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Entropically driven motion of polymers in non-uniform nanochannels

Tianxiang Su and Prashant K. Purohit∗

Department of Mechanical Engineering and Applied Mechanics,
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

In nanofluidic devices, non-uniform confinement induces an entropic force that automatically
drives biopolymers towards less confined regions to gain entropy. To understand this phenomenon,
we first analyze the diffusion of an entropy-driven particle system. The derived Fokker-Planck equa-
tion reveals an effective driving force as the negative gradient of the free energy. The derivation also
shows that both the diffusion constant and drag coefficient are location dependent on an arbitrary
free energy landscape. As an application, DNA motion and deformation in non-uniform channels
are investigated. Typical solutions reveal large gradients of stress on the polymer where the channel
width changes rapidly. Migration of DNA in several non-uniform channels is discussed.
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I. INTRODUCTION

The development of techniques for confining DNA in
nanofluidic channels has pushed genomic studies up to a
new level. Researchers are now capable of using nano-
channels to stretch a single DNA molecule, to sort DNAs
based on their sizes, and to study repressor-DNA inter-
actions, etc [1–4]. To interpret the experimental data,
theorists have been developing models to predict the free
energy, the average extension, relaxation time, etc, of a
confined polymer [5–9]. Among those theories, the two
most well-known in the field are those described by de
Gennes [5] and by Odijk [6].
de Gennes’ theory is applicable for a moderately con-

fined polymer. The theory requires D >> p, where D is
the channel width and p is the persistence length of the
polymer. In this regime, DNA forms blob-like structures
aligned along the channel. Evaluated at the average ex-
tension, the free energy G of the confined DNA scales as
G ∼ D−5/3 in this regime [9, 10]. This tells us that, with
the increase of the channel size, the free energy of the
polymer decreases.
On the other hand, Odijk’s theory studies a strongly

confined polymer with D << p. In this regime, DNA is
deflected back and forth by the channel walls, extending
its backbone almost linearly inside the channel. Evalu-
ated at the average extension 〈∆z〉, the free energy (per
unit length) in this strong confinement regime takes the
form [11]:

G

∣
∣
∣
∣
∆z=〈∆z〉

=
ckBT

p1/3 D2/3
, (1)

where kB is the Boltzmann constant, T is the absolute
temperature and c = 2.5 is a constant for a cylindrical
channel. This expression again suggests that the free en-
ergy is a decreasing function of D. The consequences of
such a dependence of the free energy on the channel width
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are rarely investigated because many of the studies so far
have focused on confining polymers in a uniform chan-
nel. However, in a non-uniform channel the dependence
of G on D implies a free energy gradient, and therefore
an effective driving force along the channel axis. This ef-
fective force can automatically drive the DNA to migrate
along the channel without fluid flow or applied electric
fields. Understanding this force can therefore help design
new nanofluidic channels for better DNA manipulation.

The effective force described here is essentially an
entropic force: by moving to a wider region inside a
non-uniform channel, DNA experiences less confinement,
gains more degrees of freedom and thus increases its en-
tropy. This lowers the free energy of the system. En-
tropic forces of this kind can be found in problems like
translocation of DNA through nanopores, where DNA is
driven by an electric field, against an entropic force, to
pass through a nanopore that separates two wide com-
partments [12, 13]. The entropic force acting on the DNA
is revealed by the spontaneous retracting motion of the
molecule when it is partly inserted into the nano-channel
[14]. Such retracting motion was modelled by Mannion
et al. [14] by performing a force balance where the drag
force on the DNA due to the surrounding fluid counter-
acts a constant entropic force. For simplicity, evolution of
the local deformation of the DNA during its motion was
neglected in these studies. Aside from non-uniform con-
finement, entropic forces on translocating polymers can
also arise from reversible binding of particles (proteins,
for instance) on one end of the polymer chain, which cre-
ates the so-called entropic Langmuir pressure [15]. En-
tropic forces have also been reported to play a role in
unfolding DNA molecules in channels [16]. In an even
broader context, the widely studied diffusiophoresis phe-
nomena on colloidal particles is also created by entropic
forces [17–19].

The goals of this paper are (1) to understand the
channel-shape dependence of the confinement induced
entropic force on a polymer, and (2) to study the coupled
migration and deformation of a polymer in a non-uniform
channel. To understand the entropic force, we first study
the diffusion of particles on a free energy landscape with
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varying entropy. A Fokker-Planck equation is derived,
which reveals an effective entropic force fent = −∇G,
automatically driving the system to reduce the free en-
ergy per particle G. The derivation also reveals that both
the diffusion ‘constant’ and the drag coefficient become
location-dependent as long as∇G 6= 0. Using the derived
effective entropic force, we further study the motion and
deformation of a polymer in a non-uniform channel. The
problem is governed by a second order partial differential
equation (PDE), whose solution gives both the migration
velocity and the strain distribution along the polymer
backbone.
Another issue arising in the context of a polymer con-

fined in a non-uniform channel is the possible transition
between the de Gennes’ and Odijk’s regimes. It is com-
monly acknowledged that the transition channel width
for a stress free DNA is roughly D ∼ 50 − 100nm, al-
though more complex phenomena have been reported in
this transition regime [20, 21]. As the polymer moves
and deforms inside a non-uniform channel, stress can de-
velop along its backbone so that the transition width is
no longer D ∼ 50 − 100nm. Even in a uniform chan-
nel, when electrical force is applied, the transition width
is expected to increase. In this paper we estimate the
transition width D as a function of the applied force so
that we know roughly which theory to use based on the
current location of the DNA and its local stress state.
For simplicity, we will focus on a piece of DNA moving
in a narrow non-uniform channel such that it is entirely
in Odijk’s regime. Then, we will discuss possible gener-
alization of the theory to the de Gennes’ regime.

