
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dynamics of swimming bacteria: Transition to directional
order at high concentration

Luis H. Cisneros, John O. Kessler, Sujoy Ganguly, and Raymond E. Goldstein
Phys. Rev. E 83, 061907 — Published 14 June 2011

DOI: 10.1103/PhysRevE.83.061907

http://dx.doi.org/10.1103/PhysRevE.83.061907


EY10658

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Dynamics of swimming bacteria: transition to directional order at high concentration

Luis H. Cisneros∗ and John O. Kessler†

University of Arizona Department of Physics, 1118 E. 4th St., Tucson, AZ 85721

Sujoy Ganguly‡ and Raymond E. Goldstein§

Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,
University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

At high cell concentrations bacterial suspensions are known to develop a state of collective swim-
ming (the ‘Zooming BioNematic Phase’ or ZBN) characterized by transient, recurring regions of
coordinated motion greatly exceeding the size of individual cells. Recent theoretical studies of semi-
dilute suspensions have suggested that long-range hydrodynamic interactions between swimming
cells are responsible for long-wavelength instabilities that lead to these patterns, while models ap-
propriate to higher concentrations have suggested that steric interactions between elongated cells
play an important role in the self-organization. Using particle imaging velocimetry in well-defined
micro-geometries, we examine the statistical properties of the transition to the ZBN in suspensions
of Bacillus subtilis, with particular emphasis on the distribution of cell swimming speeds and its
correlation with orientational order. This analysis reveals a non-monotonic relationship between
mean cell swimming speed and cell concentration, with a minimum occurring near the transition to
the ZBN. Regions of high orientational order in the ZBN phase have locally high swimming speeds,
while orientationally disordered regions have lower speeds. A model for steric interactions in concen-
trated suspensions and previous observations on the kinetics of flagellar rebundling associated with
changes in swimming direction are used to explain this observation. The necessity of incorporating
steric effects on cell swimming in theoretical models is emphasized.

PACS numbers: 87.18.Gh,05.65.+b,47.20.-k, 47.54.-r

I. INTRODUCTION

It is now well-established that a concentrated population of bacterial cells may develop into a ‘super-organism’
with properties and capabilities that extend beyond those of single individuals [1, 2]. On the one hand, the organized
internal dynamics of such ‘multicellular’ organisms arises from the coordination of the physics of propulsion and
the shape of its members rather than direct cellular communication, yet it has direct effects on biological processes
associated with chemical signaling. Collectively stimulated emission and sensing of chemical messengers by members
of a bacterial culture can lead to formation of biofilms [3]. On the other hand, a distinct phenomenon, swarming,
comprises changes in the morphology of individual members of the population associated with increased motility and
collective directionality [4–6].
Concentrated swimming organisms induce strong local flows in the embedding fluid medium, affecting the motion

of neighboring cells and ultimately producing large-scale instabilities that develop into complex chaotic dynamics
characterized by fast and locally aligned cells [7–11]. For sufficiently high concentrations of rod-shaped bacteria,
coherence is observed in the form of collective motion, often faster than the motion of individual swimming cells,
and in a narrow angular distribution of velocities within spontaneously appearing domains. A movie of this state
(see Supplemental Material [12]) shows local parallel alignment of cells that is reminiscent of nematic liquid crystals,
and these domains aggregate, rush and twist, break up and re-form in a manner reminiscent of turbulence, giving
the impression of zooming about: thus the acronym ZBN, for ‘Zooming BioNematic.” The intermittency of the
ZBN greatly enhances the transport of dissolved molecules or suspended particles, beyond normal diffusion. In this
way, intercellular signaling, acquisition of metabolites, elimination of molecular wastes, and dispersal of extracellular
products are greatly enhanced by the dynamics of the highly concentrated coherent state.
Theoretical approaches to collective motion of self-propelled particles began with highly simplified models of flocking

using ideas from statistical physics [13–15]. These led to the notion of a nonequilibrium phase transition to a state
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FIG. 1: Image of a suspension of swimming B. subtilis in the ZBN phase. Bacterial cells occupy both bright and dark spots in
the image. The difference between bright and dark is due to orientation of the cylindrical cell bodies relative to the optic axis
and displacement from the focal plane. See also movie 3 of Supplemental Material [12]).

with long-range order in the swimming direction. Subsequent work [16] more faithful to the hydrodynamic interactions
between swimming cells found a long-wavelength instability of that putative ordered state, and it has been suggested
that this instability underlies the particular form of coherent structures found in the ZBN [10, 11]. Direct numerical
simulations of two-sphere swimmers [17], one representing the cell body, the other the flagella, and rod-like swimmers
with forces continuously distributed over their surfaces [18], and a comprehensive kinetic theory of these systems
[19–21] has not only confirmed this finding but also begun to address the nature of the state beyond the instability.
Other closely related models and approaches yield similar results [22]. Simulations [17, 23] found that passive tracers
and swimmers exhibit super-diffusive behavior at short times and diffusive dynamics at long times, with the crossover
depending on the concentration of swimmers. A two-phase model [24] exhibits the chaotic character of the collective
bacterial swimming. These approaches provide the most likely current explanation for the transient, recurring vortices
and jets observed in experiments to date on B. subtilis [10, 11], enhanced and anomalous diffusion of molecular species
and tracer particles [7–9, 25], and a framework for addressing anomalous fluctuation statistics observed in more dilute
solutions of swimming protists [26, 27].
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The common ingredient in the kinetic theories cited above is a contribution to the stress tensor due to the self-
propulsion of the organisms, represented by force dipoles (stresslets) [28]. It is clear from even casual observation of
the ZBN, or indeed of less concentrated bulk suspensions (Fig. 1) or those in thin films [29] or on the surface of agar
[30], that steric interactions between swimming cells must play an important role in establishing the local order, much
as it does in liquid crystals and in models of “self-propelled rods” [15]. Theory [29] on collective dynamics of bacteria
in suspended films [31] that incorporates not only hydrodynamic reorientation of cells in response to local fluid flows
but also collisional realignment predicts an instability in the stress field at long wavelengths in the isotropic field.
In spite of these important contributions, there is a consistent lack of actual experimental results which can serve

