillary flow stresses [21], the marginal band
has a nonuniform spontaneous curvature which is
believed to form an important basis for the flat-
tened, ellipsoidal shape of cells [22].
Our methodology is adaptable to three dimensional

systems with many components. The analysis in this
paper employs the language of quadratic constraints
previously developed for shapes of membranes [23, 24].
Our end result is a complete description of planar, two-
component polymer conformations for all possible mate-
rial parameters.
We begin by constructing a free energy Fp for each

component p = a, b. In each block, the energy is the
integral of a density, Fp;

Fp =

∫

Lp

dsFp =

∫

Lp

ds

[

1

2
Λs(κ− Cp)

2 − µp

]

−G, (1)

where Λ is the bending rigidity, κ the curvature, C the
spontaneous curvature, and s the arc length. For brevity,
we omit the subscript p where possible. The first term
in the integral corresponds to the bending energy. In the
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second term, the chemical potential µ acts as a Lagrange
multiplier to fix the length of component p. Finally, G is a
constraint required to express the free energy in terms of
the Frenet-Serret vectors (t,n,b). G is written explicitly
as,

G =

∫

dt
√
g [−f · (t− r

′)− αnn(n · n− 1)

− αtt(t · t− 1) −αtnt · n− αttn(t
′ × n) · t] .

(2)

In the above expression, the shape parameter t is re-
lated to the arc length s through the metric factor√
g = ds/dt. Primes denote derivatives with respect to

arc-length; these are constructed for a generic function
h as h′ = (

√
g)−1(dh/dt). The Lagrange multiplier f

defines the tangent vector t in terms of the parameter-
ized path r and can be identified as the cohesive force
in the fiber. The remaining constraints have associated
Lagrange multipliers αnn, αtt, αtn, αnn.
Variations with respect to t, n, f , r and

√
g lead to the

system of Euler-Lagrange equations governing the poly-
mer’s conformation, the conserved quantities, and the
boundary conditions at the junction of the two compo-
nents. The equations that arise from a variation with
respect to t and r explicitly yield an expression for the
force and force conservation respectively:

f = −Λ
d

ds
[t′ − Cn]− 2αttt− αtnn− αttnt

′ × n (3)

f
′ = 0. (4)

We assume, without loss of generality, that the force
points in the x-direction. Invariance of the functional
with respect to rotations in space leads to a set of re-
lations for the torque τ . Only the z-component τz is
nonzero and satisfies,

τz = Λ(κ− C)b · k+ (r× f) · k (5)

τz
′ = 0. (6)

As we consider only planar shapes, the angle defined
by the relative orientation of t and f , f · t = f cos θ,
is a useful coordinate for analysis. The curvature is a
positive quantity that can be written as κ = wθ′, where
w = sgn(θ′) = (t× n) · k is the sign of the curvature.
Using the variable θ, equation (3) can be transformed

to,

−Λθ′′ + f sin θ = 0. (7)

The equation resulting from the variation with respect to
the metric factor turns out to be an integral of Eq. (7):

−1

2
Λθ′2 +

1

2
ΛC2 − f cos θ − µ = 0. (8)

Upon introduction of the intrinsic component of the
torque τ i = Λ(θ′ − wC), we can write,

− 1

2Λ

(

τ i
)2 − wτ iC − f cos θ − µ = 0. (9)

At this point, we note the first of many conditions on
the parameters and variables that are required for the
existence of solutions. As the square of the curvature is
positive, we must have:

D =
Λ

2
C2 − µ ≥ f cos θ. (10)

The parameter D will be indexed as Da or Db according
to the region to which it corresponds.
The variational analysis of the two components leads to

boundary terms; demanding that these combined terms
vanish gives rise to boundary conditions between seg-
ments. At the boundary, the following conditions apply
to the tangent vector, force, and intrinsic torque compo-
nent:

ta = tb,

fa = fb,

τ ia = τ ib .

(11)

The continuity of the tangent vector implies that the
two segments make contact at an angle θc. We denote the
intrinsic torque value at the junction by τc. Substituting
Eq. (11) into Eq. (9) for each component yields after
algebraic manipulations:

(

1

Λa
+

1

Λb

)

τ2c + 2(waCa + wbCb)τc

+ 4f cos θc + 2(µb + µa) = 0.

(12)

(

1

Λb
− 1

Λa

)

τ2c + 2(wbCb − waCa)τc

+ 2 (µb − µa) = 0.

(13)

We therefore see that that the intrinsic torque at contact
can be determined from the material parameters Λ and
C, and the difference in the chemical potentials ∆µ =
µb − µa. Solutions exist when the following holds:

(wbCb − waCa)
2 − 2∆µ(

1

Λb
− 1

Λa
) ≤ 0 (14)

The resulting value of the intrinsic torque defines a
unique value for the combination f cos θc + µ̄ where
µ̄ = 1

2
(µb + µa). One can see from the definition of

the internal torque that wτc + ΛC ≥ 0; this condition
in addition to (10) and (14), helps narrow the range of
material parameters that yield solutions.
The explicit construction of the fiber shapes is simplest

when parameterized by the angle θ. We integrate our
equations to obtain:

r2 − r1 = A

∫ θ2

θ1

w dθ
t√

χ− q cos θ
, (15)

in each component. Here we use the orientation of the
curvature w and χ = sgn(D). The amplitude of the tra-
jectory is given by A = Λ/(2|D|)1/2 and the extension
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FIG. 1. (Color online) Sample equilibrium conformations
showing a (a) ring structure, (b) single-loop structure (c)
single-loop structure in which the two components have op-
posite curvature (d) double loop structure. The parameters
used in each case were: (a) Λa/Λb = 0.5, Ca/Cb = 0.5,
∆µ = −0.27, µ̄ = −0.55, (b) Λa/Λb = 0.5, Ca/Cb = 5,
∆µ = 3.29, µ̄ = −3.92, (c) Λa/Λb = 5, Ca/Cb = 5,
∆µ = −1.40, µ̄ = −0.82, (d) Λa/Λb = 5, Ca/Cb = 5,
∆µ = −0.087, µ̄ = −0.28.