II. ENTROPICALLY DRIVEN DIFFUSION

Before investigating the migration of DNA in non-
uniform channels, we first briefly discuss entropically
driven diffusion of particles in this section.
Consider a 1D random walk of an ensemble of par-

ticles on a free energy landscape with varying entropy
(Fig. 1). Unlike in the classical random walk model, the
particles considered here have different internal states.
In free space where no spatial constraints are imposed,
each particle has Ωtot internal states with energy Ei

(i = 1, 2, · · ·Ωtot). Along the z-axis, the 1D random walk
domain, some spatially-varying constraints are imposed,
reducing the number of accessible states for each parti-
cle to Ω(z) ≤ Ωtot at location z (Fig. 1). The spatial
constraints are non-uniform and therefore Ω(z) depends
on z. The particles are on an entropy-varying landscape.
In the context of confined DNA in nano-channels, one
can think of the different internal states as different con-
figurations of the DNA. The non-penetration constraint
posed by the non-uniform channel wall forbids some of
the configurations and reduces the number of accessible
states. We define the location dependent partition func-

tion as Ξ(z) =
∑Ω(z)

i=1 exp(−βEi), and the z-dependent
free energy as G(z) = −kBT log Ξ(z). Note that in defin-

ing the partition function and the free energy, we have
assumed local equilibrium.
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FIG. 1. (Color online) 1D random walk of particles (blue) in
the z-direction. In its natural condition, each particle has Ωtot

internal states (Ωtot = 6 in the figure). Some z-dependent
spatial constraints reduce the number of accessible states at
location z to Ω(z) ≤ Ωtot (the blank boxes), creating an en-
tropy varying landscape. Free energy is lower where there
are more states to explore. An entropic force arises from this
random walk model, driving the system towards regions with
lower free energy.

One can derive the Fokker-Planck equation rigorously
for this problem, which turns out to be:

∂P

∂t
=

∂

∂z

[

D
∂P

∂z
−

(
−dG/dz

ξ

)

P

]

, (2)

with P (z, t) being the probability density for a particle
being at location z at time t, D being the diffusion ‘con-
stant’, and ξ being the drag coefficient.
Compared with the Fokker-Planck equation for a ran-

dom walk with a ‘real’ applied force (say, by an optical
tweezer or other instruments) [22], Eq. 2 reveals that the
non-uniform spatial constraint creates an effective force
−dG/dz, which drives the system towards regions with
higher entropy to reduce the free energy. We note that
free energy gradient has been shown to be a good approx-
imation to the Langmuir pressure (an entropic force) in
problems where ejection of DNA from bacteriophage is
speeded up by the entropic effects of reversible binding
of proteins in the host cell [15]. Here in our model, the
free energy gradient is exactly, instead of approximately,
the entropic force.
It is important to note that in an entropy-varying land-

scape, the diffusion ‘constant’ D is location-dependent:

D ∼ Ξ(z). (3)
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This result comes out naturally in deriving the Fokker-
Planck equation. It suggests that the particles diffuse
faster where there are more states for exploration. This
is analogous to the case of diffusion in porous media,
where the effective diffusion constant is found to be pro-
portional to the porosity of the media [23]. Furthermore,
the Stokes-Einstein relation Dξ = kBT implies that the
drag coefficient ξ is also location-dependent when there
are non-uniform spatial constraints. This is not surpris-
ing since it is well-known that the proximity of walls can
change the drag coefficient on bodies in low Reynolds
number flows [24].
Using conservation of mass: P,t = −J,z, we obtain

from Eq. 2 the particle flux J as:

J = −D
∂P

∂z
−

dG/dz

ξ
P. (4)

An analytic steady state distribution can be found, even
with both D and ξ being functions of z, by setting J to
be a constant:

Psteady(z) = P0 Ξ(z)

∫
dz

Ξ2(z)
, (5)

where we recall that G(z) = −kBT log Ξ(z) and P0 is a
normalization constant. This is the steady state prob-
ability density of particles on an arbitrary free-energy
landscape with a non-uniform diffusion constant. To ver-
ify if this solution is correct, we consider a random walk
in z ∈ [z0, z1] with G(z) ∝ log(z). The boundary con-
dition at z = z0 is a hard wall, and at z = z1 it is an
absorption wall. Without any fitting, Eq. 5 agrees al-
most exactly with the result from a Kinetic Monte Carlo
(KMC) simulation (Fig. 2). Here the KMC simulation
was performed using the algorithms given in Voter [25].
Further, we note that the first term on the right-hand-

side of Eq. 4 is the diffusive flux, while the second term is
the drift flux (v − vfluid)P . Therefore, the mean velocity
v of the system is:

v = vfluid +
fapp − dG/dz

ξ
. (6)

Here vfluid is the fluid velocity and fapp is an external
applied force. Eq. 6 is essentially an equation for force
balance if, again, −dG/dz is interpreted as an effective
entropic force:

fapp
︸︷︷︸

external force

+

(

−
dG

dz

)

︸ ︷︷ ︸

entropic force

+ ξ (vfluid − v)
︸ ︷︷ ︸

drag force

= 0. (7)