to inform further development of our understanding of the transition to collective behavior. In the present paper
we provide new experimental results and a new set of theoretical considerations relevant to the appearance of the
ZBN. Just as lyotropic liquid crystals exhibit order as a consequence of increasing concentration, the ZBN is a phase
of suspended bacterial matter that emerges at high concentrations. At low concentrations, the swimming bacteria
move essentially independently, but with increasing concentration we observe that an anomalous intermediate phase
develops in which cellular collisions, characterized by stopping and then reconstitution of the propulsion mechanism,
produce a slowing of the mean swimming speeds relative to those observed for free individual cells. We shall term this
the “jammed phase” (see Fig. 1) by analogy with concentrated automobile or pedestrian traffic. This contribution
of flagellar interaction and bundling dynamics, which is absent in current models of bacterial collective dynamics, is
suggested to be of significance when cells are in close proximity to each other.
The experimental observations and analyses reported here concern wild-type Bacillus subtilis, a rod-shaped gram

positive bacterium. This paper thus considers collective behavior cells with no known mutations in the flagellar
apparatus or motility. Our results delineate the sequence of steps leading from individual behaviors of normally motile
Bacillus subtilis at low concentration to coherent, collective, sterically and hydrodynamically coupled dynamics at
high concentration: a transition from individual to jammed state, to the collective ZBN state which depends strongly
on sterically determined ordering, but whose ultimate dynamics depends on collectively synchronized motility and
hydrodynamics.
The cells used here have a variable body length L, typically around 4µm, and a diameter D ∼ 1µm. They are

peritrichously flagellated, with a typical swimming speed U ∼ 25 µm/s (see Fig. 3 below). The Reynolds number
for such a swimming bacterium in water (kinematic viscosity ν = 0.01 cm2/s) is Re = UL/ν ∼ 10−4. The low value
of Re indicates that viscous forces dominate over inertia and that the hydrodynamics is safely in the Stokes regime
[32–34], thereby implying that the fluid flow generated by a swimming bacterium is completely driven by drag on
the cell and its rotating flagella. (Here we neglect gravitational effects as our experiments involve thin samples in
plan view). Previous experimental work has focused on using bacterial chemotaxis, the swimming of bacteria along
chemical gradients, and self-concentration mechanisms [35], to concentrate cells near contact lines [10, 11] or in quasi
two dimensional geometries [25, 31]. The typical observed collective speeds in the ZBN phase can be 100 µm/s, with
an associated Reynolds number still ≪ 1 (0.01 cm x 0.01 cm/s / 0.01 cm2/s).
We present experiments on the dynamics away from solid boundaries and contact lines, uncovering some striking

statistical signatures of the collective phase and the route to its emergence. In order to image the bacterial dynamics
we perform video-microscopy with a high speed camera at 100 frames/second. This high frame rate allows us to record
rapid changes in the microscopic system. Images are analyzed using Particle Image Velocimetry (PIV), a widespread
technique employed in experimental fluid mechanics. Instantaneous velocity fields of the bacterial suspension are
estimated directly from consecutive images, using a pattern matching procedure. This method yields statistical
analyses and measures. Most notably, the distribution functions of cell velocities in the collective mode are found to
differ radically from that of an equilibrium system, while for free swimming cells the speed distribution is approximately
Maxwellian.

II. MATERIALS AND METHODS

All experiments were conducted with Bacillus subtilis strain 1085B. Stocks of cells were prepared by adding spores
on sand to 10 ml of sterile Terrific Broth [TB: 48.2 g Ezmix Terrific Broth (Sigma) + 8 ml glycerol in sufficient water
to make 1 l] at room temperature, and allowing the cells to grow and divide for 18 h. Then, 0.5 ml of this culture was
mixed in equal parts with glycerol, frozen and stored at −20◦C. The experimental samples were prepared by adding
1 ml of the −20◦C stock to 10 ml of TB, allowing the culture to stand for 18 h in a petri dish, after which 1 ml of the
bacterial suspension was added to 50ml of TB and incubated in a shaker bath (VWR model 1217; 37◦C, 100 rpm)
for 4 hours.
In order to concentrate the cells 1 ml of the 4-hour culture was placed in a vial (Eppendorf 1.6 ml) and centrifuged

for 2 minutes at 4000g, creating a loose pellet of bacteria. The supernatant was then removed and the bacteria-rich
residue was re-suspended in the remaining medium. By controlling the amount of fluid used to re-suspend the cells
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FIG. 2: (Color) Schematic of the experimental setup (not to scale); The bacterial suspension is deposited in a square well of
sides D = 5 mm and depth h = 100 µm built over a glass slide with PDMS walls. This micro-chamber is placed in a closed
petri dish with large water drops to control the evaporation of the sample, and imaged with a 20× or 40× objective on an
inverted microscope.

we achieved coarse control of the final concentration. During each experiment, 5 µl of the concentrated sample was
put in a solution of 10 µl iodine in 400 µl of 1 M NaCl to kill the bacteria. Samples of dead cells were diluted by a
factor of 10 in 1 M NaCl and the bacteria were counted in a Neubauer Hemocytometer (Spencer Bright-Line 1490,
American Optical Co.) for precise measurements of the cell concentration.
The microchambers used for experiments were square wells, 5 mm on a side and 0.1mm deep, constructed from

polydimethylsiloxane (PDMS, Sylgard 184, Dow-Corning), using a hard plastic negative machined to high precision.
The PDMS was degassed before being spread over the surface of the negative. Then, a clean glass slide, previously
treated with Alconox in a sonicator for 10 minutes, was placed on top and weighed down to ensure uniform covering.
Finally, the PDMS was cured in a vacuum oven for 18 h at 70◦C. For each experiment, the chamber was filled with 5
µl of cell suspension and enclosed in a plastic petri dish with water reservoirs that provide a saturated environment
to avoid sample evaporation (Fig. 2). The chambers were chosen to be shallow enough to inhibit the formation of
bioconvection patterns [28, 36–39]. While small concentration gradients may still be expected for this geometry [39],
they may be ignored at the level of detail presented in this paper.
Samples were imaged from below with an inverted microscope (Nikon Diaphot 300), using either a Nikon 40x PL