parameter is q = f/|D|. The integrals can be explicitly
expressed in terms of elliptic functions (not shown here
for brevity). Integrations are only possible in regions
where χ − q cos θ ≥ 0. If χ > 0 and q < 1, the restric-
tion is always satisfied. In all other cases, the region of
integration is limited to values of the angle that lie on a
region centered at θ = π.

The previous results show that for a pair of segments
exerting a given force on each other, the cosine of their
contact angle is uniquely determined. The contact can
then occur at angles ±θc + 2πm, with m an integer and
θc restricted to the interval from 0 to π. The necessary
condition for closure of the shapes is ∆r = 0. One can
find closed configurations for a given set of parameters by
first establishing a range of possible internal force values;
this range is determined from the previous discussed set
of conditions. Next, one can check whether the closure
condition is satisfied for values in that range. The entire
space of parameters can be systematically explored with
this procedure.

The space of material parameters to explore can be
reduced by suitable changes of energy and length scales.
In particular, we can set Λa = 1 and Ca = 1 and vary
the remaining material parameters (if Ca = 0, we can
set Cb = 1 or Cb = 0). For each of these points in the
parameter space, it is possible that multiple solutions
will arise. The key characteristics of different types of
solutions include the relative sign w and the number of
loops exhibited by each species.
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FIG. 2. (Color online) Phase portraits showing different types
of solution topologies in the (∆µ , µ̄) plane for the material
parameters, Λa/Λb = 5, Ca/Cb = 5. In (a), region I corre-
sponds to ring structures, II to single loop structures, III to
double-loop structures, and IV to higher loop structures; the
arrow indicates that region I extends infinitely in the −µ̄ di-
rection. Figures (b) and (c) show energy per length contours
overlaying the solution space corresponding to (b) ring struc-
tures and (c) single loop structures; these plots show that
when topological regions overlap, the structures with fewer
loops are energetically favorable.

Fig. 1 shows sample equilibrium configurations of ring,
single loop, and double loop structures. In each figure,
the blue (lighter) segment identifies the component with
the smaller bending rigidity. The examples shown in
the figure demonstrate the large variety of conformations
generated from our relatively simple model. It should be
noted, however, that shapes (b)-(d) do not correspond
to global minima for their respective parameter values.
With a limited number of base parameters, tunable in
physically meaningful ways, we recover conformations
that appear in concrete settings: shapes (a)-(c) are sim-
ilar to those found in the DNA-LacI complex [9]. The
looped structure in (d) is similar to those found in in

vitro experiments on induced knotting in DNA by means
of SMC (structure maintenance of chromosome) proteins
[26].

Fig. 2 shows a sample phase portrait in the chemical
potential variables µ̄ and ∆µ. These variables determine
in an implicit and non-linear way the lengths of the com-
ponents. It is of course possible to invert this relation to
determine the chemical potentials required to prescribe
total and relative block length. Fig. 2 also shows con-
tour plots of energy per length for different classes of
solutions. Panels (b) and (c) clearly indicate that con-
figurations with fewer loops are energetically favorable.
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FIG. 3. (Color online) A topological transition induced by
changes in chemical potentials. The parameters in all pictures
are: Λa = 1,Λb = 0.2,Ca = 1,Cb = 0.2, and µ̄ = −0.75. The
individual snapshots correspond to (a) ∆µ = −2.22, (b)∆µ =
−2.365, (c) ∆µ = −2.375, and (d) ∆µ = −2.52. For clarity,
the insets in (b) and (c) show magnifications of the minority
component. We note that near the threshold dividing the
two topological regions, the (b) single loop and (c) double
loop structures retains similar majority component shapes.

Panel (a) reveals, however, that there are regions in the
parameter space in which only looped structures exist.
Hence, global minimum energy structures are not always
ring-like.
Several important features of the phase diagram are

worth emphasizing. First, we find that the regions in
which multiple loop solutions are possible are generally
nested inside a region of identical topology and fewer
loops (but more than one loop). The higher looped struc-
tures may yet be relevant as transient states during dy-
namic shape transformations.
Next, we note that the boundaries of regions with spe-

cific topologies are characterized by f = 0 and D = 0
for one of the components. These conditions physically
correspond to the elongation of one component relative
to the other. Small perturbation to physical parameters
near these boundaries result in the selection of different
topologies. One such example is depicted in Fig. 3.
Our model can be generalized and extended to incorpo-

rate further important details. For example, our model is
planar and restricted to two dimensions. Similar analysis
can be done in three dimensions where more complicated
structures are possible. Furthermore, we have not consid-
ered the complications that arise from the friction with
the substrate and the forces induced by self contact. De-
spite these limitations, our analysis has generated inter-
esting results; we have identified a large number of pos-
sible shapes and the parametric conditions under which

they occur. We have found conformations that mimic
known structures, and we have identified interesting tran-
sitions driven by the tuning of system parameters. We
have developed a robust formalism capable of describing
a great variety of physically relevant structures.
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