Eq. 7 without the entropic force term has been used to
model macromolecules stretched in fluid flow [26]. Here
we show that a non-uniform spatial constraint gives rise
to an effective entropic force term that must be included
in the macroscopic force balance equation.
Interestingly, exactly the same results as presented

above for particles in an entropy varying landscape can
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FIG. 2. (Color online) Steady state distribution Psteady(z)
(y-axis on the left) on a free energy landscape G(z) ∝ log(z)
(y-axis on the right). The random walk domain is z ∈ [1, 100],
with z = 1 being a hard wall and z = 100 being an absorption
wall. Eq. 5 predicts a linear steady state distribution (blue
line), which is confirmed, without any fitting, by the Kinetic
Monte Carlo simulation results (blue circles). The numbers
in this figure are in SI units.

be derived by using another method – starting from the
Sackur-Tetrode formula for the entropy of an ideal gas
and considering the heat production rate. We show the
derivation in Appendix A.

III. DNA CONFINED IN NON-UNIFORM

CHANNELS – THEORY AND COMPUTATION

D

E

v0

fint(s+ds)fint(s)

fdrag

fent

fele

z

FIG. 3. (Color online) A DNA molecule is modelled as a 1D
rod confined in a non-uniform channel. Typically, inside a
nano-channel the DNA molecule can be subjected to stretch-
ing force fint, drag force fdrag exerted by the surrounding fluid
flow, entropic force fent due to the non-uniform confinement
and also electrical force fele since the DNA is charged. The
figure shows balance of force for an infinitesimal segment on
the rod.

We now analyze the migration and deformation of a
DNA molecule in a non-uniform channel. Under strong
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confinement, a DNA molecule (or any semi-flexible poly-
mer) can be modelled as a fluctuating 1D rod (Fig. 3)
[26]. The rod is parametrized by its arc length s ∈ [0, L],
with L being the contour length of the polymer. We de-
note the location of the DNA inside the channel at time
t as z(s, t), so that ∂z/∂t = ż is the local velocity and
∂z/∂s = λ is the local stretch of the DNA. Note that
ż > 0 if the polymer is moving from left to right (Fig. 3).
Below, we first analyze different forces that act on the

polymer. Of particular interest are the entropic force and
the drag force. As pointed out in the previous section,
the free energy gradient −dG/dz serves as an effective
entropic force per unit length fent. Using Eq. 1, we ob-
tain:

fent =
5

3

kBT

p1/3D5/3

dD

dz
. (8)

This entropic force is positive when dD/dz > 0. There-
fore, it drives the system towards regions with higher en-
tropy. Also, like other entropic forces in polymer science,
it depends linearly on the thermal energy kBT [15, 22].
Moreover, its magnitude is governed not only by the gra-
dient of the channel width, but also by the property of the
polymer, like the persistence length p. A very stiff poly-
mer with large persistence length p would be extended
linearly along the channel without feeling much confine-
ment. Therefore, the entropic force due to non-uniform
confinement will be weak on stiff polymers. The total en-
tropic force acting on the entire DNA can be estimated
as:

∫ L

0

(−dG/dz)ds ≈
c
[

D−2/3(0)−D−2/3(L)
]

βλp1/3
. (9)

Using Eq. 9, a divergent channel with D(0) = 25nm
and D(L) = 50nm will pose a total entropic force of
approximately 0.15pN on a strongly confined DNA with
λ ≈ 0.8 and p = 50nm. This force is significant be-
cause the typical thermal force scale on a DNA molecule
is kBT/p ≈ 0.08pN.
Translating polymers in a nanochannel also experience

a fluid drag. When the confinement is strong, hydrody-
namic interactions between the polymers and the channel
walls become important and cannot be neglected. For ex-
ample, for a slender body of contour length L and radius
a moving between two walls that are separated by a dis-
tance D << L, the longitudinal drag coefficient per unit
length is [27]:

dt2 =
2πµ

log
(
D/a

)
− 0.453

, (10)

with µ being the viscosity of the fluid. The subscript 2
stands for confinement by two walls. dt2 is much larger
than dt0 = 2πµ

log(L/2a)+c with c ≈ O(1), which is the drag

cooefficient for the same slender body moving in a fluid
with no nearby walls [24]. In our problem, a polymer in a
nanochannel can be modelled as a slender body confined

by four walls. Using superposition [28] and the fact that
dt2 >> dt0 [24], the drag coefficient for such a slender
body is approximately:

dt ≈
4πµ

log
(
D/a

)
− 0.453

. (11)

It has been shown, by several independent studies, that
the method of superposition for calculating the drag coef-
ficient yields reasonably good agreement with experimen-
tal measurements [29–31], even though it is not exact.
To determine dt, we still need to know the radius a of

the slender body. Marko and Siggia [32] suggested that
the effective radius should be taken as the transverse size
R⊥ of the elongated polymer. This depends not only on
the width D of the channel, but also on the persistence
length p of the polymer. Given the stretch λ of the poly-
mer, we estimate R⊥ in Appendix B, and the result is:

R⊥ = a0λ+ 0.7445
(

pD2
)1/3√

1− λ2 , (12)

with a0 = 1.0nm being the geometric width (radius) of a

DNA molecule [33–35]. Since
(
pD2

)1/3
>> a0, R⊥ is a

decreasing function of λ, which makes sense because for
an inextensible rod, the perpendicular deflections should
decrease as the stretch increases.
A substitution of R⊥ into a in Eq. 11 suggests that

a polymer with less transverse fluctuation experiences
less drag. In particular, for D = 50nm, the drag coef-
ficient per unit length is about 39.6 pNms µm−2 at zero
force. In comparison, it has been estimated that when
there is no confinement, the drag coefficient is about 0.61
pN ms µm−2 for a DNA molecule [36]. In micron scale
channels, on the other hand, the drag coefficient is about
1.2 pNms µm−2 [36]. Our estimate shows that when the
channel width is on the nanometer scale, the drag co-
efficient increases significantly. Further, we note that λ
and R⊥ depend on the internal stretching force fint (dis-
cussed below in Eq. 14). Therefore, dt is also a function
of fint. We show their relation in Fig. 4. As expected,
increasing the stretching force reduces the transverse size
of the polymer, which leads to a smaller dt.
Next, we do a force balance on an infinitesimal segment

of the rod, which, aside from the above mentioned two
forces, also experiences (Fig. 3): (1) internal stretching
force fint exerted by its neighbouring segments, and (2)
electrical force per unit length fele arising from the ap-
plied electric fields. Balance of forces in the longitudinal
direction (Eq. 7) requires these forces sum to zero:

∂fint
∂s

− dt

(
∂z

∂t
− vfluid

)

+ fele + fent = 0. (13)

In this force balance analysis, long-range hydrodynamic
interactions between different material points on the
DNA are neglected because the polymer is under strong
confinement. A random force can be added, but, to study
the average behavior, we do not include it in Eq. 13.
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FIG. 4. (Color online) Drag coefficient per unit length as a
function of the stretching force fint at different channel widths
D (calculated using Eq. 11, Eq. 12 and Eq. 14).

Also, since the Reynolds number is low in a nanofluidic
channel, it is legitimate to ignore inertia. We also note
that the drag force may also depend on the strain rate
∂vfluid/∂z [37], but in this study we neglect this effect.
This is consistent with Eq. 7.
To solve for the two unknowns z(s, t) and fint(s, t),

we also need a constitutive equation [26]. In particular,
following Marko and Siggia [32], we will apply the con-
stitutive relation locally on the polymer. For a strongly
confined DNA, Wang and Gao [38] showed that the force-
stretch relation is:

fint =
1

βp

[

1

4(1− λ)2
− c2

(
p

D

)4/3
]

, (14)

where again λ = ∂z/∂s is the local stretch of the DNA
and c = 2.5 is a constant for a cylindrical channel. Eq. 13
and Eq. 14 form the governing equations for the problem.
To identify the relative order of magnitude of each term

in the governing equations, we scale the problem using
the following non-dimensional quantities:

z̄ =
z

L
, s̄ =

s

L
, D̄ =

D

p
, ā0 =

a0
p
, (15)

f̄int = fintβp, f̄ele = fele

(
3

5
βpL

)

, (16)

t̄ =
5t

3βdt∗pL2
, v̄fluid = vfluid

(
3

5
βdt∗pL

)

. (17)

Here dt∗ = 4πµ is the numerator of the drag coefficient dt
(Eq. 11). The scaling suggests that the typical time scale
for the problem is on the order of τ ∼ βdt∗pL

2 ≈ 10s for
a DNA molecule about 20µm long in water with viscosity
10−3 Nsm−2. For a wider micron scale channel, however,

the time scale is expected to be smaller since the drag
coefficient is smaller and the molecules move faster. As
a comparison, the Rouse bead and spring model predicts
the first-mode structural relaxation time τ1 of a polymer
chain as τ1 = βξL2 [39], with ξ being the drag coefficient
per bead. Using ξ = dtl and l ∼ p, where l is the natu-
ral length of each spring, we recover the time scale τ for
our governing equations. We note that, more generally, a
stretched polymer has two different relaxation times, one
in the longitudinal direction τ‖ and one in the transverse

direction τ⊥ [40]. The time scale τ ∼ βdt∗pL
2 for our

governing equations is for the deformation in the longi-
tudinal direction because t appears in our equations as
∂z/∂t.

The two governing equations for z(s, t) and fint(s, t)
(Eq. 13 and Eq. 14) can be decoupled. By plugging the
constitutive law into the equation for force balance, we
can eliminate f̄int and the result is an evolution law for
z̄(s, t):

H(λ)
∂z̄

∂t̄
=

3

10
(
1− λ̄

)3

∂λ̄

∂s̄
+

(

5λ̄

D̄7/3
+

1

D̄5/3

)

dD̄

dz̄
+ V̄.

(18)

Here, the function H(λ) =
[
log(D̄/R̄⊥)− 0.453

]−1
is the

contribution of the polymer-wall hydrodynamic interac-
tion. V̄ = H(λ)v̄fluid + f̄ele can be viewed as an effective
flow that combines the actual drag force with the electri-
cal force. Eq. 18 is the central equation for the problem
because its solution gives the velocity ∂z/∂t and also the
deformation λ = ∂z/∂s of the DNA inside a non-uniform
channel.

It is possible to design a non-uniform channel in which
a DNA molecule remains stationary. The key is to use
the fluid flow and applied electric field to exactly balance
the entropic force. The shape of this special channel can
be determined by setting ∂z̄/∂t̄ = 0 in Eq. 18, so that
what remains is an ordinary differential equation (ODE)
for the channel shape D = D(z). To see this, we note
that all the three terms on the right-hand-side of Eq. 18
can be written as functions of D because (1) by setting
fint = 0, λ̄ = λ̄(D̄) by the constitutive law, and (2)
for an incompressible flow, v̄ = v̄(D̄) because of mass
conservation. We do not set up the ODE here for the
sake of brevity.