APO (0.55NA) or a Nikon 20x PL APO (0.5NA) objective. The depth of field δz of each is [40]

δz =
nrλℓ

NA2 +
nre

M(NA)
(1)

where nr ∼ 1 is the index of refraction of the air between the sample and the objective, e = 16 µm is the smallest
distance that can be resolved by the detector (a pixel), λℓ is the wavelength of light used to image, M is the
magnification of the lens and NA is the its numerical aperture. When bright field illumination is used, the depth of
field will be determined by the longest wavelength, λℓ ∼ 750 nm. These give respective depths of field of δz40x ∼ 3.21
µm and δz20x ∼ 4.8 µm. Recalling the size of the bacterial cell body, we see that the depth of field resolves at most
a couple of layers of cells.
Videos were obtained with a high speed camera (Phantom V5.1, Vision Research, Wayne, NJ) at 100 frames per

second with a resolution of 1024 × 1024 pixels, which corresponds to fields of view of 813 × 813 µm2 for the 20×
objective and 403×403 µm2 for the 40×. Sets of 500 frames were obtained for each experiment. Videos were processed
to remove the background and increase the contrast. For the concentrations used there is significant overlapping of
cells in the images (Fig. 1), so it is not possible to resolve individual bacteria. A commercial PIV system (Flow
Manager, Dantec Dynamics) was used to estimate cell velocities. Most current digital PIV applications utilize a cross
correlation analysis [41–43], in which each digital image is divided into small interrogation windows containing several
tracers. Each of those interrogation windows is matched to a position in the successive image, which corresponds
to the most likely displacement of the group of particles contained within it. All analyses presented here used an
interrogation window 8 × 8 pixels (corresponding to regions 3.15 µm × 3.15 µm for the 40× magnification case, and
6.35 µm × 6.35 µm for 20×) with a 25% overlap. A uniform 3×3 averaging kernel was used to reduce the noise of
the resulting field. The high accuracy needed for the experiments required correction for systematic errors in the PIV
analysis, as detailed in the Appendix.
Particle tracking velocimetry (PTV) of individual bacterial trajectories in dilute conditions was used to describe

the free swimming phase. These samples were prepared from the 4 h old culture as described above. One ml was
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placed in a centrifuge chamber and spun down at 4000×g for 2 minutes and then resuspended and diluted to 1/100th
of the original concentration. Samples were then put in a micro chamber and imaged. Thereafter, multiple cell
trajectories are measured from the digital videos using a PTV program in MATLAB based original source code by
Nicholas Darnton and Jacob D. Jaffe [44] with modifications by one of the authors (LHC) [45].

III. RESULTS AND DISCUSSION

The ZBN mode is a collective phase easy to identify when observed. Motion of adjacent cells is coherent in patches
and appears as domains of fast motion that stretch, fold disperse and reconstitute, with incoherent regions between
them. How may one characterize this phase in a quantitative manner useful for the validation of a model? An
obvious place to start is by analyzing the probability distribution function (PDF) of speeds. In order to quantify the
motion of uncrowded bacteria, individual trajectories were obtained from PTV on a dilute suspension (see movie 1
of Supplemental material [12]). A PDF based on the trajectories of the entire sample is shown in black in Fig. 3(a).
Error bars indicate the standard errors associated with the average over trajectories. It is evident that the typical
swimming speed of free cells falls in the range 15− 30 µm/s. This result agrees with previous data that also indicates
higher speeds for a small component of the cell population [8, 46].
A PDF obtained in the ZBN phase using PIV is shown in red in Fig. 3(a) (see movie 3 of Supplemental material

[12]). The data were computed by taking the average of distributions of speeds in each time frame. This curve shows
that in the collective phase the typical swimming speeds range from 20 − 150 µm/s, with a peak at ∼ 60 µm/s, so
the collective speeds are significantly larger than the typical individual free swimming speeds. This observation also
agrees with previous results [10, 11, 39]. It has been previously suggested [10, 11] that this is a hydrodynamical effect
associated with drag reduction and mutual advection equivalent to phenomena observed in sedimentation processes
[47].
Obtained in the same way, a speed distribution in a semidilute suspension exhibiting no apparent organized behavior

(or subcritical) is shown in blue. The striking feature of this distribution is that the typical speeds are considerably
lower than those for free swimming cells. We propose in Sec. IV that this decline occurs when cell to cell separations
are sufficiently small to produce a high probability of collisions, but not small enough to trigger collective organization
by steric and/or hydrodynamic interactions.
In order to analyze the orientational dynamics in the ZBN mode, we utilize an order parameter introduced elsewhere

[11] which measures the level of coherent directional motion in the velocity field. This scalar field ΦR is defined by
the local average 〈cos θ〉R of the scalar product of adjacent unit velocity vectors over a small region defined by R,

ΦR(i, j, t) =
1

NR

∑

(l,m)∈BR(i,j)

vij(t) · vlm(t)

|vij(t)||vlm(t)|
, (2)

where vij(t) is the measured velocity field and BR(i, j) is a quasi-circular region of radius R, centered at (i, j),
containing NR elements. ΦR can be used to picture the local levels of organization in the system. When ΦR ∼ 1 the
vectors inside BR are nearly parallel, corresponding to phalanxes of coherent motion. Values close to zero indicate
strong misalignment, and hence random, disorganized, orientations in R. Negative values imply locally opposing
streamlines. Notice that the only information used is the relative direction of motion of the cells in the small region,
the modulus of their speeds is not considered. The resolution and level of detail in this analysis are determined by the
choice of R. Features in the orientation field smaller than the scale defined by R can not be resolved. An example of
an instantaneous contour map of ΦR is shown in Figure 4(a), with the value R = 18.91 µm, corresponding to 6 grid
units in the PIV analysis. Since the PIV data is smoothed with a 3 × 3 spatial filter, this value of R is appropriate
to measure the local continuity without undesirable loss of detail.
Using the information given by ΦR, we can filter velocity vectors from regions with particular levels of organization.