Eq. 18 does not have an analytical solution for most
cases. To solve the problem numerically, we discretize
the rod into segments and do force balance using the
wormlike-chain constitutive relation (with effects of con-
finement) for each of them. The local velocity and stretch
of each segment are determined using the method dis-
cussed above. The discrete version of our governing equa-
tions essentially constitutes a string of beads connected
by wormlike-chain linkers.
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FIG. 5. (Color online) Stretch and force distributions along
the arc length s of a stationary DNA in a uniform nanofluidic
channel. The stretch distribution is non-linear: (1 − λ̄) ∼

(−s̄)−1/2 while the force distribution is always linear with
slope being −5V̄/3.

IV. DNA CONFINED IN NON-UNIFORM

CHANNELS – RESULTS

A. Stationary DNA in nanochannels

As the simplest special case, we first briefly discuss
the results for a stationary DNA in a uniform channel.
In this case, Eq. 18 reduces to:

∂λ̄

∂s̄
= −

10V̄

3

(
1− λ̄

)3
. (19)

Assuming uniform flow, i.e, V̄ = constant is indepen-
dent of z̄ (since H depends weakly on λ, we neglect the
dependence of H on λ here. When we do numerical sim-
ulations in the later discussions, this dependence will be
taken into account), we get the analytic solutions:

λ̄(s̄) = 1−
1

2
√

A−
(
5V̄/3

)
s̄
, f̄int(s̄) = −

5V̄ s̄

3
−

c2

D̄4/3
+A.

(20)
Here c = 2.5 and A is a constant determined by the
boundary condition. For example, f̄int(1) = 0 for a free
end leads to A = 5V̄/3 + c2D̄−4/3.

The solution in Eq.20 suggests that the force distri-
bution along the arc length is always linear while the
stretch varies non-linearly as (1− λ̄) ∼ (−s̄)−1/2 (Fig. 5).
Moreover, when V̄ > 0, both f̄int and λ̄ are decreasing
functions of s̄. This implies that the strain along the
DNA is highest at its ‘upstream’ end and lowest at its
‘downstream’ end, regardless of the boundary conditions
posed. This is reasonable because forces applied at the
‘upstream’ end should balance the drag force along the
entire DNA, so that the polymer can stay stationary.

B. Migration and deformation of DNA in

non-uniform channels

We now analyze the entropy-driven migration of DNA
in non-uniform channels. Firstly, we consider a channel
with a sudden change in its width as shown in Fig. 6(a).
Similar channels have been used to study the transport of
DNA in nanopits [41], although in this section we will fo-
cus on channels narrow enough that the polymer is purely
in Odijk’s regime. The channel shape is modelled as a
hyperbolic function D(z) ∼ tanh(z/η), where η is a pa-
rameter characterizing the length scale over which the
channel changes its width. As η → 0, D(z) becomes a
step function.

To study the entropic effect, fluid flow and elec-
tric field are set to zero, so that the DNA is driven
purely by the entropic force. We solve Eq. 18 numer-
ically to obtain z(s, t), with a stress-free initial condi-
tion fint(s, 0) = 0 and stress-free boundary conditions
fint(0, t) = fint(L, t) = 0. As expected, the DNA mi-
grates to the wider region. The entire process can be
divided into two stages, as explained in detail below.

Stage-(I): DNA moving across the interface z = z∗,
at which the channel width changes ( 1©– 3© in Fig. 6). In
this stage, the material point at the interface z∗ expe-
riences a large entropic force. Therefore, it moves with
a larger velocity to the left compared to its neighbour-
ing material points (see the enlarged figure in Fig. 6(a)).
This stretches the material on the right of the interface
and compresses the material on the left. As a result, a
large force/strain gradient appears at the interface. This
force/strain gradient travels along the DNA backbone as
it moves across z = z∗, as shown in Fig. 6(b). This re-
sult implies that, if a polymer were to undergo structural
change in a nano-channel, the change is most likely to
occur at the interface where the channel shape changes
most rapidly. Interestingly, some nanopores in cells, such
as those in proteasomes, have indeed been found to cause
structural changes in proteins [42, 43].

A second observation in this stage is that both ends
of the DNA migrate at constant velocities (Fig. 7 shows
the migration of the end s = L). This can be understood
by looking into the central equation (Eq. 18). Before
completely moving across the interface z = z∗, the stretch
λ at both ends remains almost a constant and does not
change with time. Therefore, Eq. 18 suggests an almost
constant ż. This result holds even when there is fluid flow
in the channel (V̄ 6= 0). Our results also show a decrease
in the total extension of the DNA in this stage (Fig. 6(c)
1©– 3©). This is expected because during the migration,
a larger portion of the DNA moves into the wider region,
where it suffers less stretch.