For instance, the distribution of magnitudes of the vectors contained in regions in which 0.98 < ΦR < 1, corresponding
to a relative angular dispersion of . 10◦, is shown in green in Fig. 3. These correspond to very organized regions shown
in the darkest tone of red in Fig. 4(a). In the same way, a PDF of vectors within regions with −0.15 < ΦR < 0.15,
i.e. non-coherent motion with average angular dispersion in the range [80◦, 100◦], is shown in orange in Figure 3(b).
The two distinct levels of organization clearly produce radically different distributions of velocity vectors, indicating
that the high levels of coherence correspond to fast moving regions, while the regions presenting random orientations
correspond to slow motions. A simple conclusion from this observation is that cells located at the boundary between
coherent regions are in a jammed mode. This implies that in the ZBN phase cells inside of disordered regions are
less concentrated and rapidly colliding and reorienting, like in the subcritical phase, possibly trapped between large
moving phalanxes, in a process equivalent to a traffic jam. Eventually these cells get recruited into nearby coherent
jets and their motion is reactivated with the addition of the possibility of very close intercellular distances .
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FIG. 3: (Color) Probability distribution functions of speeds. (a) (Black) free swimmers in dilute conditions (n = (9.7±1.1)x107

cells/cm3); (blue) subcritical, or semi-dilute, suspension (n = (3.39± 0.32)x109 cells/cm3); (red) ZBN suspension (n = (4.92±
0.46)x109 cells/cm3). (b) For the same data shown in red, distribution functions filtered according to order parameter Φ; (green)
highly organized regions within the ZBN phase (0.98 < Φ < 1); (orange) isotropic regions within ZBN (−0.15 < Φ < 0.15).
Regions I-IV are coarse divisions of the velocity range.

These results are supported by the high spatial correlation between organization level and motion. A contour map
with four levels of speeds (termed zones I-IV) as given in Figure 3(b), is shown in Fig. 4(b). White represent slow
regions (I), light gray indicates the regions with the free swimming regime (II), dark gray indicates typical collective
speeds (III) and black shows very fast regions (IV). Comparison of Figs. 4(a) and 4(b) clearly reveals not only that the
global distributions show larger typical speeds for the ZBN phase relative to dilute suspension, but also, at the local
level, regions of high directional coherence are directly related to regions of faster motion and vice versa. Furthermore,
very fast cells, moving in excess of 90 µm/s, are located in the center of large coherent regions. Figure 4(c) is a plot
in the space of speed and (positive) ΦR for all frames analyzed, where color coding indicates local frequency of events
for a given combination of speed and ΦR. The clear accumulation of points confirms that fast cells are always highly
organized, and very slow cells are likely not very organized. This is clear proof that speed and co-directional motion
in the vicinity of each cell are highly correlated.

IV. DISCUSSION OF VELOCITIES IN THE DISORDERED PHASE

To understand how short cellular mean free paths may lead to anomalously low swimming speeds we consider the
details of bacterial propulsion. B. subtilis swim by rotating their numerous helical flagella, which are attached to their
cell body by flexible joints [48]. Locomotion is accomplished when these filaments wrap around each other to form a
flagellar bundle oriented opposite to the direction of motion. This bundle of rotating stiff helical filaments constitutes
a low Reynolds number propeller [49–51]. When swimming bacteria collide with each other or with an inert object
[52], the bundle of flagella may disperse, and then re-form. The bacteria then continue swimming at some arbitrary
angle with respect to its original trajectory. If, for instance, the bundle re-forms at 180◦ to its former direction,
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FIG. 4: (Color) (a) View of the contour levels for the orientation field ΦR in a snapshot of a ZBN sample (R = 18.91 µm). (b)
for the same frame as in (a), contour levels for values of speeds located in four intervals defined in Fig. 3: white - region I, with
speeds < 15 µm/s, light gray - regions II, speeds in the interval 15 µm/s< v < 45 µm/s, dark gray - regions III, with speeds in
the interval 45 µm/s< v < 90 µm/s, and black - region IV, with speeds > 90 µm/s. Taking Figure 3 into consideration, these
intervals correspond to regions characterized by: jamming (white), free motion (light gray), typical collective motion (dark
gray) and super fast motion (black). (c) contour levels of the density of events F for each point of the plane V − Φ, showing
the relation between coherent motion and large speeds. Coherent regions are fast and slow regions tend to be disorganized, as
evident from comparing (a) and (b).

the organism swims in approximately the direction opposite to the original, leaving the orientation of the cell body
unchanged. These polarity reversing flipping events can convert steric co-alignment into unipolar alignment. In the
context of subcritical collisions discussed here, cell reorientations reduce the mean speed of the population. It has not
been possible to observe this process in concentrated suspensions, as it has at low concentrations [52]. From these
experimental results [52] we infer the time needed to resume normal swimming speed is about one second. Thus, if
strong collisions occur every fraction of a second, causing frequent dispersal and reconstitution of the flagellar bundle,
the mean swimming speed would be less than found along unhindered trajectories. The re-orientation and re-bundling
of the flagella yields a model of accelerated motion between collisions. By way of comparison, note that the existence
of a finite time for cellular reversals has been suggested to play a role in pattern formation exhibited by myxobacteria
[53].
Data on reversals of bacterial locomotion at obstacles [52], shown in Fig. 5a, indicate that the transition from

stopped to free swimming is (empirically) described by a time-dependent speed

v(t) = v0

(

1− e−t/τ
)