Stage-(II): DNA leaving the interface ( 3©– 4© in
Fig. 6). As the entire DNA molecule enters into the
wider part of the channel, the force/strain gradient slowly
relaxes and finally disappears (Fig. 6(b)). At the same
time, the total extension of the polymer stops decreasing,
and increases to reach an equilibrium value (Fig. 6(c)).
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FIG. 6. (Color online) Entropically driven DNA crossing a sharp interface where the channel width changes suddenly. The
channel shape is shown in (a). No fluid flow or electrical force is applied, so the DNA is driven only by the entropic force.
The numbers in the circles represent snapshots of the molecule at different times. The process can be divided into two stages.
Stage-(I): DNA moving across the interface at z = z∗ ( 1© – 3©). In this stage, a large force/strain gradient occurs at z = z∗ as
is apparent in (b). This force/strain gradient is caused by the migration speed gradient as shown in the enlarged figure in (a)
(v0 > vl, v0 > vr). The strain gradient travels along the DNA backbone until it completely enters into the wider region. Total
extension of the DNA decreases in this stage as is apparent in (c). Stage-(II): DNA leaving the interface ( 3© – 4©). In this
stage, the force/strain gradient slowly relaxes as is apparent in (b). The total extension of the DNA stops decreasing, instead,
it increases to reach an equilibrium value as is apparent in (c).
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FIG. 7. (Color online) Movement of the right end of the DNA
(z(L, t) as a function of t) in channels with different η. No
fluid flow or electrical force is applied, so the DNA is driven
only by the entropic force. For a channel that changes its
shape more rapidly (smaller η = 0.01, blue), the DNA moves
faster because of larger entropic force. The initial condition
is a stress free state. The boundary conditions are fint = 0 at
s = 0 and s = L.

Smoothing the change in width of the channel by in-
creasing η can reduce the entropic force. Therefore, DNA
is expected to migrate slower in a channel with a gently
varying cross-section. This is confirmed by the solution
to the central equation (Eq. 18). In Fig. 7, z(L, t) is plot-
ted for DNA in two different channels with η = 0.01 and
1 respectively, to show the velocity difference. No fluid
flow is applied and the electrical force is set to zero.

Other more complicated non-uniform channels have
also been fabricated in recent years, although most of
them are at the micron scale [36]. We show the migra-
tion of a piece of DNA in four different types of such
channels (in nanoscale so that the polymer is in Odijk’s
regime) in Fig. 8. The channel shape is D(z) = (az+b)n,

with n = 1,−1/2,−2 and −1 for the four channels. a and
b are two constant parameters. No fluid flow or electrical
force is applied, so the DNA is driven only by the entropic
force. Our results suggest that with the same entrance
width and exit width, a linear channel with n = 1 drives
the polymer to move most slowly and the polymer suffers
less stretch in this channel type (Fig. 8).

We next consider symmetric channels with two shape-
changing regions as shown in Fig. 9(a) and (d). Again,
the fluid velocity and electrical force are set to zero.
These channels can exert entropic pulling and pushing
forces on the molecule. In the channel shown in Fig. 9(a),
the two ends are wider while the middle region is nar-
rower. This creates a pair of pulling entropic forces on the
confined polymer. Therefore, even without fluid flow or
electrical force, stress/strain along the backbone quickly
builds up and reaches a maximum in the middle where
the confinement is stronger (Fig. 9(b)). The total exten-
sion of the polymer increases in response to the opposite
entropic stretching and achieves equilibrium after some
time as the polymer reaches a stationary state (Fig. 9(c)).

Fig. 9(d) is another symmetric channel with two nar-
row ends and a wide middle region. In this case, the
entropic forces push the DNA into the middle region.
However, as the DNA contracts, negative force builds up
along the backbone, pushing against the entropic force
until force balance is established (Fig. 9(e)). During the
process, total extension of the polymer decreases in re-
sponse to the entropic pushing (Fig. 9(f)). Again, we
see large stress/strain gradients at the regions where the
channel changes its shape.

A fluid flow or an applied electric field in the channel
shown in Fig. 9(a) can break the symmetry of the prob-
lem. The DNA now migrates in response to the flow, or
the electric field, through the nano-channel. The results
with vfluid > 0 and fele = 0 are shown in Fig. 10(b).
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FIG. 8. (Color online) Migration of a piece of DNA in different
types of nanochannels. The polymer is driven purely by en-
tropic forces (V̄ = 0). (a) z̄ at s̄ = 0 versus dimensionless time.
(b) Total stretch ∆z/L = [z(L) − z(0)]/L versus dimension-
less time. Different lines are for different channel shapes D(z).
Blue circles: linear channel with D(z) = az + b. Red trian-

gles: D(z) = (az+ b)−1/2. Black squares: D(z) = (az+ b)−2.
Cyan stars: D(z) = (az + b)−1. Here a and b are different
constants for different channel types. For comparison, a and
b for each channel type are chosen so that the entrance/exit
widths of the four channels are the same.

The total stretch of the DNA increases as the polymer
squeezes through the narrow region (Fig. 10(b)). Two
force/strain gradients travel along the backbone of the
DNA sequentially during the entire process (Fig. 10(c)).

Finally, we also investigate the dependence of the mi-
gration speed on the polymer contour length L and per-
sistence length p. Three polymers with different con-
tour lengths and persistence lengths (L = 8, 3 and 8µm,
p = 50, 50 and 100nm respectively) are placed in a peri-
odic channel with fluid flow vfluid > 0 (Fig. 11(a)). Elec-
trical field is again set to zero. Our results show that
longer DNA moves faster in the periodic channel. At
t = 5s, the long DNA with L = 8µm has already been
separated from the short DNA with L = 3µm by 6 − 7
microns (Fig. 11(b)). Changing the persistence length
of the polymer does not significantly affect the migra-
tion velocity, at least in the case we studied. Fig. 11(b)
shows that a polymer with p = 50nm migrates as fast

as one with p = 100nm. This can be explained in the
following way. Increasing the persistence length has two
effects. Firstly, it reduces the drag coefficient since the
effective radius of the polymer rod is less. This speeds
up the migration. Secondly, it also reduces the entropic
force (Eq. 8), which drives the polymer motion. This low-
ers the migration velocity. These two effects cancel each
other, making the migration velocity not significantly de-
pendent on the persistence length.

C. Transition to the de Gennes regime under

non-zero force

The framework described above can be generalized to
the de Gennes’ regime by (1) adding proper force terms
in the force balance equation (Eq. 13) since for a mod-
erately confined DNA, volume exclusion effect and also
the hydrodynamic force cannot be neglected any more,
(2) changing the constitutive law for a blob-like polymer.
To completely solve the problem of DNA in non-uniform
channel, we also need to know at which channel width D
the transition from the Odijk to de Gennes regime occurs.
Although it is well-known that transition for a stress free
DNA happens at channel width about 50− 100nm, tran-
sition width for a DNA under finite stress is unknown.
Below we try to estimate the transition width between
the two regimes as a function of the force.

We shall find the transition width in the following way.
Odijk’s theory assumes that under strong confinement,
the angle fluctuation of the polymer is small such that
second order approximation is proper. We shall find, in
the f −D plane, regions where the small angle approx-
imation is valid. The other regions of the f − D plane
where small angle approximation is not valid are assumed
to be in de Gennes’ regime.

Let θ(s) be the angle formed by the polymer with re-
spect to the axis of the channel. In the Odijk regime, us-
ing the small angle quadratic approximation, the mean
angle fluctuation of a confined chain under end-to-end
force f is found to be [38]:

〈θ2〉 =
1

√

βpf + c2
(
p/D

)4/3
, (21)

In deriving this result, cos θ ≈ 1 − θ2/2 was used. The
ratio between the dropped quartic term θ4/24 and the
retained quadratic term θ2/2 is:

e =
θ4/24

θ2/2
=

θ2

12
. (22)

In order for the theory to be self-consistent, we need e
to be small. Therefore, we try to find the regions on
the f − D plane where e is small and assume the rest
of the plane corresponds to the deGennes’ regime. The
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FIG. 9. (Color online) Motion and deformation of a piece of DNA in symmetric non-uniform channels without fluid flow or
applied electric fields. (a–c): In the symmetric channel shown in (a), the initially stress-free polymer is pulled by a pair of
entropic forces created by the channel. As a result, force and strain build up along the polymer backbone. In particular, large
force gradient occurs at locations where the channel changes its shape most rapidly (b). The total extension of the polymer
increases initially in response to the entropic pulling and then reaches equilibrium (c). (d–f): The symmetric channel shown
in (d) creates a pair of entropic forces, which pushes the DNA inwards. In response, strain is developed along the polymer
backbone (e). The total extension of the DNA decreases because of the pushing and then reaches equilibrium (f).

expression for 〈e〉 as a function of f and D is:

〈e〉 =
〈θ2〉

12
=

1

12

√

βfp+ c2
(
p/D

)4/3
. (23)

We plot on the f − D plane curves corresponding to
e = 3% and 5% respectively in Fig. 12. For the region
with e less than 3%, we claim the polymer is in Odijk’s
regime, for the zone with error larger than 5%, the poly-
mer is more likely to be in de Gennes’ regime. In between,
there is uncertainty as to which regime best describes the
behavior of the DNA. In fact, complex phenomena have
been reported in the transition regions even when f = 0
[20, 21]. Fig. 12 shows that the transition occurs at wider
channel width as the stress in the DNA increases. At
f = 0, the transition width is around 50 − 100nm, as
expected.

V. CONCLUSIONS

The configuration and deformation of a confined poly-
mer molecule depends on the channel width. But a
non-uniform channel width results in more than a non-
uniform deformation along the polymer. It actually

drives the polymer to move in a direction perpendicu-
lar to the confinement. The driving force is entropic in
essence, and it is revealed by a random walk model as
fent = −∇G. The negative sign indicates that the force
is driving the system to minimize its free energy. In-
cluding this force in the force balance analysis, we study
the coupled deformation and motion of a piece of DNA
in a non-uniform channel. The problem is governed by a
second order PDE, whose solutions give the migration ve-
locity and also the strain distribution along the polymer.
DNA in different channel shapes are analyzed. A com-
mon feature is that large stress gradient occurs where
the channel width changes dramatically. Longer DNA
migrates faster through a nanochannel with fluid flow
while the persistence length seems to have little effect
on the migration velocity. Transition from Odijk’s to de
Gennes’ regimes can occur in a non-uniform channel and
is shown to be delayed if the stress along the polymer is
high.
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FIG. 10. (Color online) (a) A piece of DNA migrates along a
non-uniform nano-channel with fluid flow V̄ > 0. The num-
bers 1,2,3,4,5,6 represent snapshots in time. (b) Total stretch
of the DNA increases as the polymer squeezes through the
middle narrow region of the channel. (c) Two strain/stress
gradients travel through the polymer backbone sequentially
because there are two locations where the width of the chan-
nel varies rapidly.
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FIG. 11. (Color online) Migration of three different pieces
of DNA in a periodic channel as shown in (a) (width in the
wide/narrow region is D = 50nm and D = 25nm respectively,
only one DNA molecule is shown). No electrical force is ap-
plied. Fluid in the channel flows to the right vfluid > 0. (b)
z at s = 0 versus time. Blue: L = 8µm, p = 50nm. Red:
L = 3µm, p = 50nm. Black: L = 8µm, p = 100nm. At
t = 5s, the long DNA (blue) and the short DNA (red) have
been separated by 6.6 microns.