, (3)

with v0 ∼ 25µm/s the free-swimming speed and τ ∼ 0.35 s the acceleration time. Since the orientation of cell
trajectories in semi-dilute conditions is still uniformly random, the scattering cross section is close to that of lateral
collisions. It is therefore likely that cells stop and restart during many of the interactions in subcritical suspensions.
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FIG. 5: (Color) Flagella bundling kinetics and its implications. (a) Time dependence of swimming speed after a stop followed
by a reversal of swimming direction due to flipping of the flagellar bundle, not by turning of the cell body. Data (solid black
circles) from particle tracking velocimetry on many individual cells, shown over a greater time range than originally presented
[52]. The data is fitted to Eq. 3 (red), where v0 is the terminal velocity of each tracked cell. The characteristic time is τ = 0.35
s. The cell acceleration from rest is related to the formation of the flagellar bundle. (b) Expected speeds (Eq. 10) as a function
of cell concentration n in subcritical conditions for two excluded volume geometries, L = 10µm and D = 2.5µm (solid red
line) and L = 18µm and D = 2.5µm (dashed red line), as defined in Fig. 6. Data points (solid blue squares, magenta circles,
green downward triangles) from several experiments are presented as well. The black upward triangle in the upper left corner
indicates the dilute case.

The empirical function (3) implies

x

v0τ
= −

v

v0
− ln

(

1−
v

v0

)

, (4)

which gives the length x necessary for a cell to accelerate to a velocity v. We now require an estimate of the
free swimming time between collisions, or the mean free path, as a function of the cell concentration. We employ
well-established geometrical arguments [54].
We model cells as rigid cylindrical rods of length L and diameter D, with a uniform concentration n and an

orientational distribution Ψ(k̂), where k̂ is a unit vector along the long axis of the rod. Consider now an evaluation

cylinder Π, with diameter D and length ℓ along the axis of a test particle with length L and orientation k̂, as is shown
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FIG. 6: Geometry of excluded volume. In a suspension of rods of length L and diameter D with a concentration n assumed
homogeneous. Consider an evaluation cylinder Π of length ℓ and diameter D located at one end and parallel to a test rod with
orientation k̂, the number of rods with orientation k̂ intersecting Π can be accounted as N = nVE(k̂

′, D, ℓ, k̂′, D, L) given by
Onsager’s excluded volume [55]. In the inset: for a polarized configuration, a excluded cylinder with radius D contains one
single cell when its length is 1/(nπD2) = L+ λo; where λo is the distance between rods.

in Fig. 6. Rods with orientation k̂
′ intersecting Π are those whose center of mass are located in the excluded volume

given by Onsager’s classic solution for cylinders with spherical caps [55, 56]:

VE(k̂, ℓ, k̂
′, L) =

4π

3
D3 + πD2(ℓ+ L) + 2DLℓ|k̂× k̂

′| . (5)

For aspect ratios L/D & 4− 5 the first term can be neglected, and the average number of rods intersecting Π can be
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written as

N =
〈

nVE(k̂, ℓ, k̂
′, L)

〉

k̂′

≃ πnD2(ℓ + L) +
π

2
nDLℓG(k̂) , (6)

with

G(k̂) =
4

π

〈

|k̂× k̂
′|
〉

k̂

=
4

π

∫

dk̂′Ψ(k̂′)|k̂× k̂
′| . (7)

An isotropic distribution has ΨI = 1/4π and GI = 1, while in a polarized system ΨP = δ(k̂′ − k̂) and GP = 0.
The typical distance that a cell is free to translate along its axis before hitting another cell can be obtained by

considering ℓ = λ(n) such that N ∼ 1. This gives the definition of the mean free path:

λ(n) =
λo

1 + 1
2sG(k̂)

, (8)

where s = (L/D) is the aspect ratio and λo = (nπD2)−1 − L. When the system is polarized the mean free path is
exactly the expected spacing between aligned rods, λP = λo (see inset in Fig. 6). On the other hand, for an isotropic
distribution λI = λo(2/(s+2)) < λo. To summarize, the typical mean free path increases with the level of alignment,

measured by G(k̂), and is inversely proportional to n (or to the volume fraction φ = nVi with Vi =
π
4D

2L the volume
of a single rod).
Now, for a particular value of the concentration n, the condition x = λ(n) restricts the maximum velocity achievable

by a cell, as given by (4). But of course in a given experiment cells do not stop and resume motion in a synchronized
way. Assuming the system is ergodic, an estimate of the most likely velocity observed is

< v >=
1

T

∫ T

0

v(t)dt , (9)

with T the mean free time such that x(T ) = λ(n) (i.e. T = T (n)). This gives

< v > = v0 −
τ

T
v(T ) =

λ(n)

T (n)

=
2

(s+ 2)T (n)

(

1

nπD2
− L

)

. (10)

Figure 5(b) shows experimental results for < v > versus n for different subcritical samples along with corresponding
theoretical curves using two assumptions for the size parameters (with D = 2.5µm): solid red is for L = 10µm and
dashed red is for L = 18µm). All data points shown as solid squares were produced using the same initial bacterial
culture, while the others (solid circles, downward triangles) arise from two different cultures. The parameter L is the
length of the flagellar envelope around single cells. It is known that under different growth conditions bacteria can
develop flagella of different lengths. This type of biological control was not implemented in our experiments. It is
plausible that these data points correspond to cells of different effective lengths. The data shown in solid blue matches
our theoretical description remarkably well.
Steric repulsion between cells should be considered for concentrations n ≥ nE = 1/ṼE , where

ṼE =
〈

VE(k̂, L, k̂
′, L)