Appendix A: Results of entropy-induced migration

derived from the Sackur-Tetrode equation

The conclusions drawn from the random walk model in
the main text can be understood from a different point
of view by considering the heat production rate of the
system. In this section, we show that exactly the same
results can be re-derived using the Sackur-Tetrode for-
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FIG. 12. (Color online) Transition between Odijk’s and de
Gennes’ regimes. The two curves on the f − D plane corre-
spond to errors e = 3% (black), and 5% (blue) respectively.
Region to the left of the curves is with less error. For the re-
gion with e < 3%, we claim the polymer is in Odijk’s regime.
On the other hand, for the region with e > 5%, the polymer is
more likely to be in de Gennes’ regime. We define 3%–5% as
an uncertain zone, where transition between the two regimes
occurs. The transition channel width is shown to increase
with the increase of force.

mula for the entropy of ideal gases.

Again, we imagine N particles diffusing on the z axis.
In any infinitesimal interval dz, there are NP (z)dz num-
ber of particles, where P (z) is the particle density dis-
tribution. Using the Sackur-Tetrode formula [44], the
entropy at position z can be written as:

S(z) = NP (z)kB log

[
V (z)

h3
(2πmkBT )

3/2

]

−NP (z)kB log
[
NP (z)

]
+

5

2
NP (z)kB,

(A1)

where h is the Planck constant and m is the mass of an
individual particle. Note that the second term on the
right-hand-side is the Boltzmann entropy for a probabil-
ity distribution P, arising from the Gibbs’ correction to
the entropy of an ideal gas and will eventually lead to
pure diffusion, as we shall show later.

Heat production rate of the system can be evaluated
using Eq. A1, conservation of mass: P,t = −J,z and inte-
gration by parts with boundary conditions J(±∞) = 0.
The result turns out to be:

Q̇ = T
∂

∂t

∫

z

S(z)dz (A2)

= NkBT

∫

z

[
d (logV )

dz
−

∂P/∂z

P

]

J dz. (A3)

On the other hand, heat generation can be evaluated
using the local power density [45]: w = P (ξJ/P )(J/P ) =
ξJ2/P :

Q̇ = N

∫

z

ξJ2

P
dz. (A4)
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A comparison between Eq. A3 and Eq. A4 yields:

J = −D
∂P

∂z
+

−dG/dz

ξ
P, (A5)

where dG = −kBTd (logV ) has been used as the gradient
of the free energy for a single particle under the condition
that temperature is a constant [44]. This result agrees ex-
actly with the one obtained from the microscopic model
(Eq. 4). Plugged into the mass conservation law, Eq. A5
gives the evolution law for P (z, t) shown in Eq. 2. We
note that the first term in Eq. A5 is pure diffusion and
it comes from the Boltzmann entropy for a probability
distribution P in Eq. A1.
Compared to the random walk model, the theory dis-

cussed here considers the problem from a different point
of view. Here a non-uniform entropy/free energy land-
scape causes heat production when a particle flux sweeps
through. This contributes to the system as a source of
heat. The framework for this model has been used to
derive equations for thermal diffusion problems where a
temperature gradient drives the diffusion of ideal gas [45].
Here we have used it for diffusion in an entropy-varying
landscape.

Appendix B: Transverse size of a strongly confined

polymer

Given a polymer under uniform stretch λ = ∂z/∂s
inside a nano-channel of width D, we estimate the trans-
verse displacement R⊥ of the polymer in this section.

θ

l

FIG. 13. Given θ, we find the l that minimizes the energy of
the confined chain.

Since the stretch λ is uniform, for an inextensible
chain, the tangent angle θ (the absolute value) is a con-
stant along the contour. Therefore, the configuration of
the polymer, modeled as a chain of links, is piece-wise

linear, as shown in Fig. 13. There is only one free pa-
rameter for this configuration: l which is the length of
each piece-wise linear segment. Below, we find lmin that
minimizes the energy of the chain, from which we can
obtain the transverse displacement as a function of the
stretch. The energy per unit length of the chain is:

E = Eb + Ec + Ep =
2Kbθ

2

l2
+

Ξθ2

24
l2 +

1

2
fθ2, (B1)

where Kb is the bending energy, Ξ is the quadratic con-
finement potential [38], and f is the applied force. The
lmin that minimizes this energy is:

lmin =

(
48Kb

Ξ

)1/4

. (B2)

Plugging in the relation between Ξ and D [38], we have
the scaling relation: lmin ∼ p1/3D2/3, which agrees ex-
actly with the prediction of Odijk and that of Burkhardt
[6, 11, 46].
For the transverse displacement at the nodes (Fig. 13),

we have: R⊥ = sin θl/2+a0 cos θ, where a0 is the effective
width of the DNA molecule without fluctuation. There-
fore, the transverse displacement R⊥ that minimizes the
energy is:

R⊥ = a0
∂z

∂s
+

(
3Kb

Ξ

)1/4
√

1−

(
∂z

∂s

)2

. (B3)

When ∂z/∂s = 1, there is no thermal fluctuation, so the
minimizer R⊥ = a0, as expected. Plugging in the relation
between Ξ and D [38], we obtain:

R⊥ = a0λ+ 0.7445
(

pD2
)1/3√

1− λ2. (B4)
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