〉

k̂′

∼
π

2
DL2 + 2πD2L (11)

is the average excluded volume of a rod in an isotropic distribution [55, 56]. The corresponding volume fraction is
φE = 1/(2s+ 8). We deem this to be a lower bound on the semidilute concentration regime, where the rods can no
longer be considered totally independent. For the case of Bacillus subtilis, if only the cell body is taken into account
(L ∼ 4µm and D ∼ 1µm) then nE ∼ 2 · 1010 cm−3 (φE ∼ 0.062). But a more realistic analysis must include the
effect of the flagella around each organism. In this sense, even though the flagellar envelope is not a rigid structure,
its volume exclusion can be accounted for simply by considering a larger size rod. For instance, with L ∼ 10 µm
and D ∼ 2.5 µm, for which the aspect ratio s is conserved, nE ∼ 1.3 · 109 cm−3 . Under isotropic conditions, the
mean free path at this concentration is given λI,E = L. At n ∼ nE cells typically occupy the excluded volume of
one other cell. In particular, the average number of contacts that a cell has is Nc = nVE = n/nE [57, 58]. This is a
convenient normalized concentration, which clearly indicates the proximity of the cells in terms of interactions. For
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concentrations close to nE the number of contacts per cell is few. Even though this is an evident constraint on the
orientations of cells, at this level there is still a wide range of orientation configurations available for each of them.
Cells are somewhat restricted to translate along their axis but otherwise free to take almost any orientation. For
concentrations as high as 5nE , a system of inactive rods reaches a typical random packing condition [59]; for ∼ 10nE

they display a transition into liquid crystalline phase [55, 56, 58].
We conclude that λ < L for isotropic symmetry and concentrations n & nE , and hence the typical cell speeds can

be much smaller than the free swimming values. That is, for semi-dilute conditions, cells cannot reach their terminal
velocity before a collision occurs, yielding a permanent state of re-orientation. This condition also implies that the
uniform random distribution of cell orientations is stationary. As more cells are packed together, steric repulsions
starts to induce local alignment, in the manner of a liquid crystal, as predicted by Onsager’s theory. The reorientation
of the cells will then be highly restricted, inducing local co-alignments and a consequent increase of the mean free
path λ.
The above analysis assumes implicitly that the test cell is the only one moving, and it neglects hydrodynamic

interactions. Clearly the flows induced in the surrounding fluid by an active particle produce changes in the trajectories
of other particles in the vicinity [60–64]. These interactions are at least partially responsible for the collective
phenomena emerging in these systems. In the case of flagellated bacteria, like B. subtilis, such interaction tend
to align them, inducing a bias in Ψ(k). Therefore the assumption that the distribution of cells stays isotropic is not
correct in principle, as cell-cell interactions induce local alignment. But for a semi-dilute system, this process is not
necessarily stable, as the cells can reorient randomly after each frontal collision loosing spatial correlation. Due to
frequent collisions, the system can quickly regain the isotropic distribution. Also under these circumstances cells can
not reach very fast speeds, so the hydrodynamic interactions are weakened. In this way the assumption of stationary
isotropic state for a semi-dilute system is justifiable. Equation 8 gives an estimated lower bound on the mean free
path for subcritical concentrations. For larger concentrations this assumption breaks down due to significant steric
repulsions associated to the volume exclusion, which now restricts not only translations but also rotations of the cells,
breaking the isotropic symmetry into the organized behavior. In this case it is necessary to introduce a Fokker-Planck
equation to describe the correlation between cell orientations, motion and concentration fields [19–21]. In particular,
if all the cells are moving in the same direction with the same speed, only very few collisions are expected, as they
just follow each other in line. For a less ideal case, the collision distance will depend on the distribution of speeds
as well as the distribution of orientations. The point to be made is that the mean free path is short for an isotropic
system and long for an organized one. The parameter λo is determined by the typical distance between cells, given
by the number concentration n. The fact that the isotropic mean free path is λo/s indicates that the restriction on
the length scale is purely a geometrical fact: for slender rods λI will be very short. Steric alignment determines a
reduction in the value of the geometrical factor G, inducing an increase of the mean free path, while at the same
time yielding a situation in which cells are moving close to each other, inducing large flows due to directed collective
propulsion.
A final point to be made in this regard concerns recent theoretical studies [65, 66] of the development of orientational

order in systems of ‘self-propelled rods’ which interact by a soft-core volume exclusion and without any long-range
hydrodynamic interactions. Numerical studies by Peruani, Deutsch, and Bär [65] show the emergence of clusters with
a broad distribution of sizes at a critical volume fraction that depends sensitively on the aspect ratio of the particles.
This onset point can be considerably less than the equivalent non-moving system’s ordering transition as described
by the Onsager criterion. But bearing in mind that such simulations do not take into account partial stopping and
acceleration of cells during and after their interactions due to breakdown of the propelling flagella bundle, clearly
relevant in real bacterial systems, we can expect that such a work gives a lower bound to the critical cell concentration.
The dynamics of the cluster size distribution function involves consideration of the scattering cross section of the rods
analogous to that which we have employed above. The order found in these works is intrinsically polar, like that seen
here. Similar results we obtained by Yang, Marceau, and Gompper [66] who studied the more general problem in
which the particles could undulate like flagella and thereby synchronize their motion. In addition to the appearance of
ordered, polar clusters it was also found possible to develop a jammed system, reminiscent of the intermediate phase
discussed here.

V. CONCLUSIONS

The experiments and analysis reported here have shown that suspensions of at least one species of rod-shaped
self-propelled bacteria exhibits a succession of phases as the concentration of these organisms increases from dilute
to close packed. Individual swimming speeds of free cells obey a bell-shaped distribution peaked at ∼ 25 µm/s. At
higher intermediate concentrations the speed distribution is collision-dominated while cell body orientations are still
isotropically distributed. This stage corresponds to a “jammed” phase with a distribution peaking at much lower
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speeds than the distribution for individuals. The jammed state can be explained by the combination of frequent
collisions, reorientations and deployment-reconstitutions of the flagellar bundle. Speeds in the high concentration
phase peak at considerably higher values than those of individual cells. These speeds characterize the motion of
aligned, nearly close packed bacteria swimming co-directionally, equivalent to a dense highway traffic. Enhanced
speeds in this mode are highly correlated to the degree of co-alignment and proximity of the swimmers. It has
been shown [11] that the anomalously rapid propulsion of a phalanx, during an interval of coherence, can be due to
propulsion by bacteria located at and near its boundary. Recent work [67] measuring directly the flow fields around
freely-swimming bacteria shows that hydrodynamic interactions between cells are washed out by rotational diffusion
beyond a few microns, so it is only when the intercell-spacing is smaller would the enhanced speeds appear. We have
shown that the ZBN phase is locally characterized by directional order correlated with high collective velocities of
an ordered domain. These domains are “phalanxes” since the members of them are tightly adjacent and move co-
directionally. What could be their origin? We speculate, but have no direct evidence, that the ZBN phase is actually
a pair of successively developing phases, the first a steric alignment of rods, as described by Onsager [55], followed
by a flip of bundles [52] of the propelling flagella of the rods, a.k.a. bacteria, that are not swimming in the direction
of the local majority, so as to give a unidirectional, i.e. polar, collective alignment. The origin of intermittency, the
instability of the phalanxes, resulting in the appearance of “turbulence,” is currently under investigation. It should be
noted that at the high concentrations of the ZBN it is difficult to determine the local variations in cell concentration,
but these would be expected to be correlated with the speed and local orientation as well, and current research aims to
study this effect. Due to intermittency, phalanxes travel for a short distance, followed by break-up and reconstitution
in new directions. The ZBN is therefore an efficient mixing phase. Quantitative analysis of this mixing is an important
future goal. Since bacteria require a continual supply of metabolites, e.g. oxygen, and a dispersal of waste exudates,
this dynamic property of the ZBN is of considerable significance in the life and environmental interaction of these
bacteria.
Is there evidence for universality? The occurrence of a ZBN phase is not restricted to wild-type B. subtilis cells.

We have shown that “run only” B. subtilis (a gift of George Ordal) also exhibit a ZBN phase. From this we infer
that intermittency in the formation and breakup of coherent phalanxes of these swimming bacteria is not due to
run-and-tumble transitions [33].
Do species other than B. subtilis undergo the ZBN phase transition? Erwinia carotivora, gram negative rod-shaped

soil-dwelling bacterial cells, also exhibit a ZBN phase (J.O. Kessler, M. Hawes, G. Curlango, unpublished). The
minimum inference to be drawn is that occurrence of the ZBN phase is not restricted to one species of bacteria. Tests
are planned to determine whether only rod-shaped peritrichously flagellated cells exhibit the phenomenon. It seems
likely, however, that parallel alignment of swimmers requires the packing characteristics of concentrated rods.
Is the phenomenon limited to laboratory experiments? Concentrated populations of aerobic bacteria can occur

when the aqueous medium that suspends them is rich in nutrients and oxygen. If the bacterial suspension has a
slanted interface, as in sessile drop cultures [10] or on wetted grains of soil or sand (the natural habitat of B. subtilis)
the organisms concentrate themselves, with the aid of gravity. Such circumstances require enhanced transport and
mixing, e.g. of oxygen from the surface of the suspension and of CO2 out of it. Mixing and transport from the
boundaries of a ZBN culture, and within it, are major consequences of the dynamics and intermittency. Thus, while
the occurrence of the ZBN phase might be “an accident,” it is an accident whose occurrence is welcomed in producing
enhanced viability.
We believe that the insights into the occurrence and character of the ZBN phase, presented in this paper, open new

avenues of research for the physics of active matter, and furthermore suggest new insights into microbial dynamics
within aqueous environments.

Appendix: Calibration of the PIV method

The cross-correlation of two scalar fields I1 and I2 as a function of the shift (x, y) is defined as

CΓ(x, y) =

∫∫

Γ I1(x
′, y′)I2(x

′ + x, y′ + y)dx′dy′
∫∫

Γ
I1(x′, y′)I2(x′, y′)dx′dy′

, (A.1)

where Γ is the subspace in which the correlation is evaluated. Considering digital images, I corresponds to bit level
values per pixel (e.g., for 8-bit gray scale images, integers [0, 255]). In this case, CΓ can be written in terms of
summations over discrete coordinates (x′, y′) = (x′

i, y
′
i).

The PIV method consists of finding the shift (x∗, y∗) which gives the maximum value of CΓ. This can be done by
evaluating CΓ for all possible values (xi, yi), generating a discrete correlation landscape and using the maximization
method of choice. For two sequential images I1 at time t and I2 at time t+∆t, with ∆t the time increment between
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frames, (x∗, y∗) is the most likely displacement of the features imaged in the evaluation window Γ. In this way, the
average velocity of the particles contained in Γ is simply given by

(u, v) =
1

∆t
(x∗, y∗) (A.2)

This procedure is repeated for all possible evaluation windows Γ in each frame, to generate a two dimensional vector
field of velocities. To decrease the computational cost of this process, most applications use Fourier methods to reduce
the implicit summations in the cross correlation function into multiplications of complex coefficients.
Extensive introductions to PIV methods can be found in the literature [41, 43, 68, 69]. Many different correlation

algorithms and other related procedures have been proposed, carrying out sophisticated methods of analysis, including
the implementation of predictors based on previous history, adaptive window sizing and off-setting, window deforma-
tion and vector validation methods [70], continuous window shifting [71], histogram equalization methods [72], and
others.
The determination of the displacement (x∗, y∗) can be achieved with sub-pixel accuracy by use of a linear regression

fit of CΓ(x, y) around the peak value in the discrete landscape. If the typical displacements are small relative to the
pixel size then sub-pixel precision is clearly crucial. But an inherent systematic error is unavoidable when using
the conventional procedures: an integer bias caused by an asymmetry inherent from the discrete sampling of the
correlation landscape around it. This issue is called the Pixel Locking Effect [43, 69, 71, 73–77], and although it can
be minimized, its emergence is independent of the correlation algorithm used. Unfortunately, due to the combination
of length and time scales of ZBN, this error is of particular significance for the analyses presented in this paper. For
instance, in our experimental conditions we expect the cell velocity probability distribution to be invariant under
rotations, because the boundaries of the system are far away and there is no intrinsic mechanism to break such a
symmetry. Yet, if we examine the distribution of velocities as reported by the PIV software, we observe that it has

FIG. 7: (Color) Two dimensional distribution of displacements in a sample of swimming bacteria. Axes indicate displacement
components in pixels from a frame to the next one, as reported by PIV, while the color indicates the frequency of occurrences
(see colorbar). The system is inherently isotropic, and this distribution function should be symmetric with respect to rotation
around the origin in the XY plane, which is clearly not the case.
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FIG. 8: (Color) Details of pixel-locking analysis. (a) Test case phase space: black dots indicate real values of (U,V ), red points
indicate corresponding (u, v) measured by PIV. As is evident, velocities are underestimated in a particular pattern, as shown
in Figure 9. (b) Real phase space (U, V ) (black) and corrected phase space (U ′, V ′) (blue).

FIG. 9: (Color) Residuals. This vector map shows the difference (Ru, Rv), indicating how each of the points of the test images
space are mapped into the PIV space. This shows how the points in the velocity space are moved towards integer values, and
away from fractional integer values.

an obvious lattice bias (Fig. 7), a hallmark of a systematic pixel locking error.
Some previous work had been done with regard to correcting this issue: in [73] the asymmetry around the inte-

ger peak was compensated by a constant factor before using a symmetrical Gaussian function; in [72] a histogram
equalization method is used to adjust speed distributions, but no correction to the vectors is done; in [71] a contin-
uous window-shifting method is implemented; [78] claims to solve the systematic error problem using the correlation
mapping method, which consist of combining interpolation of images and window shifting to evaluate the correlation
function and in [77] sine functions are used to fit the residual error and correct it.
We introduce here a technique to characterize the error and produce a simple calibration process. The intention

is to use this method with a commercial PIV system without modifying the PIV process itself. In other words, our
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FIG. 10: (Color) Residuals of uncorrected data RU = U − u (a) and RV = V − v (b) are shown in black and corrected data
R′

U = U − U ′ (a) and R′
V = V − V ′ is shown in red. In both cases the pixel locking phenomenon is obvious if the field is not

corrected. Error bars represent dispersion of the data for each location, and should be a good estimate of the confidence of the
measurement. These dispersions are related to random errors such as particular seedings within a single evaluation window for
different time frames.

effort is oriented to reduce the systematic pixel locking effect by adjusting data as a post-processing procedure. To
calibrate the PIV system, a known field must be measured with it, and the obvious way to implement this is to
produce a digital movie of simulated particles moving according to a prescribed field. In order to have the same
seeding conditions as those of the real system in question, we take a snap shot of it (see Fig. 1) and perform image
rotations using the standard bi-cubic extrapolation method . Therefore the “real” field is well known. The simulated
dynamics is henceforth analyzed with PIV using the same parameters and settings as for the experimental data (see
section II). Two hundred frames are time averaged to produce a single, noise reduced, velocity field. A comparison
of the real and the measured field phase spaces is shown in Figure 8a. In this representation, points (U, V ) of the
prescribed field correspond to a regularly spaced grid of points in the plane (black points in Fig.8a). The phase space
of the PIV results, (u, v), is shown as red dots. As is evident, the PIV analysis produces a very peculiar deformation
of the field characterized by a systematic bias of the displacements towards integer pixel values, as is nicely portrayed
in Figure 9, where the arrows depict the residual vectors (Ru, Rv) = (u− U, v − V ).
In order to obtain a usable instrument calibration we need to correct for the pixel locking effect. In principle, a

simple inversion of the map shown in Figure 9 should be enough to accomplish this. In this way, if we calculate

(U ′, V ′) = (u, v)− (Ru, Rv) (A.3)

and if the map is robust, we should obtain the corrected field (U ′, V ′) ≃ (U, V ) The map is constructed using a linear
interpolation method. We interpolate the residual field (Ru, Rv) on a square mesh to produce a value look up table
(LUT) that can be used to estimate the inverted map. Henceforth, we seek the three closest points, (ui, vi)i=1,2,3, to
each point obtained from PIV analysis, (u, v). Given that we know how those three points are mapped back into the
real space (U, V ), the corrected velocity value (U ′, V ′) can be interpolated from them. Considering the landscapes
generated by the LUT points for each component of the real space, U(ui, vi) and V (ui, vi), the corrected value (U ′, V ′)
of an arbitrary PIV point (u, v) can be calculated simply by evaluating it in the plane generated by (ui, vi)i=1,2,3.
In Figure 8b we see the average corrected phase space in blue. Is clear that the inversion almost completely corrects

the data, except in the corners of the velocity plane where fluctuations are strong due to scarce large speed readouts.
Nonetheless, the corrected field has an almost perfect coverage of the phase space.
Results are shown in Figure 10 in the form of residuals (RU , RV ) = (U, V )−(u−v) and (R′

U , R
′
V = (U, V )−(U ′, V ′).
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Error bars indicate dispersions around the time average. The wavy shape in the plots has a wavelength of about one
pixel/frame, and is related to the square structure shown in Figure 9. This is an evident indicator of Pixel Locking.
We see that the corrected data does not entirely eliminate this feature, but decreases its amplitude considerably. The
residual wave has an amplitude of about 1/20th of a pixel/frame displacements, providing a confidence level of about
±0.05 pixels.
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